def __init__(self, state_size, action_size, seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device) self.qnetwork_target = QNetwork(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) self.prioritized_replay_alpha = 0.6 self.prioritized_replay_beta0 = 0.4 self.prioritized_replay_beta_iters = 100000 # Replay memory self.memory = PrioritizedReplayBuffer( BUFFER_SIZE, alpha=self.prioritized_replay_alpha) self.beta_schedule = LinearSchedule( self.prioritized_replay_beta_iters, initial_p=self.prioritized_replay_beta0, final_p=1.0) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0
def __init__(self, user_num, action_dim, action_bound, cvr_n_features, ddpg_n_features, init_roi, budget, use_budget_control, use_prioritized_experience_replay, max_trajectory_length, update_times_per_train=1, use_predict_cvr=False): self.user_num = user_num self.use_budget_control = use_budget_control self.update_times_per_train = update_times_per_train self.action_dim = action_dim self.action_bound = action_bound self.n_actions = 1 self.cvr_n_features = cvr_n_features self.ddpg_n_features = ddpg_n_features self.lr = 0.001 self.use_predict_cvr = use_predict_cvr self.user_based_adjust_times = 40 self.epsilon = 0.9 self.epsilon_min = 0.05 self.epsilon_dec = 0.3 self.epsilon_dec_iter = 5000 // self.user_based_adjust_times self.epsilon_dec_iter_min = 500 // self.user_based_adjust_times self.replace_target_iter = 1 self.soft_update_iter = 1 self.softupdate = True self.scope_name = "CDDPG-model" self.epoch = 0 self.exploration_noise = OUNoise(self.action_dim) self.cvr_buffer_size = 1000 * max_trajectory_length self.cvr_batch_size = 512 self.cvr_replay_buffer = ReplayBuffer(self.cvr_buffer_size, save_return=False) self.alpha = 0.6 self.beta = 0.4 self.use_prioritized_experience_replay = use_prioritized_experience_replay self.ddpg_buffer_size = 1000 * max_trajectory_length self.ddpg_batch_size = 256 if self.use_prioritized_experience_replay: self.prioritized_replay_buffer = PrioritizedReplayBuffer(self.ddpg_buffer_size, alpha=self.alpha, max_priority=20.) else: self.replay_buffer = ReplayBuffer(self.ddpg_buffer_size, save_return=True) with tf.variable_scope(self.scope_name): self._build_net() self.build_model_saver(self.scope_name)
def __init__(self, render=False, method='Duel'): # Create an instance of the network itself, as well as the memory. # Here is also a good place to set environmental parameters, # as well as training parameters - number of episodes / iterations, etc. self.render = render if render: self.env = gym.make('NEL-render-v0') else: self.env = gym.make('NEL-v0') #self.test_env = gym.make('NEL-v0') self.an = self.env.action_space.n # No. of actions in env self.epsilon = 0.5 self.training_time = PARAM.TRAINING_TIME # Training Time self.df = PARAM.DISCOUNT_FACTOR # Discount Factor self.batch_size = PARAM.BATCH_SIZE self.method = method self.test_curr_state = None self.log_time = 100.0 self.test_time = 1000.0 self.prioritized_replay = PARAM.PRIORITIZED_REPLAY self.prioritized_replay_eps = 1e-6 #self.prioritized_replay_alpha = 0.6 self.prioritized_replay_alpha = 0.8 self.prioritized_replay_beta0 = 0.4 self.burn_in = PARAM.BURN_IN # Create Replay Memory and initialize with burn_in transitions if self.prioritized_replay: self.replay_buffer = PrioritizedReplayBuffer( PARAM.REPLAY_MEMORY_SIZE, alpha=self.prioritized_replay_alpha) self.beta_schedule = LinearSchedule( float(self.training_time), initial_p=self.prioritized_replay_beta0, final_p=1.0) else: self.replay_buffer = ReplayBuffer(PARAM.REPLAY_MEMORY_SIZE) self.beta_schedule = None # Create QNetwork instance if self.method == 'Duel': print('Using Duel Network.') self.net = DuelQNetwork(self.an) elif self.method == 'DoubleQ': print('Using DoubleQ Network.') self.net = DoubleQNetwork(self.an) else: raise NotImplementedError cur_dir = os.getcwd() self.dump_dir = cur_dir + '/tmp_' + self.method + '_' + time.strftime( "%Y%m%d-%H%M%S") + '/' # Create output directory if not os.path.exists(self.dump_dir): os.makedirs(self.dump_dir) self.train_file = open(self.dump_dir + 'train_rewards.txt', 'w') self.test_file = open(self.dump_dir + 'test_rewards.txt', 'w')
def __init__( self, n_actions=11, n_features=29, use_prioritized_experience_replay=True, max_trajectory_length=20, ): self.n_actions = n_actions self.n_features = n_features self.gamma = 1. self.lr = 0.001 self.epsilon = 0.5 self.epsilon_min = 0 self.epsilon_dec = 0.1 self.epsilon_dec_iter = 1000 self.replace_target_iter = 100 self.soft_update_iter = 1 self.softupdate = False self.scope_name = "DQN-model" self.epoch = 0 self.buffer_size = 5000 * max_trajectory_length self.batch_size = 512 self.alpha = 0.6 self.beta = 0.4 self.use_prioritized_experience_replay = use_prioritized_experience_replay if self.use_prioritized_experience_replay: self.prioritized_replay_buffer = PrioritizedReplayBuffer( self.buffer_size, alpha=self.alpha, max_priority=20.) else: self.replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) self.margin_constant = 2 with tf.variable_scope(self.scope_name): self._build_net() self.build_model_saver(self.scope_name)
class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device) self.qnetwork_target = QNetwork(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) self.prioritized_replay_alpha = 0.6 self.prioritized_replay_beta0 = 0.4 self.prioritized_replay_beta_iters = 100000 # Replay memory self.memory = PrioritizedReplayBuffer( BUFFER_SIZE, alpha=self.prioritized_replay_alpha) self.beta_schedule = LinearSchedule( self.prioritized_replay_beta_iters, initial_p=self.prioritized_replay_beta0, final_p=1.0) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample(BATCH_SIZE, beta=self.beta_schedule.value( len(self.memory))) self.learn(experiences, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, gamma): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones, weights, idxes = experiences # Get max predicted Q values (for next states) from target model Q_targets_next = self.qnetwork_target(next_states).detach().max( 1)[0].unsqueeze(1) # Compute Q targets for current states Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Get expected Q values from local model Q_expected = self.qnetwork_local(states).gather(1, actions) # Compute loss losses_v = weights * (Q_expected - Q_targets)**2 loss = losses_v.mean() prios = losses_v + 1e-5 # Minimize the loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update replay buffer priorities self.memory.update_priorities(idxes, prios.data.cpu().numpy()) # ------------------- update target network ------------------- # self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
class ConstrainedDDPG(CMDPAgent): def init_parameters(self, sess): if self.has_target_net: super(CMDPAgent, self).init_parameters(sess) sess.run(self.target_replace_op) sess.run(self.a_target_replace_op) def __init__(self, user_num, action_dim, action_bound, cvr_n_features, ddpg_n_features, init_roi, budget, use_budget_control, use_prioritized_experience_replay, max_trajectory_length, update_times_per_train=1, use_predict_cvr=False): self.user_num = user_num self.use_budget_control = use_budget_control self.update_times_per_train = update_times_per_train self.action_dim = action_dim self.action_bound = action_bound self.n_actions = 1 self.cvr_n_features = cvr_n_features self.ddpg_n_features = ddpg_n_features self.lr = 0.001 self.use_predict_cvr = use_predict_cvr self.user_based_adjust_times = 40 self.epsilon = 0.9 self.epsilon_min = 0.05 self.epsilon_dec = 0.3 self.epsilon_dec_iter = 5000 // self.user_based_adjust_times self.epsilon_dec_iter_min = 500 // self.user_based_adjust_times self.replace_target_iter = 1 self.soft_update_iter = 1 self.softupdate = True self.scope_name = "CDDPG-model" self.epoch = 0 self.exploration_noise = OUNoise(self.action_dim) self.cvr_buffer_size = 1000 * max_trajectory_length self.cvr_batch_size = 512 self.cvr_replay_buffer = ReplayBuffer(self.cvr_buffer_size, save_return=False) self.alpha = 0.6 self.beta = 0.4 self.use_prioritized_experience_replay = use_prioritized_experience_replay self.ddpg_buffer_size = 1000 * max_trajectory_length self.ddpg_batch_size = 256 if self.use_prioritized_experience_replay: self.prioritized_replay_buffer = PrioritizedReplayBuffer(self.ddpg_buffer_size, alpha=self.alpha, max_priority=20.) else: self.replay_buffer = ReplayBuffer(self.ddpg_buffer_size, save_return=True) with tf.variable_scope(self.scope_name): self._build_net() self.build_model_saver(self.scope_name) def _build_cvr_net(self, state, variable_scope, reuse=False): with tf.variable_scope(variable_scope, reuse=reuse): user_id_embedding_table = tf.get_variable( name="user_id", shape=[self.user_num, 10], initializer=initializers.xavier_initializer(), trainable=True, dtype=tf.float32) user_id = tf.cast(state[:, 0], dtype=tf.int32) user_id_embeddings = tf.nn.embedding_lookup(user_id_embedding_table, ids=user_id, name="user_id_embedding") state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1) n_features = state.get_shape()[1] fc1 = tf.layers.dense(state, units=n_features, activation=tf.nn.relu, name='fc1', kernel_initializer=initializers.xavier_initializer()) fc2 = tf.layers.dense(fc1, units=n_features // 2, activation=tf.nn.relu, name='fc2', kernel_initializer=initializers.xavier_initializer()) fc3 = tf.layers.dense(fc2, units=n_features // 2, activation=tf.nn.relu, name='fc3', kernel_initializer=initializers.xavier_initializer()) cvr_out = tf.sigmoid(tf.layers.dense(fc3, units=1, name='cvr', kernel_initializer=initializers.xavier_initializer())) return cvr_out def _build_q_net(self, state, action, variable_scope, reuse=False): with tf.variable_scope(variable_scope, reuse=reuse): user_id_embedding_table = tf.get_variable( name="user_id", shape=[self.user_num, 10], initializer=initializers.xavier_initializer(), trainable=True, dtype=tf.float32) user_id = tf.cast(state[:, 0], dtype=tf.int32) user_id_embeddings = tf.nn.embedding_lookup(user_id_embedding_table, ids=user_id, name="user_id_embedding") state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1) n_features = state.get_shape()[1] state = tf.concat([state, tf.expand_dims(action, axis=1, name="2d-action")], axis=1) fc1 = tf.layers.dense(state, units=n_features, activation=tf.nn.relu, name='fc1') fc2 = tf.layers.dense(fc1, units=n_features // 2, activation=tf.nn.relu, name='fc2') q = tf.layers.dense(fc2, units=self.action_dim, name='q') return q[:, 0] def _build_action_net(self, state, variable_scope): with tf.variable_scope(variable_scope): user_id_embedding_table = tf.get_variable( name="user_id", shape=[self.user_num, 10], initializer=initializers.xavier_initializer(), trainable=True, dtype=tf.float32) user_id = tf.cast(state[:, 0], dtype=tf.int32) user_id_embeddings = tf.nn.embedding_lookup(user_id_embedding_table, ids=user_id, name="user_id_embedding") state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1) n_features = state.get_shape()[1] fc1 = tf.layers.dense(state, units=n_features, activation=tf.nn.relu, name='fc1') fc2 = tf.layers.dense(fc1, units=n_features // 2, activation=tf.nn.relu, name='fc2') actions = tf.layers.dense(fc2, self.action_dim, activation=tf.nn.sigmoid, name='a') return actions[:, 0] def __make_update_exp__(self, vals, target_vals): polyak = 1.0 - 1e-2 expression = [] for var, var_target in zip(sorted(vals, key=lambda v: v.name), sorted(target_vals, key=lambda v: v.name)): expression.append(var_target.assign(polyak * var_target + (1.0 - polyak) * var)) expression = tf.group(*expression) return expression def _build_net(self): self.s_cvr = tf.placeholder(tf.float32, [None, self.cvr_n_features], name='s_cvr') self.cvr = tf.placeholder(tf.float32, [None, ], name='r') self.s = tf.placeholder(tf.float32, [None, self.ddpg_n_features], name='s') self.s_ = tf.placeholder(tf.float32, [None, self.ddpg_n_features], name='s_') self.r = tf.placeholder(tf.float32, [None, ], name='r') self.a = tf.placeholder(tf.float32, [None, ], name='a') self.gamma = 1. self.done = tf.placeholder(tf.float32, [None, ], name='done') self.return_value = tf.placeholder(tf.float32, [None, ], name='return') self.important_sampling_weight_ph = tf.placeholder(tf.float32, [None], name="important_sampling_weight") self.cvr_net = self._build_cvr_net(self.s_cvr, variable_scope="cvr_net") self.predicted_cvr = self.cvr_net[:, 0] self.a_eval = self._build_action_net(self.s, variable_scope="actor_eval_net") self.a_target = self._build_action_net(self.s_, variable_scope="actor_target_net") self.critic_eval = self._build_q_net(self.s, self.a, variable_scope="eval_q_net") self.critic_eval_for_loss = self._build_q_net(self.s, self.a_eval, variable_scope="eval_q_net", reuse=True) self.critic_target = self._build_q_net(self.s_, self.a, variable_scope="target_q_net") t_gmv_params = scope_vars(absolute_scope_name("target_q_net")) e_gmv_params = scope_vars(absolute_scope_name("eval_q_net")) ae_params = scope_vars(absolute_scope_name("actor_eval_net")) at_params = scope_vars(absolute_scope_name("actor_target_net")) cvr_params = scope_vars(absolute_scope_name("cvr_net")) with tf.variable_scope('hard_replacement'): self.a_target_replace_op = tf.group([tf.assign(t, e) for t, e in zip(at_params, ae_params)]) self.target_replace_op = tf.group([tf.assign(t, e) for t, e in zip(t_gmv_params, e_gmv_params)]) with tf.variable_scope('soft_update'): self.a_update_target_q = self.__make_update_exp__(ae_params, at_params) self.update_target_q = self.__make_update_exp__(e_gmv_params, t_gmv_params) with tf.variable_scope('q_target'): self.td0_q_target = tf.stop_gradient(self.r + self.gamma * (1. - self.done) * self.critic_target) self.montecarlo_target = self.return_value with tf.variable_scope('loss'): self.cvr_loss = tf.reduce_mean(tf.squared_difference(self.predicted_cvr, self.cvr)) self._build_loss() self._pick_loss() with tf.variable_scope('train'): self._train_cvr_op = tf.train.AdamOptimizer(self.lr).minimize(self.cvr_loss, var_list=cvr_params) self._train_ddpg_critic_op = tf.train.AdamOptimizer(self.lr).minimize(self.loss, var_list=e_gmv_params) self._train_ddpg_a_op = tf.train.AdamOptimizer(self.lr).minimize(self.actor_loss, var_list=ae_params) def _pick_loss(self): self.has_target_net = True self.loss = self.ddpg_loss self.priority_values = self.td0_error self.actor_loss = self.a_loss def _build_loss(self): if self.use_prioritized_experience_replay: self.ddpg_loss = tf.reduce_mean( self.important_sampling_weight_ph * tf.squared_difference(self.td0_q_target, self.critic_eval, name='TD0_loss')) self.montecarlo_loss = tf.reduce_mean(self.important_sampling_weight_ph * tf.squared_difference(self.montecarlo_target, self.critic_eval, name='MonteCarlo_error')) else: self.ddpg_loss = tf.reduce_mean(tf.squared_difference(self.td0_q_target, self.critic_eval, name='TD0_loss')) self.montecarlo_loss = tf.reduce_mean(tf.squared_difference(self.montecarlo_target, self.critic_eval, name='MonteCarlo_error')) self.a_loss = - tf.reduce_mean(self.critic_eval_for_loss) self.td0_error = tf.abs(self.td0_q_target - self.critic_eval) self.montecarlo_error = tf.abs(self.montecarlo_target - self.critic_eval) def build_model_saver(self, var_scope): var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=var_scope) self.model_saver = tf.train.Saver(var_list=var_list, max_to_keep=1) def save(self, sess, path, step): if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path)) self.model_saver.save(sess, save_path=path, global_step=step) def restore(self, sess, path): self.model_saver.restore(sess, save_path=path) print('%s model reloaded from %s' % (self.scope_name, path)) def experience(self, new_trajectory, other_info=None): cvr_trajectory = other_info["cvr"] for ele in cvr_trajectory: state, cvr = ele self.cvr_replay_buffer.add(state, 0, cvr, state, 0, 0, 0) def experience_cmdp(self, new_trajectory, other_info=None): if self.use_prioritized_experience_replay: add_episode(self.prioritized_replay_buffer, new_trajectory, gamma=self.gamma) else: add_episode(self.replay_buffer, new_trajectory, gamma=self.gamma) def get_agent_name(self): return self.scope_name def get_action(self, sess, obs, is_test=False, other_info=None): item_price = other_info["proxy_ad_price"] ground_truth_cvr = other_info["cvr"] user_alpha = other_info["user_alpha"] roi_thr = other_info["roi_thr"] observations = obs[np.newaxis, :] cvr = sess.run(self.predicted_cvr, feed_dict={ self.s_cvr: observations })[0] if self.use_predict_cvr: bid = cvr * item_price / roi_thr else: bid = ground_truth_cvr * item_price / roi_thr return bid, {"cvr_over_estimate": [user_alpha, ground_truth_cvr, cvr]} def get_cmdp_action(self, sess, obs, is_test=False, other_info=None): if is_test: discrete_action = self.__greedy__(sess, obs) else: discrete_action = self.__epsilon_greedy__(sess, obs) return discrete_action def __greedy__(self, sess, observation): observation = observation[np.newaxis, :] greedy_action = sess.run(self.a_eval, feed_dict={self.s: observation}) return greedy_action[0] def __epsilon_greedy__(self, sess, observation): if np.random.uniform() < self.epsilon: observation = observation[np.newaxis, :] actions_value = sess.run(self.a_eval, feed_dict={self.s: observation}) action_noise = self.exploration_noise.noise() action = actions_value + action_noise action = action[0] else: action = self.__greedy__(sess, observation) return action def _is_exploration_enough(self, buffer, min_pool_size): return len(buffer) >= min_pool_size def train_cvr(self, sess): if not self._is_exploration_enough(self.cvr_replay_buffer, self.cvr_batch_size): return False, [0, 0, 0] cvr_loss, predicted_cvrs, cvr_targets = 0, 0, 0 for idx in range(self.update_times_per_train): sample_indices = self.cvr_replay_buffer.make_index(self.cvr_batch_size) obs, act, cvr_targets, obs_next, done, dis_2_end, returns = self.cvr_replay_buffer.sample_index( sample_indices) _, cvr_loss, predicted_cvrs = sess.run( [self._train_cvr_op, self.cvr_loss, self.predicted_cvr], feed_dict={ self.s_cvr: obs, self.cvr: cvr_targets } ) return True, [cvr_loss, np.average(predicted_cvrs), np.average(cvr_targets)] def get_memory_returns(self): if self.use_prioritized_experience_replay: return self.prioritized_replay_buffer.current_mean_return else: return self.replay_buffer.current_mean_return def update_target(self, sess): if self.softupdate: if self.epoch % self.soft_update_iter == 0: sess.run(self.update_target_q) sess.run(self.a_update_target_q) else: if self.epoch % self.replace_target_iter == 0: sess.run(self.target_replace_op) sess.run(self.a_target_replace_op) def train(self, sess): if self.has_target_net: self.update_target(sess) self.epoch += 1 buffer = self.prioritized_replay_buffer if self.use_prioritized_experience_replay else self.replay_buffer if not self._is_exploration_enough(buffer, self.ddpg_batch_size): return False, [0, 0, 0, 0], 0, 0 if self.use_prioritized_experience_replay: loss, montecarlo_loss, q_eval, returns = self.train_prioritized(sess) else: loss, montecarlo_loss, q_eval, returns = self.train_normal(sess) if self.epoch % self.epsilon_dec_iter == 0: self.epsilon = max(self.epsilon - self.epsilon_dec, self.epsilon_min) print("update epsilon:", self.epsilon) return True, [loss, montecarlo_loss, q_eval, returns], self.get_memory_returns(), self.epsilon def train_prioritized(self, sess): loss, montecarlo_loss, q_eval, returns = 0, 0, 0, 0 for idx in range(self.update_times_per_train): sample_indices = self.prioritized_replay_buffer.make_index(self.ddpg_batch_size) obs, act, rew, obs_next, done, dis_2_end, returns, weights, ranges = self.prioritized_replay_buffer.sample_index( sample_indices) _, loss, montecarlo_loss, q_eval, \ priority_values = sess.run( [self._train_ddpg_critic_op, self.loss, self.montecarlo_loss, self.critic_eval, self.priority_values], feed_dict={ self.s: obs, self.a: act, self.r: rew, self.s_: obs_next, self.done: done, self.return_value: returns, self.important_sampling_weight_ph: weights, }) priorities = priority_values + 1e-6 self.prioritized_replay_buffer.update_priorities(sample_indices, priorities) return loss, montecarlo_loss, np.average(q_eval), np.average(returns) def train_normal(self, sess): loss, montecarlo_loss, q_eval, returns = 0, 0, 0, 0 for idx in range(self.update_times_per_train): sample_indices = self.replay_buffer.make_index(self.ddpg_batch_size) obs, act, rew, obs_next, done, dis_2_end, returns = self.replay_buffer.sample_index( sample_indices) _, loss, montecarlo_loss, q_eval = sess.run( [self._train_ddpg_critic_op, self.loss, self.montecarlo_loss, self.critic_eval], feed_dict={ self.s: obs, self.a: act, self.r: rew, self.s_: obs_next, self.done: done, self.return_value: returns, }) _, actor_loss = sess.run( [self._train_ddpg_a_op, self.actor_loss], feed_dict={ self.s: obs, self.a: act, self.r: rew, self.s_: obs_next, self.done: done, self.return_value: returns, }) return loss, montecarlo_loss, np.average(q_eval), np.average(returns)
class DQN_interface(LearningAgent): def __init__( self, n_actions=11, n_features=29, use_prioritized_experience_replay=True, max_trajectory_length=20, ): self.n_actions = n_actions self.n_features = n_features self.gamma = 1. self.lr = 0.001 self.epsilon = 0.5 self.epsilon_min = 0 self.epsilon_dec = 0.1 self.epsilon_dec_iter = 1000 self.replace_target_iter = 100 self.soft_update_iter = 1 self.softupdate = False self.scope_name = "DQN-model" self.epoch = 0 self.buffer_size = 5000 * max_trajectory_length self.batch_size = 512 self.alpha = 0.6 self.beta = 0.4 self.use_prioritized_experience_replay = use_prioritized_experience_replay if self.use_prioritized_experience_replay: self.prioritized_replay_buffer = PrioritizedReplayBuffer( self.buffer_size, alpha=self.alpha, max_priority=20.) else: self.replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) self.margin_constant = 2 with tf.variable_scope(self.scope_name): self._build_net() self.build_model_saver(self.scope_name) def _build_net(self): self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s') self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') self.r = tf.placeholder(tf.float32, [ None, ], name='r') self.a = tf.placeholder(tf.int32, [ None, ], name='a') self.done = tf.placeholder(tf.float32, [ None, ], name='done') self.return_value = tf.placeholder(tf.float32, [ None, ], name='return') self.important_sampling_weight_ph = tf.placeholder( tf.float32, [None], name="important_sampling_weight") self.q_eval = self._build_q_net(self.s, self.n_actions, variable_scope="eval_net") self.q_next = self._build_q_net(self.s_, self.n_actions, variable_scope="target_net") t_params = scope_vars(absolute_scope_name("target_net")) e_params = scope_vars(absolute_scope_name("eval_net")) with tf.variable_scope('hard_replacement'): self.target_replace_op = tf.group( [tf.assign(t, e) for t, e in zip(t_params, e_params)]) with tf.variable_scope('soft_update'): self.update_target_q = self.__make_update_exp__(e_params, t_params) with tf.variable_scope('q_target'): self.td0_q_target = tf.stop_gradient( self.r + self.gamma * (1. - self.done) * tf.reduce_max(self.q_next, axis=1, name='Qmax_s_')) target_action = tf.argmax(self.q_eval, axis=-1, output_type=tf.int32) target_a_indices = tf.stack( [tf.range(tf.shape(self.a)[0], dtype=tf.int32), target_action], axis=1) target_q_sa = tf.gather_nd(params=self.q_next, indices=target_a_indices) self.double_dqn_target = tf.stop_gradient(self.r + self.gamma * (1. - self.done) * target_q_sa) self.montecarlo_target = self.return_value with tf.variable_scope('q_eval'): a_indices = tf.stack( [tf.range(tf.shape(self.a)[0], dtype=tf.int32), self.a], axis=1) self.q_eval_wrt_a = tf.gather_nd(params=self.q_eval, indices=a_indices) with tf.variable_scope('loss'): self._build_loss() self._pick_loss() with tf.variable_scope('train'): self._train_op = tf.train.AdamOptimizer(self.lr).minimize( self.loss, var_list=e_params) def _pick_loss(self): self.loss = self.double_dqn_loss self.priority_values = self.doubel_dqn_error def _build_loss(self): if self.use_prioritized_experience_replay: self.dqn_loss = tf.reduce_mean( self.important_sampling_weight_ph * tf.squared_difference( self.td0_q_target, self.q_eval_wrt_a, name='TD0_loss')) self.double_dqn_loss = tf.reduce_mean( self.important_sampling_weight_ph * tf.squared_difference(self.double_dqn_target, self.q_eval_wrt_a, name='Double_DQN_error')) else: self.dqn_loss = tf.reduce_mean( tf.squared_difference(self.td0_q_target, self.q_eval_wrt_a, name='TD0_loss')) self.double_dqn_loss = tf.reduce_mean( tf.squared_difference(self.double_dqn_target, self.q_eval_wrt_a, name='Double_DQN_error')) self.montecarlo_loss = tf.reduce_mean( tf.squared_difference(self.montecarlo_target, self.q_eval_wrt_a, name='MonteCarlo_error')) self.td0_error = tf.abs(self.td0_q_target - self.q_eval_wrt_a) self.doubel_dqn_error = tf.abs(self.double_dqn_target - self.q_eval_wrt_a) self.montecarlo_error = tf.abs(self.montecarlo_target - self.q_eval_wrt_a) margin_diff = tf.one_hot(self.a, self.n_actions, on_value=0., off_value=1., dtype=tf.float32) * self.margin_constant self.margin_loss = tf.reduce_mean( tf.reduce_max(self.q_eval + margin_diff, axis=1, keepdims=False) - self.q_eval_wrt_a) self.mse_margin_loss = tf.reduce_mean( tf.squared_difference( tf.reduce_max(self.q_eval + margin_diff, axis=1, keepdims=False), self.q_eval_wrt_a)) def _build_q_net(self, state, n_actions, variable_scope): with tf.variable_scope(variable_scope): fc1 = tf.layers.dense(state, units=self.n_features, activation=tf.nn.relu, name='fc1') q_out = tf.layers.dense(fc1, units=n_actions, name='q') return q_out def __make_update_exp__(self, vals, target_vals): polyak = 1.0 - 1e-2 expression = [] for var, var_target in zip(sorted(vals, key=lambda v: v.name), sorted(target_vals, key=lambda v: v.name)): expression.append( var_target.assign(polyak * var_target + (1.0 - polyak) * var)) expression = tf.group(*expression) return expression def __make_hardreplace_exp__(self, vals, target_vals): expression = [] for var, var_target in zip(sorted(vals, key=lambda v: v.name), sorted(target_vals, key=lambda v: v.name)): expression.append(var_target.assign(var)) expression = tf.group(*expression) return expression def build_model_saver(self, var_scope): var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=var_scope) self.model_saver = tf.train.Saver(var_list=var_list, max_to_keep=3) def save(self, sess, path, step): if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path)) self.model_saver.save(sess, save_path=path, global_step=step) def restore(self, sess, path): self.model_saver.restore(sess, save_path=path) print('%s model reloaded from %s' % (self.scope_name, path)) def experience(self, new_trajectory, other_info=None): if self.use_prioritized_experience_replay: add_episode(self.prioritized_replay_buffer, new_trajectory, gamma=self.gamma) else: add_episode(self.replay_buffer, new_trajectory, gamma=self.gamma) def get_action(self, sess, obs, is_test=False, other_info=None): if is_test: discrete_action = self.greedy_action(sess, obs) else: discrete_action = self.choose_action(sess, obs) other_action_info = {"learning_action": discrete_action} return 3 * discrete_action, other_action_info def choose_action(self, sess, observation): observation = observation[np.newaxis, :] if np.random.uniform() < self.epsilon: action = np.random.randint(0, self.n_actions) else: actions_value = sess.run(self.q_eval, feed_dict={self.s: observation}) action = np.argmax(actions_value, axis=1)[0] return action def greedy_action(self, sess, single_observation): observation = single_observation[np.newaxis, :] actions_value = sess.run(self.q_eval, feed_dict={self.s: observation}) greedy_action = np.argmax(actions_value, axis=1)[0] return greedy_action def get_memory_returns(self): if self.use_prioritized_experience_replay: return self.prioritized_replay_buffer.current_mean_return else: return self.replay_buffer.current_mean_return def _is_exploration_enough(self, min_pool_size): if self.use_prioritized_experience_replay: return len(self.prioritized_replay_buffer) >= min_pool_size else: return len(self.replay_buffer) >= min_pool_size def update_target(self, sess): if self.softupdate: if self.epoch % self.soft_update_iter == 0: sess.run(self.update_target_q) else: if self.epoch % self.replace_target_iter == 0: sess.run(self.target_replace_op) def train(self, sess): self.update_target(sess) self.epoch += 1 if not self._is_exploration_enough(self.batch_size): return False, [0, 0, 0, 0], 0, 0 if self.use_prioritized_experience_replay: loss, montecarlo_loss, q_eval, returns = self.train_prioritized( sess) else: loss, montecarlo_loss, q_eval, returns = self.train_normal(sess) if self.epoch % self.epsilon_dec_iter == 0: self.epsilon = max(self.epsilon - self.epsilon_dec, self.epsilon_min) print("update epsilon:", self.epsilon) return True, [loss, montecarlo_loss, q_eval, returns], self.get_memory_returns(), self.epsilon def train_prioritized(self, sess): loss, q_eval, returns, montecarlo_loss = 0, 0, 0, 0 for idx in range(1): sample_indices = self.prioritized_replay_buffer.make_index( self.batch_size) obs, act, rew, obs_next, done, dis_2_end, returns, weights, ranges = self.prioritized_replay_buffer.sample_index( sample_indices) _, loss, q_eval, montecarlo_loss, priority_values = sess.run( [ self._train_op, self.loss, self.q_eval_wrt_a, self.montecarlo_loss, self.priority_values ], feed_dict={ self.s: obs, self.a: act, self.r: rew, self.s_: obs_next, self.done: done, self.return_value: returns, self.important_sampling_weight_ph: weights }) priorities = priority_values + 1e-6 self.prioritized_replay_buffer.update_priorities( sample_indices, priorities) return loss, montecarlo_loss, np.average(q_eval), np.average(returns) def train_normal(self, sess): loss, q_eval, returns, montecarlo_loss = 0, 0, 0, 0 for idx in range(1): sample_index = self.replay_buffer.make_index(self.batch_size) obs, act, rew, obs_next, done, dis_2_end, returns = self.replay_buffer.sample_index( sample_index) _, loss, q_eval, montecarlo_loss = sess.run( [ self._train_op, self.loss, self.q_eval_wrt_a, self.montecarlo_loss ], feed_dict={ self.s: obs, self.a: act, self.r: rew, self.s_: obs_next, self.done: done, self.return_value: returns, }) return loss, montecarlo_loss, np.average(q_eval), np.average(returns)
def __init__(self, user_num, n_actions, cvr_n_features, ppo_n_features, init_roi, budget, use_budget_control, use_prioritized_experience_replay, max_trajectory_length, update_times_per_train=1, use_predict_cvr=False): self.user_num = user_num self.use_budget_control = use_budget_control self.update_times_per_train = update_times_per_train self.n_actions = n_actions self.action_dim = 1 self.cvr_n_features = cvr_n_features self.ppo_n_features = ppo_n_features self.lr = 0.001 self.use_predict_cvr = use_predict_cvr self.user_based_adjust_times = 40 self.epsilon = 0.4 self.epsilon_min = 0.05 self.epsilon_dec = 0.1 self.epsilon_dec_iter = 5000 // self.user_based_adjust_times self.epsilon_dec_iter_min = 500 // self.user_based_adjust_times self.epsilon_clip = 0.2 self.lam = 0.5 self.update_step = 1 self.kl_target = 0.01 self.gamma = 1. self.method = 'clip' self.policy_logvar = 1e-7 self.replace_target_iter = 1 self.soft_update_iter = 1 self.softupdate = False self.scope_name = "CPPO-model" self.epoch = 0 self.cvr_buffer_size = 1000 * max_trajectory_length self.cvr_batch_size = 512 self.cvr_replay_buffer = ReplayBuffer(self.cvr_buffer_size, save_return=False) self.alpha = 0.6 self.beta = 0.4 self.use_prioritized_experience_replay = use_prioritized_experience_replay self.ppo_buffer_size = 1000 * max_trajectory_length self.ppo_batch_size = 250 if self.use_prioritized_experience_replay: self.prioritized_replay_buffer = PrioritizedReplayBuffer(self.ppo_buffer_size, alpha=self.alpha, max_priority=20.) else: self.replay_buffer = ReplayBuffer(self.ppo_buffer_size, save_return=True) with tf.variable_scope(self.scope_name): self._build_net() self.build_model_saver(self.scope_name)
class ConstrainedPPO(CMDPAgent): def init_parameters(self, sess): if self.has_target_net: super(CMDPAgent, self).init_parameters(sess) sess.run(self.a_target_replace_op) def __init__(self, user_num, n_actions, cvr_n_features, ppo_n_features, init_roi, budget, use_budget_control, use_prioritized_experience_replay, max_trajectory_length, update_times_per_train=1, use_predict_cvr=False): self.user_num = user_num self.use_budget_control = use_budget_control self.update_times_per_train = update_times_per_train self.n_actions = n_actions self.action_dim = 1 self.cvr_n_features = cvr_n_features self.ppo_n_features = ppo_n_features self.lr = 0.001 self.use_predict_cvr = use_predict_cvr self.user_based_adjust_times = 40 self.epsilon = 0.4 self.epsilon_min = 0.05 self.epsilon_dec = 0.1 self.epsilon_dec_iter = 5000 // self.user_based_adjust_times self.epsilon_dec_iter_min = 500 // self.user_based_adjust_times self.epsilon_clip = 0.2 self.lam = 0.5 self.update_step = 1 self.kl_target = 0.01 self.gamma = 1. self.method = 'clip' self.policy_logvar = 1e-7 self.replace_target_iter = 1 self.soft_update_iter = 1 self.softupdate = False self.scope_name = "CPPO-model" self.epoch = 0 self.cvr_buffer_size = 1000 * max_trajectory_length self.cvr_batch_size = 512 self.cvr_replay_buffer = ReplayBuffer(self.cvr_buffer_size, save_return=False) self.alpha = 0.6 self.beta = 0.4 self.use_prioritized_experience_replay = use_prioritized_experience_replay self.ppo_buffer_size = 1000 * max_trajectory_length self.ppo_batch_size = 250 if self.use_prioritized_experience_replay: self.prioritized_replay_buffer = PrioritizedReplayBuffer(self.ppo_buffer_size, alpha=self.alpha, max_priority=20.) else: self.replay_buffer = ReplayBuffer(self.ppo_buffer_size, save_return=True) with tf.variable_scope(self.scope_name): self._build_net() self.build_model_saver(self.scope_name) def _build_cvr_net(self, state, variable_scope, reuse=False): with tf.variable_scope(variable_scope, reuse=reuse): user_id_embedding_table = tf.get_variable( name="user_id", shape=[self.user_num, 10], initializer=initializers.xavier_initializer(), trainable=True, dtype=tf.float32) user_id = tf.cast(state[:, 0], dtype=tf.int32) user_id_embeddings = tf.nn.embedding_lookup(user_id_embedding_table, ids=user_id, name="user_id_embedding") state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1) n_features = state.get_shape()[1] fc1 = tf.layers.dense(state, units=n_features, activation=tf.nn.relu, name='fc1', kernel_initializer=initializers.xavier_initializer()) fc2 = tf.layers.dense(fc1, units=n_features // 2, activation=tf.nn.relu, name='fc2', kernel_initializer=initializers.xavier_initializer()) fc3 = tf.layers.dense(fc2, units=n_features // 2, activation=tf.nn.relu, name='fc3', kernel_initializer=initializers.xavier_initializer()) cvr_out = tf.sigmoid(tf.layers.dense(fc3, units=1, name='cvr', kernel_initializer=initializers.xavier_initializer())) return cvr_out def _build_action_net(self, state, variable_scope): with tf.variable_scope(variable_scope): user_id_embedding_table = tf.get_variable( name="user_id", shape=[self.user_num, 10], initializer=initializers.xavier_initializer(), trainable=True, dtype=tf.float32) user_id = tf.cast(state[:, 0], dtype=tf.int32) user_id_embeddings = tf.nn.embedding_lookup(user_id_embedding_table, ids=user_id, name="user_id_embedding") state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1) n_features = state.get_shape()[1] fc1 = tf.layers.dense(state, units=n_features, activation=tf.nn.relu, name='fc1', kernel_initializer=initializers.xavier_initializer()) fc2 = tf.layers.dense(fc1, units=n_features // 2, activation=tf.nn.relu, name='fc2', kernel_initializer=initializers.xavier_initializer()) fc3 = tf.layers.dense(fc2, units=n_features // 4, activation=tf.nn.relu, name='fc3', kernel_initializer=initializers.xavier_initializer()) a_prob = tf.layers.dense(fc3, self.n_actions, tf.nn.softmax, kernel_initializer=initializers.xavier_initializer()) return a_prob def _build_q_net(self, state, variable_scope, reuse=False): with tf.variable_scope(variable_scope, reuse=reuse): user_id_embedding_table = tf.get_variable( name="user_id", shape=[self.user_num, 10], initializer=initializers.xavier_initializer(), trainable=True, dtype=tf.float32) user_id = tf.cast(state[:, 0], dtype=tf.int32) user_id_embeddings = tf.nn.embedding_lookup(user_id_embedding_table, ids=user_id, name="user_id_embedding") state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1) n_features = state.get_shape()[1] fc1 = tf.layers.dense(state, units=n_features, activation=tf.nn.relu, name='fc1', kernel_initializer=initializers.xavier_initializer()) fc2 = tf.layers.dense(fc1, units=n_features // 2, activation=tf.nn.relu, name='fc2', kernel_initializer=initializers.xavier_initializer()) fc3 = tf.layers.dense(fc2, units=n_features // 4, activation=tf.nn.relu, name='fc3', kernel_initializer=initializers.xavier_initializer()) v = tf.layers.dense(fc3, 1, kernel_initializer=initializers.xavier_initializer()) return v[:, 0] def __make_update_exp__(self, vals, target_vals): polyak = 1.0 - 1e-2 expression = [] for var, var_target in zip(sorted(vals, key=lambda v: v.name), sorted(target_vals, key=lambda v: v.name)): expression.append(var_target.assign(polyak * var_target + (1.0 - polyak) * var)) expression = tf.group(*expression) return expression def _build_net(self): self.s_cvr = tf.placeholder(tf.float32, [None, self.cvr_n_features], name='s_cvr') self.cvr = tf.placeholder(tf.float32, [None, ], name='r') self.s = tf.placeholder(tf.float32, [None, self.ppo_n_features], name='s') self.s_ = tf.placeholder(tf.float32, [None, self.ppo_n_features], name='s_') self.r = tf.placeholder(tf.float32, [None, ], name='r') self.a = tf.placeholder(tf.int32, [None, ], name='a') self.adv = tf.placeholder(tf.float32, [None, ], name='advantage') self.gamma = 1. self.done = tf.placeholder(tf.float32, [None, ], name='done') self.return_value = tf.placeholder(tf.float32, [None, ], name='return') self.important_sampling_weight_ph = tf.placeholder(tf.float32, [None], name="important_sampling_weight") self.cvr_net = self._build_cvr_net(self.s_cvr, variable_scope="cvr_net") self.predicted_cvr = self.cvr_net[:, 0] self.a_eval = self._build_action_net(self.s, variable_scope="actor_eval_net") self.a_target = self._build_action_net(self.s, variable_scope="actor_target_net") self.critic = self._build_q_net(self.s, variable_scope="eval_q_net") ae_params = scope_vars(absolute_scope_name("actor_eval_net")) at_params = scope_vars(absolute_scope_name("actor_target_net")) e_gmv_params = scope_vars(absolute_scope_name("eval_q_net")) cvr_params = scope_vars(absolute_scope_name("cvr_net")) with tf.variable_scope('hard_replacement'): self.a_target_replace_op = tf.group([tf.assign(t, e) for t, e in zip(at_params, ae_params)]) with tf.variable_scope('loss'): self.cvr_loss = tf.reduce_mean(tf.squared_difference(self.predicted_cvr, self.cvr)) self._build_loss() self._pick_loss() with tf.variable_scope('train'): self._train_cvr_op = tf.train.AdamOptimizer(self.lr).minimize(self.cvr_loss, var_list=cvr_params) self._train_ppo_critic_op = tf.train.AdamOptimizer(self.lr).minimize(self.critic_loss) self._train_ppo_actor_op = tf.train.AdamOptimizer(self.lr).minimize(self.actor_loss) def _pick_loss(self): self.has_target_net = True self.critic_loss = self.closs self.actor_loss = self.aloss def _build_loss(self): with tf.variable_scope('critic'): self.c_loss = self.return_value - self.critic self.closs = tf.reduce_mean(tf.square(self.c_loss)) self.advantage = self.return_value - self.critic with tf.variable_scope('surrogate'): a_indices = tf.stack([tf.range(tf.shape(self.a)[0], dtype=tf.int32), self.a], axis=1) pi_prob = tf.gather_nd(params=self.a_eval, indices=a_indices) oldpi_prob = tf.gather_nd(params=self.a_target, indices=a_indices) ratio = pi_prob / (oldpi_prob + 1e-8) surr = ratio * self.adv if self.method == 'kl_pen': kl = tf.distributions.kl_divergence(self.a_target, self.a_eval) self.kl_mean = tf.reduce_mean(kl) self.aloss = -(tf.reduce_mean(surr - self.lam * kl)) else: self.aloss = -tf.reduce_mean(tf.minimum( surr, tf.clip_by_value(ratio, 1. - self.epsilon_clip, 1. + self.epsilon_clip) * self.adv)) def build_model_saver(self, var_scope): var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=var_scope) self.model_saver = tf.train.Saver(var_list=var_list, max_to_keep=1) def save(self, sess, path, step): if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path)) self.model_saver.save(sess, save_path=path, global_step=step) def restore(self, sess, path): self.model_saver.restore(sess, save_path=path) print('%s model reloaded from %s' % (self.scope_name, path)) def experience(self, new_trajectory, other_info=None): cvr_trajectory = other_info["cvr"] for ele in cvr_trajectory: state, cvr = ele self.cvr_replay_buffer.add(state, 0, cvr, state, 0, 0, 0) def experience_cmdp(self, new_trajectory, other_info=None): if self.use_prioritized_experience_replay: add_episode(self.prioritized_replay_buffer, new_trajectory, gamma=self.gamma) else: add_episode(self.replay_buffer, new_trajectory, gamma=self.gamma) def get_agent_name(self): return self.scope_name def get_action(self, sess, obs, is_test=False, other_info=None): item_price = other_info["proxy_ad_price"] ground_truth_cvr = other_info["cvr"] user_alpha = other_info["user_alpha"] roi_thr = other_info["roi_thr"] observations = obs[np.newaxis, :] cvr = sess.run(self.predicted_cvr, feed_dict={ self.s_cvr: observations })[0] if self.use_predict_cvr: bid = cvr * item_price / roi_thr else: bid = ground_truth_cvr * item_price / roi_thr return bid, {"cvr_over_estimate": [user_alpha, ground_truth_cvr, cvr]} def get_cmdp_action(self, sess, obs, is_test=False, other_info=None): if is_test: discrete_action = self.__greedy__(sess, obs) else: discrete_action = self.__epsilon_greedy__(sess, obs) return discrete_action def __greedy__(self, sess, observation): s = observation[np.newaxis, :] prob_weights = sess.run(self.a_eval, feed_dict={self.s: s}) greedy_action = np.argmax(prob_weights, axis=1)[0] return greedy_action def __epsilon_greedy__(self, sess, observation): if np.random.uniform() < self.epsilon: action = np.random.randint(0, self.n_actions) else: action = self.__greedy__(sess, observation) return action def _is_exploration_enough(self, buffer, min_pool_size): return len(buffer) >= min_pool_size def train_cvr(self, sess): if not self._is_exploration_enough(self.cvr_replay_buffer, self.cvr_batch_size): return False, [0, 0, 0] cvr_loss, predicted_cvrs, cvr_targets = 0, 0, 0 for idx in range(self.update_times_per_train): sample_indices = self.cvr_replay_buffer.make_index(self.cvr_batch_size) obs, act, cvr_targets, obs_next, done, dis_2_end, returns = self.cvr_replay_buffer.sample_index( sample_indices) _, cvr_loss, predicted_cvrs = sess.run( [self._train_cvr_op, self.cvr_loss, self.predicted_cvr], feed_dict={ self.s_cvr: obs, self.cvr: cvr_targets } ) return True, [cvr_loss, np.average(predicted_cvrs), np.average(cvr_targets)] def get_memory_returns(self): if self.use_prioritized_experience_replay: return self.prioritized_replay_buffer.current_mean_return else: return self.replay_buffer.current_mean_return def update_target(self, sess): if self.epoch % self.replace_target_iter == 0: sess.run(self.a_target_replace_op) def train(self, sess): if self.has_target_net: self.update_target(sess) self.epoch += 1 buffer = self.prioritized_replay_buffer if self.use_prioritized_experience_replay else self.replay_buffer if not self._is_exploration_enough(buffer, self.ppo_batch_size): return False, [0, 0, 0, 0], 0, 0 if self.use_prioritized_experience_replay: loss, montecarlo_loss, q_eval, returns = self.train_prioritized(sess) else: loss, montecarlo_loss, q_eval, returns = self.train_normal(sess) if self.epoch % self.epsilon_dec_iter == 0: self.epsilon = max(self.epsilon - self.epsilon_dec, self.epsilon_min) print("update epsilon:", self.epsilon) return True, [loss, montecarlo_loss, q_eval, returns], self.get_memory_returns(), self.epsilon def train_prioritized(self, sess): loss, montecarlo_loss, q_eval, returns = 0, 0, 0, 0 for idx in range(self.update_times_per_train): sample_indices = self.prioritized_replay_buffer.make_index(self.ppo_batch_size) obs, act, rew, obs_next, done, dis_2_end, returns, weights, ranges = self.prioritized_replay_buffer.sample_index( sample_indices) _, loss, montecarlo_loss, q_eval, \ priority_values = sess.run( [self._train_ppo_op, self.loss, self.montecarlo_loss, self.q_eval_wrt_a, self.priority_values], feed_dict={ self.s: obs, self.a: act, self.r: rew, self.s_: obs_next, self.done: done, self.return_value: returns, self.important_sampling_weight_ph: weights, }) priorities = priority_values + 1e-6 self.prioritized_replay_buffer.update_priorities(sample_indices, priorities) return loss, montecarlo_loss, np.average(q_eval), np.average(returns) def train_normal(self, sess): loss, montecarlo_loss, q_eval, returns = 0, 0, 0, 0 for idx in range(self.update_times_per_train): sample_indices = self.replay_buffer.make_index(self.ppo_batch_size) obs, act, rew, obs_next, done, dis_2_end, returns = self.replay_buffer.sample_index( sample_indices) adv = sess.run(self.advantage, {self.s: obs, self.return_value: returns}) _, montecarlo_loss, q_eval = sess.run( [self._train_ppo_critic_op, self.critic_loss, self.critic], feed_dict={ self.s: obs, self.a: act, self.adv: adv, self.r: rew, self.s_: obs_next, self.done: done, self.return_value: returns, }) if self.method == 'kl_pen': for _ in range(self.update_step): _, kl, loss = sess.run( [self._train_ppo_actor_op, self.kl_mean, self.actor_loss], feed_dict={ self.adv: adv, self.s: obs, self.a: act, self.r: rew, self.done: done, }) if kl > 4 * self.kl_target: break if kl < self.kl_target / 1.5: self.lam /= 2 elif kl > self.kl_target * 1.5: self.lam *= 2 self.lam = np.clip(self.lam, 1e-4, 10) else: for _ in range(self.update_step): _, loss = sess.run( [self._train_ppo_actor_op, self.actor_loss], feed_dict={ self.adv: adv, self.s: obs, self.a: act, self.r: rew, self.done: done, self.return_value: returns, }) return loss, montecarlo_loss, np.average(q_eval), np.average(returns)
def __init__( self, user_num, n_actions, n_features, init_roi, budget, use_budget_control, use_prioritized_experience_replay, max_trajectory_length, update_times_per_train=1, ): PIDAgent.__init__(self, init_roi=init_roi, default_alpha=1, budget=budget, integration=2) self.user_num = user_num self.use_budget_control = use_budget_control self.update_times_per_train = update_times_per_train self.n_actions = n_actions self.n_features = n_features self.gamma = 1. self.lr = 0.001 self.user_based_adjust_times = 40 self.epsilon = 0.4 self.epsilon_min = 0.05 self.epsilon_dec = 0.1 self.epsilon_dec_iter = 5000 // self.user_based_adjust_times self.epsilon_dec_iter_min = 500 // self.user_based_adjust_times self.replace_target_iter = 1 self.soft_update_iter = 1 self.softupdate = True self.scope_name = "DQN-model" self.epoch = 0 self.buffer_size = 1000 * max_trajectory_length self.batch_size = 512 self.alpha = 0.6 self.beta = 0.4 self.use_prioritized_experience_replay = use_prioritized_experience_replay if self.use_prioritized_experience_replay: self.prioritized_replay_buffer = PrioritizedReplayBuffer( self.buffer_size, alpha=self.alpha, max_priority=20.) else: self.replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) self.cost_replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) self.gmv_replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) self.margin_constant = 2 with tf.variable_scope(self.scope_name): self._build_net() self.build_model_saver(self.scope_name)
class DQN2Net_interface(LearningAgent, PIDAgent): def __init__( self, user_num, n_actions, n_features, init_roi, budget, use_budget_control, use_prioritized_experience_replay, max_trajectory_length, update_times_per_train=1, ): PIDAgent.__init__(self, init_roi=init_roi, default_alpha=1, budget=budget, integration=2) self.user_num = user_num self.use_budget_control = use_budget_control self.update_times_per_train = update_times_per_train self.n_actions = n_actions self.n_features = n_features self.gamma = 1. self.lr = 0.001 self.user_based_adjust_times = 40 self.epsilon = 0.4 self.epsilon_min = 0.05 self.epsilon_dec = 0.1 self.epsilon_dec_iter = 5000 // self.user_based_adjust_times self.epsilon_dec_iter_min = 500 // self.user_based_adjust_times self.replace_target_iter = 1 self.soft_update_iter = 1 self.softupdate = True self.scope_name = "DQN-model" self.epoch = 0 self.buffer_size = 1000 * max_trajectory_length self.batch_size = 512 self.alpha = 0.6 self.beta = 0.4 self.use_prioritized_experience_replay = use_prioritized_experience_replay if self.use_prioritized_experience_replay: self.prioritized_replay_buffer = PrioritizedReplayBuffer( self.buffer_size, alpha=self.alpha, max_priority=20.) else: self.replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) self.cost_replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) self.gmv_replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) self.margin_constant = 2 with tf.variable_scope(self.scope_name): self._build_net() self.build_model_saver(self.scope_name) def _build_q_net(self, state, n_actions, variable_scope, reuse=False): with tf.variable_scope(variable_scope, reuse=reuse): user_id_embedding_table = tf.get_variable( name="user_id", shape=[self.user_num, 10], initializer=initializers.xavier_initializer(), trainable=True, dtype=tf.float32) user_id = tf.cast(state[:, 0], dtype=tf.int32) user_id_embeddings = tf.nn.embedding_lookup( user_id_embedding_table, ids=user_id, name="user_id_embedding") state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1) n_features = state.get_shape()[1] fc1 = tf.layers.dense( state, units=n_features, activation=tf.nn.relu, name='fc1', kernel_initializer=initializers.xavier_initializer()) fc2 = tf.layers.dense( fc1, units=n_features // 2, activation=tf.nn.relu, name='fc2', kernel_initializer=initializers.xavier_initializer()) fc3 = tf.layers.dense( fc2, units=n_features // 2, activation=tf.nn.relu, name='fc3', kernel_initializer=initializers.xavier_initializer()) q_out = tf.maximum( tf.layers.dense( fc3, units=n_actions, name='q', kernel_initializer=initializers.xavier_initializer()), 0) return q_out def _build_net(self): self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s') self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') self.r_gmv = tf.placeholder(tf.float32, [ None, ], name='r_gmv') self.r_cost = tf.placeholder(tf.float32, [ None, ], name='r_cost') self.roi_thr = tf.placeholder(tf.float32, [], name="roi_thr") self.r = tf.placeholder(tf.float32, [ None, ], name='r') self.a = tf.placeholder(tf.int32, [ None, ], name='a') self.done = tf.placeholder(tf.float32, [ None, ], name='done') self.return_gmv_value = tf.placeholder(tf.float32, [ None, ], name='return_gmv') self.return_cost_value = tf.placeholder(tf.float32, [ None, ], name='return_cost') self.return_value = tf.placeholder(tf.float32, [ None, ], name='return') self.important_sampling_weight_ph = tf.placeholder( tf.float32, [None], name="important_sampling_weight") self.q_eval_gmv = self._build_q_net(self.s, self.n_actions, variable_scope="eval_gmv_net") self.q_next_gmv = self._build_q_net(self.s_, self.n_actions, variable_scope="target_gmv_net") self.q_eval_cost = self._build_q_net(self.s, self.n_actions, variable_scope="eval_cost_net") self.q_next_cost = self._build_q_net(self.s_, self.n_actions, variable_scope="target_cost_net") self.q_eval = self.q_eval_gmv - self.roi_thr * self.q_eval_cost self.q_next = self.q_next_gmv - self.roi_thr * self.q_next_cost t_gmv_params = scope_vars(absolute_scope_name("target_gmv_net")) e_gmv_params = scope_vars(absolute_scope_name("eval_gmv_net")) t_cost_params = scope_vars(absolute_scope_name("target_cost_net")) e_cost_params = scope_vars(absolute_scope_name("eval_cost_net")) with tf.variable_scope('hard_replacement'): self.target_gmv_replace_op = tf.group( [tf.assign(t, e) for t, e in zip(t_gmv_params, e_gmv_params)]) self.target_cost_replace_op = tf.group([ tf.assign(t, e) for t, e in zip(t_cost_params, e_cost_params) ]) with tf.variable_scope('soft_update'): self.update_gmv_target_q = self.__make_update_exp__( e_gmv_params, t_gmv_params) self.update_cost_target_q = self.__make_update_exp__( e_cost_params, t_cost_params) with tf.variable_scope('q_target'): greedy_action_s_ = tf.argmax(self.q_next, axis=-1, name="td0_argmax_action", output_type=tf.int32) greedy_a_indices = tf.stack([ tf.range(tf.cast(tf.shape(self.a)[0], dtype=tf.int32), dtype=tf.int32), greedy_action_s_ ], axis=1) target_q_gmv_sa = tf.gather_nd(params=self.q_next_gmv, indices=greedy_a_indices) target_q_cost_sa = tf.gather_nd(params=self.q_next_cost, indices=greedy_a_indices) target_q_sa = tf.gather_nd(params=self.q_next, indices=greedy_a_indices) self.td0_q_gmv_target = tf.stop_gradient(self.r_gmv + self.gamma * (1. - self.done) * target_q_gmv_sa) self.td0_q_cost_target = tf.stop_gradient(self.r_cost + self.gamma * (1. - self.done) * target_q_cost_sa) self.td0_q_target = tf.stop_gradient(self.r + self.gamma * (1. - self.done) * target_q_sa) target_action = tf.argmax(self.q_eval, axis=-1, name="doubeldqn_argmax_action", output_type=tf.int32) target_a_indices = tf.stack([ tf.range(tf.cast(tf.shape(self.a)[0], dtype=tf.int32), dtype=tf.int32), target_action ], axis=1) ddqn_target_q_gmv_sa = tf.gather_nd(params=self.q_next_gmv, indices=target_a_indices) ddqn_target_q_cost_sa = tf.gather_nd(params=self.q_next_cost, indices=target_a_indices) ddqn_target_q_sa = tf.gather_nd(params=self.q_next, indices=target_a_indices) self.double_dqn_gmv_target = tf.stop_gradient(self.r_gmv + self.gamma * (1. - self.done) * ddqn_target_q_gmv_sa) self.double_dqn_cost_target = tf.stop_gradient( self.r_cost + self.gamma * (1. - self.done) * ddqn_target_q_cost_sa) self.double_dqn_target = tf.stop_gradient(self.r + self.gamma * (1. - self.done) * ddqn_target_q_sa) self.montecarlo_gmv_target = self.return_gmv_value self.montecarlo_cost_target = self.return_cost_value self.montecarlo_target = self.return_value with tf.variable_scope('q_eval'): a_indices = tf.stack([ tf.range(tf.cast(tf.shape(self.a)[0], dtype=tf.int32), dtype=tf.int32), self.a ], axis=1) self.q_eval_gmv_wrt_a = tf.gather_nd(params=self.q_eval_gmv, indices=a_indices) self.q_eval_cost_wrt_a = tf.gather_nd(params=self.q_eval_cost, indices=a_indices) self.q_eval_wrt_a = tf.gather_nd(params=self.q_eval, indices=a_indices) with tf.variable_scope('loss'): self._build_loss() self._pick_loss() with tf.variable_scope('train'): self._train_op = tf.train.AdamOptimizer(self.lr).minimize( self.loss, var_list=e_gmv_params + e_cost_params) self._train_gmv_op = tf.train.AdamOptimizer(self.lr).minimize( self.gmv_loss, var_list=e_gmv_params) self._train_cost_op = tf.train.AdamOptimizer(self.lr).minimize( self.cost_loss, var_list=e_cost_params) with tf.variable_scope('roi'): greedy_action_indices = tf.stack([ tf.range(tf.cast(tf.shape(self.a)[0], dtype=tf.int32), dtype=tf.int32), self.a ], axis=1) self.plongterm_roi = tf.gather_nd( params=self.q_eval_gmv, indices=greedy_action_indices) / ( tf.gather_nd(params=self.q_eval_cost, indices=greedy_action_indices) + 1e-6) def _pick_loss(self): self.has_target_net = True self.gmv_loss = self.gmv_double_dqn_loss self.cost_loss = self.cost_double_dqn_loss self.loss = self.double_dqn_loss self.priority_values = self.gmv_doubel_dqn_error + self.cost_doubel_dqn_error + self.doubel_dqn_error def _build_loss(self): if self.use_prioritized_experience_replay: self.gmv_dqn_loss = tf.reduce_mean( self.important_sampling_weight_ph * tf.squared_difference(self.td0_q_gmv_target, self.q_eval_gmv_wrt_a, name='TD0_gmv_loss')) self.cost_dqn_loss = tf.reduce_mean( self.important_sampling_weight_ph * tf.squared_difference(self.td0_q_cost_target, self.q_eval_cost_wrt_a, name='TD0_cost_loss')) self.dqn_loss = tf.reduce_mean( self.important_sampling_weight_ph * tf.squared_difference( self.td0_q_target, self.q_eval_wrt_a, name='TD0_loss')) self.gmv_double_dqn_loss = tf.reduce_mean( self.important_sampling_weight_ph * tf.squared_difference(self.double_dqn_gmv_target, self.q_eval_gmv_wrt_a, name='Double_DQN_gmv_loss')) self.cost_double_dqn_loss = tf.reduce_mean( self.important_sampling_weight_ph * tf.squared_difference(self.double_dqn_cost_target, self.q_eval_cost_wrt_a, name='Double_DQN_cost_loss')) self.double_dqn_loss = tf.reduce_mean( self.important_sampling_weight_ph * tf.squared_difference(self.double_dqn_target, self.q_eval_wrt_a, name='Double_DQN_error')) self.gmv_montecarlo_loss = tf.reduce_mean( self.important_sampling_weight_ph * tf.squared_difference(self.montecarlo_gmv_target, self.q_eval_gmv_wrt_a, name='GMV_error')) self.cost_montecarlo_loss = tf.reduce_mean( self.important_sampling_weight_ph * tf.squared_difference(self.montecarlo_cost_target, self.q_eval_cost_wrt_a, name='COST_error')) self.montecarlo_loss = tf.reduce_mean( self.important_sampling_weight_ph * tf.squared_difference(self.montecarlo_target, self.q_eval_wrt_a, name='MonteCarlo_error')) else: self.gmv_dqn_loss = tf.reduce_mean( tf.squared_difference(self.td0_q_gmv_target, self.q_eval_gmv_wrt_a, name='TD0_gmv_loss')) self.cost_dqn_loss = tf.reduce_mean( tf.squared_difference(self.td0_q_cost_target, self.q_eval_cost_wrt_a, name='TD0_cost_loss')) self.dqn_loss = tf.reduce_mean( tf.squared_difference(self.td0_q_target, self.q_eval_wrt_a, name='TD0_loss')) self.gmv_double_dqn_loss = tf.reduce_mean( tf.squared_difference(self.double_dqn_gmv_target, self.q_eval_gmv_wrt_a, name='Double_DQN_gmv_loss')) self.cost_double_dqn_loss = tf.reduce_mean( tf.squared_difference(self.double_dqn_cost_target, self.q_eval_cost_wrt_a, name='Double_DQN_cost_loss')) self.double_dqn_loss = tf.reduce_mean( tf.squared_difference(self.double_dqn_target, self.q_eval_wrt_a, name='Double_DQN_error')) self.gmv_montecarlo_loss = tf.reduce_mean( tf.squared_difference(self.montecarlo_gmv_target, self.q_eval_gmv_wrt_a, name='MonteCarlo_gmv_loss')) self.cost_montecarlo_loss = tf.reduce_mean( tf.squared_difference(self.montecarlo_cost_target, self.q_eval_cost_wrt_a, name='MonteCarlo_cost_loss')) self.montecarlo_loss = tf.reduce_mean( tf.squared_difference(self.montecarlo_target, self.q_eval_wrt_a, name='MonteCarlo_error')) self.gmv_td0_error = tf.abs(self.td0_q_gmv_target - self.q_eval_gmv_wrt_a) self.cost_td0_error = tf.abs(self.td0_q_cost_target - self.q_eval_cost_wrt_a) self.td0_error = tf.abs(self.td0_q_target - self.q_eval_wrt_a) self.gmv_doubel_dqn_error = tf.abs(self.double_dqn_gmv_target - self.q_eval_gmv_wrt_a) self.cost_doubel_dqn_error = tf.abs(self.double_dqn_cost_target - self.q_eval_cost_wrt_a) self.doubel_dqn_error = tf.abs(self.double_dqn_target - self.q_eval_wrt_a) self.gmv_montecarlo_error = tf.abs(self.montecarlo_gmv_target - self.q_eval_gmv_wrt_a) self.cost_montecarlo_error = tf.abs(self.montecarlo_cost_target - self.q_eval_cost_wrt_a) self.montecarlo_error = tf.abs(self.montecarlo_target - self.q_eval_wrt_a) def __make_update_exp__(self, vals, target_vals): polyak = 1.0 - 1e-2 expression = [] for var, var_target in zip(sorted(vals, key=lambda v: v.name), sorted(target_vals, key=lambda v: v.name)): expression.append( var_target.assign(polyak * var_target + (1.0 - polyak) * var)) expression = tf.group(*expression) return expression def __make_hardreplace_exp__(self, vals, target_vals): expression = [] for var, var_target in zip(sorted(vals, key=lambda v: v.name), sorted(target_vals, key=lambda v: v.name)): expression.append(var_target.assign(var)) expression = tf.group(*expression) return expression def build_model_saver(self, var_scope): var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=var_scope) self.model_saver = tf.train.Saver(var_list=var_list, max_to_keep=1) def save(self, sess, path, step): if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path)) self.model_saver.save(sess, save_path=path, global_step=step) def restore(self, sess, path): self.model_saver.restore(sess, save_path=path) print('%s model reloaded from %s' % (self.scope_name, path)) def experience(self, new_trajectory, other_info=None): new_trajectory_gmv = other_info["gmv"] new_trajectory_cost = other_info["cost"] if self.use_prioritized_experience_replay: add_episode(self.prioritized_replay_buffer, new_trajectory, gamma=self.gamma) else: add_episode(self.replay_buffer, new_trajectory, gamma=self.gamma) add_episode(self.gmv_replay_buffer, new_trajectory_gmv, gamma=self.gamma) add_episode(self.cost_replay_buffer, new_trajectory_cost, gamma=self.gamma) def get_action(self, sess, obs, is_test=False, other_info=None): if is_test: discrete_action = self.greedy_action(sess, obs, other_info) else: discrete_action = self.choose_action(sess, obs, other_info) bid_max = MultiUserEnv.bid_max bid_min = MultiUserEnv.bid_min other_action_info = {"learning_action": discrete_action} return bid_min + (bid_max - bid_min) / ( self.n_actions - 1) * discrete_action, other_action_info def __greedy__(self, sess, observation, roi_thr): observations = observation[np.newaxis, :] actions_value = sess.run(self.q_eval, feed_dict={ self.s: observations, self.roi_thr: roi_thr }) greedy_action = np.argmax(actions_value, axis=1)[0] return greedy_action def __epsilon_greedy__(self, sess, observation, roi_thr): if np.random.uniform() < self.epsilon: action = np.random.randint(0, self.n_actions) else: action = self.__greedy__(sess, observation, roi_thr) return action def choose_action(self, sess, observation, other_info): if self.use_budget_control: roi_thr = self.get_roi_threshold() else: roi_thr = self.init_roi return self.__epsilon_greedy__(sess, observation, roi_thr) def greedy_action(self, sess, observation, other_info): if self.use_budget_control: roi_thr = self.get_roi_threshold() else: roi_thr = self.init_roi greedy_action = self.__greedy__(sess, observation, roi_thr) if self.use_budget_control: user_idx = other_info["user_idx"] request_idx = other_info["request_idx"] roi_threshold = self.get_roi_threshold() if request_idx == 0: observations = np.expand_dims(observation, axis=0) max_plongterm_roi = sess.run(self.plongterm_roi, feed_dict={ self.s: observations, self.a: [greedy_action], }) if max_plongterm_roi >= roi_threshold: self.explore_user(user_idx) return greedy_action else: return 0 else: if self.is_user_selected(user_idx): return greedy_action else: return 0 else: return greedy_action def get_memory_returns(self): if self.use_prioritized_experience_replay: return self.prioritized_replay_buffer.current_mean_return else: return self.replay_buffer.current_mean_return def _is_exploration_enough(self, min_pool_size): if self.use_prioritized_experience_replay: return len(self.prioritized_replay_buffer) >= min_pool_size else: return len(self.replay_buffer) >= min_pool_size def update_target(self, sess): if self.softupdate: if self.epoch % self.soft_update_iter == 0: sess.run(self.update_gmv_target_q) sess.run(self.update_cost_target_q) else: if self.epoch % self.replace_target_iter == 0: sess.run(self.target_gmv_replace_op) sess.run(self.target_cost_replace_op) def train(self, sess): if self.has_target_net: self.update_target(sess) self.epoch += 1 if not self._is_exploration_enough(self.batch_size): return False, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 0, 0 if self.use_prioritized_experience_replay: loss, montecarlo_loss, q_eval, returns, \ gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns, \ cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns = self.train_prioritized(sess) else: loss, montecarlo_loss, q_eval, returns, \ gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns, \ cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns = self.train_normal(sess) if self.epoch % self.epsilon_dec_iter == 0: self.epsilon = max(self.epsilon - self.epsilon_dec, self.epsilon_min) self.epsilon_dec_iter //= 1.5 self.epsilon_dec_iter = max(self.epsilon_dec_iter, self.epsilon_dec_iter_min) print("update epsilon:", self.epsilon) return True, [ 0, 0, loss, montecarlo_loss, q_eval, returns, gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns, cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns ], self.get_memory_returns(), self.epsilon def train_prioritized(self, sess): loss, montecarlo_loss, q_eval, returns = 0, 0, 0, 0 gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns = 0, 0, 0, 0 cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns = 0, 0, 0, 0 if self.use_budget_control: roi_thr = self.get_roi_threshold() else: roi_thr = self.init_roi for idx in range(self.update_times_per_train): sample_indices = self.prioritized_replay_buffer.make_index( self.batch_size) obs, act, rew, obs_next, done, dis_2_end, returns, weights, ranges = self.prioritized_replay_buffer.sample_index( sample_indices) obs, act, rew_gmv, obs_next, done, dis_2_end, gmv_returns, weights, ranges = self.gmv_replay_buffer.sample_index( sample_indices) obs, act, rew_cost, obs_next, done, dis_2_end, cost_returns = self.cost_replay_buffer.sample_index( sample_indices) _, loss, montecarlo_loss, q_eval, \ _1, gmv_loss, gmv_montecarlo_loss, gmv_q_eval, \ _2, cost_loss, cost_montecarlo_loss, cost_q_eval, \ priority_values = sess.run( [self._train_op, self.loss, self.montecarlo_loss, self.q_eval_wrt_a, self._train_gmv_op, self.gmv_loss, self.gmv_montecarlo_loss, self.q_eval_gmv_wrt_a, self._train_cost_op, self.cost_loss, self.cost_montecarlo_loss, self.q_eval_cost_wrt_a, self.priority_values], feed_dict={ self.s: obs, self.a: act, self.r_gmv: rew_gmv, self.r_cost: rew_cost, self.r: rew, self.s_: obs_next, self.done: done, self.return_gmv_value: gmv_returns, self.return_cost_value: cost_returns, self.return_value: returns, self.important_sampling_weight_ph: weights, self.roi_thr: roi_thr }) priorities = priority_values + 1e-6 self.prioritized_replay_buffer.update_priorities( sample_indices, priorities) return loss, montecarlo_loss, np.average(q_eval), np.average(returns), \ gmv_loss, gmv_montecarlo_loss, np.average(gmv_q_eval), np.average(gmv_returns), \ cost_loss, cost_montecarlo_loss, np.average(cost_q_eval), np.average(cost_returns) def train_normal(self, sess): loss, montecarlo_loss, q_eval, returns = 0, 0, 0, 0 gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns = 0, 0, 0, 0 cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns = 0, 0, 0, 0 if self.use_budget_control: roi_thr = self.get_roi_threshold() else: roi_thr = self.init_roi for idx in range(self.update_times_per_train): sample_indices = self.replay_buffer.make_index(self.batch_size) obs, act, rew, obs_next, done, dis_2_end, returns = self.replay_buffer.sample_index( sample_indices) obs, act, rew_gmv, obs_next, done, dis_2_end, gmv_returns = self.gmv_replay_buffer.sample_index( sample_indices) obs, act, rew_cost, obs_next, done, dis_2_end, cost_returns = self.cost_replay_buffer.sample_index( sample_indices) _, loss, montecarlo_loss, q_eval, \ _1, gmv_loss, gmv_montecarlo_loss, gmv_q_eval, \ _2, cost_loss, cost_montecarlo_loss, cost_q_eval \ = sess.run( [self._train_op, self.loss, self.montecarlo_loss, self.q_eval_wrt_a, self._train_gmv_op, self.gmv_loss, self.gmv_montecarlo_loss, self.q_eval_gmv_wrt_a, self._train_cost_op, self.cost_loss, self.cost_montecarlo_loss, self.q_eval_cost_wrt_a], feed_dict={ self.s: obs, self.a: act, self.r_gmv: rew_gmv, self.r_cost: rew_cost, self.r: rew, self.s_: obs_next, self.done: done, self.return_gmv_value: gmv_returns, self.return_cost_value: cost_returns, self.return_value: returns, self.roi_thr: roi_thr }) return loss, montecarlo_loss, np.average(q_eval), np.average(returns), \ gmv_loss, gmv_montecarlo_loss, np.average(gmv_q_eval), np.average(gmv_returns), \ cost_loss, cost_montecarlo_loss, np.average(cost_q_eval), np.average(cost_returns)
def __init__(self, user_num, action_dim, n_features, init_roi, budget, use_budget_control, use_prioritized_experience_replay, max_trajectory_length, update_times_per_train ): PIDAgent.__init__(self, init_roi=init_roi, default_alpha=1, budget=budget, integration=1) self.user_num = user_num self.use_budget_control = use_budget_control self.action_dim = action_dim self.n_actions = 11 self.n_features = n_features self.lr = 0.001 self.update_times_per_train = update_times_per_train self.epsilon = 0.5 self.epsilon_min = 0.01 self.epsilon_dec = 0.2 self.epsilon_dec_iter = 100 self.epsilon_clip = 0.2 self.replace_target_iter = 1 self.soft_update_iter = 1 self.softupdate = False self.scope_name = "PPO-model" self.epoch = 0 self.lam = 0.5 self.update_step = 1 self.kl_target = 0.01 self.gamma = 1. self.method = 'clip' self.policy_logvar = 1e-7 self.decay_rate = 0.9 self.decay_steps = 5000 self.global_ = tf.Variable(tf.constant(0)) self.buffer_size = 1000 * max_trajectory_length self.batch_size = 500 self.alpha = 0.6 self.beta = 0.4 self.use_prioritized_experience_replay = use_prioritized_experience_replay if self.use_prioritized_experience_replay: self.prioritized_replay_buffer = PrioritizedReplayBuffer(self.buffer_size, alpha=self.alpha, max_priority=20.) else: self.replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) self.cost_replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) self.gmv_replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) with tf.variable_scope(self.scope_name): self._build_net() self.build_model_saver(self.scope_name)
def __init__( self, user_num, action_dim, action_bound, n_features, init_roi, budget, use_budget_control, use_prioritized_experience_replay, max_trajectory_length, update_times_per_train, ): PIDAgent.__init__(self, init_roi=init_roi, default_alpha=1, budget=budget, integration=2) self.use_budget_control = use_budget_control self.user_num = user_num self.action_bound = action_bound self.action_dim = action_dim self.n_actions = 1 self.n_features = n_features self.gamma = 1. self.update_times_per_train = update_times_per_train self.lr = 0.001 self.epsilon = 0.9 self.epsilon_min = 0.1 self.epsilon_dec = 0.3 self.epsilon_dec_iter = 100 self.replace_target_iter = 300 self.soft_update_iter = 1 self.softupdate = True self.scope_name = "DDPG-model" self.epoch = 0 self.exploration_noise = OUNoise(self.action_dim) self.noise_weight = 1 self.noise_descrement_per_sampling = 0.0001 self.buffer_size = 20000 * max_trajectory_length self.batch_size = 512 self.alpha = 0.6 self.beta = 0.4 self.use_prioritized_experience_replay = use_prioritized_experience_replay if self.use_prioritized_experience_replay: self.prioritized_replay_buffer = PrioritizedReplayBuffer( self.buffer_size, alpha=self.alpha, max_priority=20.) else: self.replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) self.cost_replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) self.gmv_replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) with tf.variable_scope(self.scope_name): self._build_net() self.build_model_saver(self.scope_name)
class DDPG_interface(LearningAgent, PIDAgent): def __init__( self, user_num, action_dim, action_bound, n_features, init_roi, budget, use_budget_control, use_prioritized_experience_replay, max_trajectory_length, update_times_per_train, ): PIDAgent.__init__(self, init_roi=init_roi, default_alpha=1, budget=budget, integration=2) self.use_budget_control = use_budget_control self.user_num = user_num self.action_bound = action_bound self.action_dim = action_dim self.n_actions = 1 self.n_features = n_features self.gamma = 1. self.update_times_per_train = update_times_per_train self.lr = 0.001 self.epsilon = 0.9 self.epsilon_min = 0.1 self.epsilon_dec = 0.3 self.epsilon_dec_iter = 100 self.replace_target_iter = 300 self.soft_update_iter = 1 self.softupdate = True self.scope_name = "DDPG-model" self.epoch = 0 self.exploration_noise = OUNoise(self.action_dim) self.noise_weight = 1 self.noise_descrement_per_sampling = 0.0001 self.buffer_size = 20000 * max_trajectory_length self.batch_size = 512 self.alpha = 0.6 self.beta = 0.4 self.use_prioritized_experience_replay = use_prioritized_experience_replay if self.use_prioritized_experience_replay: self.prioritized_replay_buffer = PrioritizedReplayBuffer( self.buffer_size, alpha=self.alpha, max_priority=20.) else: self.replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) self.cost_replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) self.gmv_replay_buffer = ReplayBuffer(self.buffer_size, save_return=True) with tf.variable_scope(self.scope_name): self._build_net() self.build_model_saver(self.scope_name) def _build_net(self): self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s') self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') self.r_gmv = tf.placeholder(tf.float32, [ None, ], name='r_gmv') self.r_cost = tf.placeholder(tf.float32, [ None, ], name='r_cost') self.r = tf.placeholder(tf.float32, [ None, ], name='r') self.roi_thr = tf.placeholder(tf.float32, [], name="roi_thr") self.a = tf.placeholder(tf.float32, [ None, ], name='a') self.done = tf.placeholder(tf.float32, [ None, ], name='done') self.gmv_return_value = tf.placeholder(tf.float32, [ None, ], name='gmv_return') self.cost_return_value = tf.placeholder(tf.float32, [ None, ], name='cost_return') self.return_value = tf.placeholder(tf.float32, [ None, ], name='return') self.important_sampling_weight_ph = tf.placeholder( tf.float32, [None], name="important_sampling_weight") self.a_eval = self._build_action_net(self.s, variable_scope="actor_eval_net") self.a_target = self._build_action_net( self.s_, variable_scope="actor_target_net") self.gmv_critic_eval = self._build_q_net( self.s, self.a, variable_scope="gmv_critic_eval_net") self.gmv_critic_eval_for_loss = self._build_q_net( self.s, self.a_eval, variable_scope="gmv_critic_eval_net", reuse=True) self.gmv_critic_target = self._build_q_net( self.s_, self.a_target, variable_scope="gmv_critic_target_net") self.cost_critic_eval = self._build_q_net( self.s, self.a, variable_scope="cost_critic_eval_net") self.cost_critic_eval_for_loss = self._build_q_net( self.s, self.a_eval, variable_scope="cost_critic_eval_net", reuse=True) self.cost_critic_target = self._build_q_net( self.s_, self.a_target, variable_scope="cost_critic_target_net") self.critic_eval = self.gmv_critic_eval - self.roi_thr * self.cost_critic_eval self.critic_eval_for_loss = self.gmv_critic_eval_for_loss - self.roi_thr * self.cost_critic_eval_for_loss self.critic_target = self.gmv_critic_target - self.roi_thr * self.cost_critic_target ae_params = scope_vars(absolute_scope_name("actor_eval_net")) at_params = scope_vars(absolute_scope_name("actor_target_net")) gmv_ce_params = scope_vars(absolute_scope_name("gmv_critic_eval_net")) gmv_ct_params = scope_vars( absolute_scope_name("gmv_critic_target_net")) cost_ce_params = scope_vars( absolute_scope_name("cost_critic_eval_net")) cost_ct_params = scope_vars( absolute_scope_name("cost_critic_target_net")) print(ae_params) print(at_params) print(gmv_ce_params) print(gmv_ct_params) print(cost_ce_params) print(cost_ct_params) with tf.variable_scope('hard_replacement'): self.a_target_replace_op = tf.group( [tf.assign(t, e) for t, e in zip(at_params, ae_params)]) self.gmv_c_target_replace_op = tf.group([ tf.assign(t, e) for t, e in zip(gmv_ct_params, gmv_ce_params) ]) self.cost_c_target_replace_op = tf.group([ tf.assign(t, e) for t, e in zip(cost_ct_params, cost_ce_params) ]) with tf.variable_scope('soft_update'): self.a_update_target_q = self.__make_update_exp__( ae_params, at_params) self.gmv_c_update_target_q = self.__make_update_exp__( gmv_ce_params, gmv_ct_params) self.cost_c_update_target_q = self.__make_update_exp__( cost_ce_params, cost_ct_params) with tf.variable_scope('q_target'): self.td0_gmv_q_target = tf.stop_gradient(self.r_gmv + self.gamma * (1. - self.done) * self.gmv_critic_target) self.td0_cost_q_target = tf.stop_gradient(self.r_cost + self.gamma * (1. - self.done) * self.cost_critic_target) self.td0_q_target = tf.stop_gradient(self.r + self.gamma * (1. - self.done) * self.critic_target) self.montecarlo_gmv_target = self.gmv_return_value self.montecarlo_cost_target = self.cost_return_value self.montecarlo_target = self.return_value with tf.variable_scope('loss'): self._build_loss() self._pick_loss() with tf.variable_scope('train'): self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize( self.loss, var_list=gmv_ce_params + cost_ce_params) self._train_gmv_c_op = tf.train.AdamOptimizer(self.lr).minimize( self.gmv_loss, var_list=gmv_ce_params) self._train_cost_c_op = tf.train.AdamOptimizer(self.lr).minimize( self.cost_loss, var_list=cost_ce_params) self._train_a_op = tf.train.AdamOptimizer(self.lr).minimize( self.actor_loss, var_list=ae_params) with tf.variable_scope('roi'): self.max_longterm_roi = self.gmv_critic_eval / ( self.cost_critic_eval + 1e-4) def _pick_loss(self): self.has_target_net = True self.loss = self.td_loss self.gmv_loss = self.gmv_td_loss self.cost_loss = self.cost_td_loss self.actor_loss = self.a_loss self.priority_values = self.montecarlo_gmv_error + self.montecarlo_cost_error def _build_loss(self): if self.use_prioritized_experience_replay: self.gmv_td_loss = tf.reduce_mean( self.important_sampling_weight_ph * tf.squared_difference(self.td0_gmv_q_target, self.gmv_critic_eval, name='TD0_gmv_loss')) self.cost_td_loss = tf.reduce_mean( self.important_sampling_weight_ph * tf.squared_difference(self.td0_cost_q_target, self.cost_critic_eval, name='TD0_cost_loss')) else: self.gmv_td_loss = tf.reduce_mean( tf.squared_difference(self.td0_gmv_q_target, self.gmv_critic_eval, name='TD0_gmv_loss')) self.cost_td_loss = tf.reduce_mean( tf.squared_difference(self.td0_cost_q_target, self.cost_critic_eval, name='TD0_cost_loss')) self.td_loss = tf.reduce_mean( tf.squared_difference(self.td0_q_target, self.critic_eval, name='TD0_loss')) self.a_loss = -tf.reduce_mean(self.critic_eval_for_loss) self.gmv_montecarlo_loss = tf.reduce_mean( tf.squared_difference(self.montecarlo_gmv_target, self.gmv_critic_eval, name='MonteCarlo_gmv_error')) self.cost_montecarlo_loss = tf.reduce_mean( tf.squared_difference(self.montecarlo_cost_target, self.cost_critic_eval, name='MonteCarlo_cost_error')) self.montecarlo_loss = tf.reduce_mean( tf.squared_difference(self.montecarlo_target, self.critic_eval, name='MonteCarlo_error')) self.td0_gmv_error = tf.abs(self.td0_gmv_q_target - self.gmv_critic_eval) self.td0_cost_error = tf.abs(self.td0_cost_q_target - self.cost_critic_eval) self.td0_error = tf.abs(self.td0_q_target - self.critic_eval) self.montecarlo_gmv_error = tf.abs(self.montecarlo_gmv_target - self.gmv_critic_eval) self.montecarlo_cost_error = tf.abs(self.montecarlo_cost_target - self.cost_critic_eval) self.montecarlo_error = tf.abs(self.montecarlo_target - self.critic_eval) def _build_q_net(self, state, action, variable_scope, reuse=False): with tf.variable_scope(variable_scope, reuse=reuse): user_id_embedding_table = tf.get_variable( name="user_id", shape=[self.user_num, 20], initializer=initializers.xavier_initializer(), trainable=True, dtype=tf.float32) user_id = tf.cast(state[:, 0], dtype=tf.int32) user_id_embeddings = tf.nn.embedding_lookup( user_id_embedding_table, ids=user_id, name="user_id_embedding") state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1) n_features = state.get_shape()[1] state = tf.concat( [state, tf.expand_dims(action, axis=1, name="2d-action")], axis=1) fc1 = tf.layers.dense(state, units=n_features, activation=tf.nn.relu, name='fc1') fc2 = tf.layers.dense(fc1, units=n_features // 2, activation=tf.nn.relu, name='fc2') q = tf.layers.dense(fc2, units=self.action_dim, name='q') return q[:, 0] def _build_action_net(self, state, variable_scope): with tf.variable_scope(variable_scope): user_id_embedding_table = tf.get_variable( name="user_id", shape=[self.user_num, 20], initializer=initializers.xavier_initializer(), trainable=True, dtype=tf.float32) user_id = tf.cast(state[:, 0], dtype=tf.int32) user_id_embeddings = tf.nn.embedding_lookup( user_id_embedding_table, ids=user_id, name="user_id_embedding") state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1) n_features = state.get_shape()[1] fc1 = tf.layers.dense(state, units=n_features // 2, activation=tf.nn.relu, name='fc1') actions = tf.layers.dense(fc1, self.action_dim, activation=tf.nn.sigmoid, name='a') scaled_a = tf.multiply(actions, 1, name='scaled_a') return scaled_a[:, 0] def __make_update_exp__(self, vals, target_vals): polyak = 1.0 - 1e-2 expression = [] for var, var_target in zip(sorted(vals, key=lambda v: v.name), sorted(target_vals, key=lambda v: v.name)): expression.append( var_target.assign(polyak * var_target + (1.0 - polyak) * var)) expression = tf.group(*expression) return expression def __make_hardreplace_exp__(self, vals, target_vals): expression = [] for var, var_target in zip(sorted(vals, key=lambda v: v.name), sorted(target_vals, key=lambda v: v.name)): expression.append(var_target.assign(var)) expression = tf.group(*expression) return expression def build_model_saver(self, var_scope): var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=var_scope) self.model_saver = tf.train.Saver(var_list=var_list, max_to_keep=3) def save(self, sess, path, step): if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path)) self.model_saver.save(sess, save_path=path, global_step=step) def restore(self, sess, path): self.model_saver.restore(sess, save_path=path) print('%s model reloaded from %s' % (self.scope_name, path)) def experience(self, new_trajectory, other_info=None): new_trajectory_gmv = other_info["gmv"] new_trajectory_cost = other_info["cost"] if self.use_prioritized_experience_replay: add_episode(self.prioritized_replay_buffer, new_trajectory, gamma=self.gamma) else: add_episode(self.replay_buffer, new_trajectory, gamma=self.gamma) add_episode(self.gmv_replay_buffer, new_trajectory_gmv, gamma=self.gamma) add_episode(self.cost_replay_buffer, new_trajectory_cost, gamma=self.gamma) def __epsilon_greedy__(self, sess, observation, roi_thr): if np.random.uniform() < self.epsilon: observation = observation[np.newaxis, :] actions_value = sess.run(self.a_eval, feed_dict={ self.s: observation, self.roi_thr: roi_thr }) action_noise = self.exploration_noise.noise() bid = actions_value + action_noise bid = bid[0] else: bid = self.__greedy__(sess, observation, roi_thr) return bid def __greedy__(self, sess, observation, roi_thr): observation = observation[np.newaxis, :] bid = sess.run(self.a_eval, feed_dict={ self.s: observation, self.roi_thr: roi_thr }) return bid[0] def choose_action(self, sess, observation, other_info): if self.use_budget_control: roi_thr = self.get_roi_threshold() else: roi_thr = self.init_roi return self.__epsilon_greedy__(sess, observation, roi_thr) def greedy_action(self, sess, observation, other_info): if self.use_budget_control: roi_thr = self.get_roi_threshold() else: roi_thr = self.init_roi bid = self.__greedy__(sess, observation, roi_thr) if self.use_budget_control: user_idx = other_info["user_idx"] request_idx = other_info["request_idx"] roi_threshold = self.get_roi_threshold() if request_idx == 0: observations = observation[np.newaxis, :] max_plongterm_roi = sess.run(self.max_longterm_roi, feed_dict={ self.s: observations, self.a: [bid] }) if max_plongterm_roi >= roi_threshold: self.explore_user(user_idx) return bid else: return 0. else: if self.is_user_selected(user_idx): return bid else: return 0 else: return bid def get_action(self, sess, obs, is_test=False, other_info=None): if is_test: discrete_action = self.greedy_action(sess, obs, other_info) else: discrete_action = self.choose_action(sess, obs, other_info) other_action_info = {"learning_action": discrete_action} return self.action_bound * np.clip(discrete_action, 0, 1), other_action_info def get_memory_returns(self): if self.use_prioritized_experience_replay: return self.prioritized_replay_buffer.current_mean_return else: return self.replay_buffer.current_mean_return def _is_exploration_enough(self, min_pool_size): if self.use_prioritized_experience_replay: return len(self.prioritized_replay_buffer) >= min_pool_size else: return len(self.replay_buffer) >= min_pool_size def update_target(self, sess): if self.softupdate: if self.epoch % self.soft_update_iter == 0: sess.run(self.gmv_c_update_target_q) sess.run(self.cost_c_update_target_q) sess.run(self.a_update_target_q) else: if self.epoch % self.replace_target_iter == 0: sess.run(self.gmv_c_update_target_q) sess.run(self.cost_c_update_target_q) sess.run(self.a_target_replace_op) def train(self, sess): if self.has_target_net: self.update_target(sess) self.epoch += 1 if not self._is_exploration_enough(self.batch_size): return False, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 0, 0 if self.use_prioritized_experience_replay: policy_loss, policy_entropy, loss, montecarlo_loss, q_eval, returns, \ gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns, \ cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns = self.train_prioritized(sess) else: policy_loss, policy_entropy, loss, montecarlo_loss, q_eval, returns, \ gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns, \ cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns = self.train_normal(sess) if self.epoch % self.epsilon_dec_iter == 0: self.epsilon = max(self.epsilon - self.epsilon_dec, self.epsilon_min) print("update epsilon:", self.epsilon) return True, [ policy_loss, policy_entropy, loss, montecarlo_loss, q_eval, returns, gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns, cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns ], self.get_memory_returns(), self.epsilon def train_prioritized(self, sess): loss, q_eval, returns, montecarlo_loss = 0, 0, 0, 0 for idx in range(self.update_times_per_train): sample_indices = self.prioritized_replay_buffer.make_index( self.batch_size) obs, act, rew, obs_next, done, dis_2_end, returns, weights, ranges = self.prioritized_replay_buffer.sample_index( sample_indices) _, loss, q_eval, montecarlo_loss, priority_values = sess.run( [ self._train_c_op, self.loss, self.critic_eval, self.montecarlo_loss, self.priority_values ], feed_dict={ self.s: obs, self.a: act, self.r: rew, self.s_: obs_next, self.done: done, self.return_value: returns, self.important_sampling_weight_ph: weights }) sess.run(self._train_a_op, feed_dict={ self.s: obs, self.a: act, self.r: rew, self.s_: obs_next, self.done: done, self.return_value: returns, self.important_sampling_weight_ph: weights }) priorities = priority_values + 1e-6 self.prioritized_replay_buffer.update_priorities( sample_indices, priorities) return loss, montecarlo_loss, np.average(q_eval), np.average(returns) def train_normal(self, sess): policy_loss, policy_entropy = 0, 0 loss, montecarlo_loss, q_eval, returns = 0, 0, 0, 0 gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns = 0, 0, 0, 0 cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns = 0, 0, 0, 0 if self.use_budget_control: roi_thr = self.get_roi_threshold() else: roi_thr = self.init_roi for idx in range(self.update_times_per_train): sample_indices = self.replay_buffer.make_index(self.batch_size) obs, act, rew, obs_next, done, dis_2_end, returns = self.replay_buffer.sample_index( sample_indices) obs, act, rew_gmv, obs_next, done, dis_2_end, gmv_returns = self.gmv_replay_buffer.sample_index( sample_indices) obs, act, rew_cost, obs_next, done, dis_2_end, cost_returns = self.cost_replay_buffer.sample_index( sample_indices) _, loss, montecarlo_loss, q_eval, \ _1, gmv_loss, gmv_montecarlo_loss, gmv_q_eval, \ _2, cost_loss, cost_montecarlo_loss, cost_q_eval \ = sess.run( [self._train_op, self.loss, self.montecarlo_loss, self.critic_eval, self._train_gmv_c_op, self.gmv_loss, self.gmv_montecarlo_loss, self.gmv_critic_eval, self._train_cost_c_op, self.cost_loss, self.cost_montecarlo_loss, self.cost_critic_eval], feed_dict={ self.s: obs, self.a: act, self.r_gmv: rew_gmv, self.r_cost: rew_cost, self.r: rew, self.s_: obs_next, self.done: done, self.gmv_return_value: gmv_returns, self.cost_return_value: cost_returns, self.return_value: returns, self.roi_thr: roi_thr }) _, actor_loss = sess.run( [self._train_a_op, self.actor_loss], feed_dict={ self.roi_thr: roi_thr, self.s: obs, self.a: act, self.r_gmv: rew_gmv, self.r_cost: rew_cost, self.s_: obs_next, self.done: done, self.gmv_return_value: gmv_returns, self.cost_return_value: cost_returns, }) return 0, 0, loss, montecarlo_loss, np.average(q_eval), np.average(returns), \ gmv_loss, gmv_montecarlo_loss, np.average(gmv_q_eval), np.average(gmv_returns), \ cost_loss, cost_montecarlo_loss, np.average(cost_q_eval), np.average(cost_returns)