示例#1
0
    def __init__(self, state_size, action_size, seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size,
                                       seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size,
                                        seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        self.prioritized_replay_alpha = 0.6
        self.prioritized_replay_beta0 = 0.4
        self.prioritized_replay_beta_iters = 100000

        # Replay memory
        self.memory = PrioritizedReplayBuffer(
            BUFFER_SIZE, alpha=self.prioritized_replay_alpha)
        self.beta_schedule = LinearSchedule(
            self.prioritized_replay_beta_iters,
            initial_p=self.prioritized_replay_beta0,
            final_p=1.0)

        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0
示例#2
0
    def __init__(self, user_num, action_dim, action_bound, cvr_n_features, ddpg_n_features, init_roi, budget,
                 use_budget_control,
                 use_prioritized_experience_replay,
                 max_trajectory_length,
                 update_times_per_train=1, use_predict_cvr=False):
        self.user_num = user_num
        self.use_budget_control = use_budget_control
        self.update_times_per_train = update_times_per_train
        self.action_dim = action_dim
        self.action_bound = action_bound
        self.n_actions = 1
        self.cvr_n_features = cvr_n_features
        self.ddpg_n_features = ddpg_n_features
        self.lr = 0.001
        self.use_predict_cvr = use_predict_cvr

        self.user_based_adjust_times = 40
        self.epsilon = 0.9
        self.epsilon_min = 0.05

        self.epsilon_dec = 0.3
        self.epsilon_dec_iter = 5000 // self.user_based_adjust_times
        self.epsilon_dec_iter_min = 500 // self.user_based_adjust_times

        self.replace_target_iter = 1
        self.soft_update_iter = 1
        self.softupdate = True

        self.scope_name = "CDDPG-model"

        self.epoch = 0

        self.exploration_noise = OUNoise(self.action_dim)

        self.cvr_buffer_size = 1000 * max_trajectory_length
        self.cvr_batch_size = 512
        self.cvr_replay_buffer = ReplayBuffer(self.cvr_buffer_size, save_return=False)

        self.alpha = 0.6
        self.beta = 0.4
        self.use_prioritized_experience_replay = use_prioritized_experience_replay

        self.ddpg_buffer_size = 1000 * max_trajectory_length

        self.ddpg_batch_size = 256
        if self.use_prioritized_experience_replay:
            self.prioritized_replay_buffer = PrioritizedReplayBuffer(self.ddpg_buffer_size, alpha=self.alpha,
                                                                     max_priority=20.)
        else:
            self.replay_buffer = ReplayBuffer(self.ddpg_buffer_size, save_return=True)

        with tf.variable_scope(self.scope_name):

            self._build_net()

            self.build_model_saver(self.scope_name)
示例#3
0
文件: Agent.py 项目: karunraju/NFF
    def __init__(self, render=False, method='Duel'):

        # Create an instance of the network itself, as well as the memory.
        # Here is also a good place to set environmental parameters,
        # as well as training parameters - number of episodes / iterations, etc.
        self.render = render
        if render:
            self.env = gym.make('NEL-render-v0')
        else:
            self.env = gym.make('NEL-v0')
        #self.test_env = gym.make('NEL-v0')
        self.an = self.env.action_space.n  # No. of actions in env
        self.epsilon = 0.5
        self.training_time = PARAM.TRAINING_TIME  # Training Time
        self.df = PARAM.DISCOUNT_FACTOR  # Discount Factor
        self.batch_size = PARAM.BATCH_SIZE
        self.method = method
        self.test_curr_state = None
        self.log_time = 100.0
        self.test_time = 1000.0
        self.prioritized_replay = PARAM.PRIORITIZED_REPLAY
        self.prioritized_replay_eps = 1e-6
        #self.prioritized_replay_alpha = 0.6
        self.prioritized_replay_alpha = 0.8
        self.prioritized_replay_beta0 = 0.4
        self.burn_in = PARAM.BURN_IN

        # Create Replay Memory and initialize with burn_in transitions
        if self.prioritized_replay:
            self.replay_buffer = PrioritizedReplayBuffer(
                PARAM.REPLAY_MEMORY_SIZE, alpha=self.prioritized_replay_alpha)
            self.beta_schedule = LinearSchedule(
                float(self.training_time),
                initial_p=self.prioritized_replay_beta0,
                final_p=1.0)
        else:
            self.replay_buffer = ReplayBuffer(PARAM.REPLAY_MEMORY_SIZE)
            self.beta_schedule = None

        # Create QNetwork instance
        if self.method == 'Duel':
            print('Using Duel Network.')
            self.net = DuelQNetwork(self.an)
        elif self.method == 'DoubleQ':
            print('Using DoubleQ Network.')
            self.net = DoubleQNetwork(self.an)
        else:
            raise NotImplementedError

        cur_dir = os.getcwd()
        self.dump_dir = cur_dir + '/tmp_' + self.method + '_' + time.strftime(
            "%Y%m%d-%H%M%S") + '/'
        # Create output directory
        if not os.path.exists(self.dump_dir):
            os.makedirs(self.dump_dir)
        self.train_file = open(self.dump_dir + 'train_rewards.txt', 'w')
        self.test_file = open(self.dump_dir + 'test_rewards.txt', 'w')
示例#4
0
    def __init__(
        self,
        n_actions=11,
        n_features=29,
        use_prioritized_experience_replay=True,
        max_trajectory_length=20,
    ):
        self.n_actions = n_actions
        self.n_features = n_features
        self.gamma = 1.

        self.lr = 0.001
        self.epsilon = 0.5
        self.epsilon_min = 0
        self.epsilon_dec = 0.1
        self.epsilon_dec_iter = 1000
        self.replace_target_iter = 100
        self.soft_update_iter = 1
        self.softupdate = False
        self.scope_name = "DQN-model"

        self.epoch = 0

        self.buffer_size = 5000 * max_trajectory_length
        self.batch_size = 512
        self.alpha = 0.6
        self.beta = 0.4
        self.use_prioritized_experience_replay = use_prioritized_experience_replay
        if self.use_prioritized_experience_replay:
            self.prioritized_replay_buffer = PrioritizedReplayBuffer(
                self.buffer_size, alpha=self.alpha, max_priority=20.)
        else:
            self.replay_buffer = ReplayBuffer(self.buffer_size,
                                              save_return=True)

        self.margin_constant = 2

        with tf.variable_scope(self.scope_name):

            self._build_net()

            self.build_model_saver(self.scope_name)
示例#5
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size,
                                       seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size,
                                        seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        self.prioritized_replay_alpha = 0.6
        self.prioritized_replay_beta0 = 0.4
        self.prioritized_replay_beta_iters = 100000

        # Replay memory
        self.memory = PrioritizedReplayBuffer(
            BUFFER_SIZE, alpha=self.prioritized_replay_alpha)
        self.beta_schedule = LinearSchedule(
            self.prioritized_replay_beta_iters,
            initial_p=self.prioritized_replay_beta0,
            final_p=1.0)

        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample(BATCH_SIZE,
                                                 beta=self.beta_schedule.value(
                                                     len(self.memory)))
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones, weights, idxes = experiences

        # Get max predicted Q values (for next states) from target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)

        # Compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Compute loss
        losses_v = weights * (Q_expected - Q_targets)**2
        loss = losses_v.mean()
        prios = losses_v + 1e-5

        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # Update replay buffer priorities
        self.memory.update_priorities(idxes, prios.data.cpu().numpy())

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
示例#6
0
class ConstrainedDDPG(CMDPAgent):

    def init_parameters(self, sess):
        if self.has_target_net:
            super(CMDPAgent, self).init_parameters(sess)
            sess.run(self.target_replace_op)
            sess.run(self.a_target_replace_op)

    def __init__(self, user_num, action_dim, action_bound, cvr_n_features, ddpg_n_features, init_roi, budget,
                 use_budget_control,
                 use_prioritized_experience_replay,
                 max_trajectory_length,
                 update_times_per_train=1, use_predict_cvr=False):
        self.user_num = user_num
        self.use_budget_control = use_budget_control
        self.update_times_per_train = update_times_per_train
        self.action_dim = action_dim
        self.action_bound = action_bound
        self.n_actions = 1
        self.cvr_n_features = cvr_n_features
        self.ddpg_n_features = ddpg_n_features
        self.lr = 0.001
        self.use_predict_cvr = use_predict_cvr

        self.user_based_adjust_times = 40
        self.epsilon = 0.9
        self.epsilon_min = 0.05

        self.epsilon_dec = 0.3
        self.epsilon_dec_iter = 5000 // self.user_based_adjust_times
        self.epsilon_dec_iter_min = 500 // self.user_based_adjust_times

        self.replace_target_iter = 1
        self.soft_update_iter = 1
        self.softupdate = True

        self.scope_name = "CDDPG-model"

        self.epoch = 0

        self.exploration_noise = OUNoise(self.action_dim)

        self.cvr_buffer_size = 1000 * max_trajectory_length
        self.cvr_batch_size = 512
        self.cvr_replay_buffer = ReplayBuffer(self.cvr_buffer_size, save_return=False)

        self.alpha = 0.6
        self.beta = 0.4
        self.use_prioritized_experience_replay = use_prioritized_experience_replay

        self.ddpg_buffer_size = 1000 * max_trajectory_length

        self.ddpg_batch_size = 256
        if self.use_prioritized_experience_replay:
            self.prioritized_replay_buffer = PrioritizedReplayBuffer(self.ddpg_buffer_size, alpha=self.alpha,
                                                                     max_priority=20.)
        else:
            self.replay_buffer = ReplayBuffer(self.ddpg_buffer_size, save_return=True)

        with tf.variable_scope(self.scope_name):

            self._build_net()

            self.build_model_saver(self.scope_name)

    def _build_cvr_net(self, state, variable_scope, reuse=False):
        with tf.variable_scope(variable_scope, reuse=reuse):
            user_id_embedding_table = tf.get_variable(
                name="user_id", shape=[self.user_num, 10], initializer=initializers.xavier_initializer(),
                trainable=True, dtype=tf.float32)
            user_id = tf.cast(state[:, 0], dtype=tf.int32)
            user_id_embeddings = tf.nn.embedding_lookup(user_id_embedding_table, ids=user_id, name="user_id_embedding")
            state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1)
            n_features = state.get_shape()[1]
            fc1 = tf.layers.dense(state, units=n_features, activation=tf.nn.relu, name='fc1',
                                  kernel_initializer=initializers.xavier_initializer())

            fc2 = tf.layers.dense(fc1, units=n_features // 2, activation=tf.nn.relu, name='fc2',
                                  kernel_initializer=initializers.xavier_initializer())

            fc3 = tf.layers.dense(fc2, units=n_features // 2, activation=tf.nn.relu, name='fc3',
                                  kernel_initializer=initializers.xavier_initializer())
            cvr_out = tf.sigmoid(tf.layers.dense(fc3, units=1, name='cvr',
                                                 kernel_initializer=initializers.xavier_initializer()))
            return cvr_out

    def _build_q_net(self, state, action, variable_scope, reuse=False):
        with tf.variable_scope(variable_scope, reuse=reuse):
            user_id_embedding_table = tf.get_variable(
                name="user_id", shape=[self.user_num, 10], initializer=initializers.xavier_initializer(),
                trainable=True, dtype=tf.float32)
            user_id = tf.cast(state[:, 0], dtype=tf.int32)
            user_id_embeddings = tf.nn.embedding_lookup(user_id_embedding_table, ids=user_id, name="user_id_embedding")
            state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1)

            n_features = state.get_shape()[1]

            state = tf.concat([state, tf.expand_dims(action, axis=1, name="2d-action")], axis=1)
            fc1 = tf.layers.dense(state, units=n_features, activation=tf.nn.relu, name='fc1')

            fc2 = tf.layers.dense(fc1, units=n_features // 2, activation=tf.nn.relu, name='fc2')

            q = tf.layers.dense(fc2, units=self.action_dim, name='q')

            return q[:, 0]

    def _build_action_net(self, state, variable_scope):
        with tf.variable_scope(variable_scope):
            user_id_embedding_table = tf.get_variable(
                name="user_id", shape=[self.user_num, 10], initializer=initializers.xavier_initializer(),
                trainable=True, dtype=tf.float32)
            user_id = tf.cast(state[:, 0], dtype=tf.int32)
            user_id_embeddings = tf.nn.embedding_lookup(user_id_embedding_table, ids=user_id, name="user_id_embedding")
            state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1)

            n_features = state.get_shape()[1]
            fc1 = tf.layers.dense(state, units=n_features, activation=tf.nn.relu, name='fc1')
            fc2 = tf.layers.dense(fc1, units=n_features // 2, activation=tf.nn.relu, name='fc2')

            actions = tf.layers.dense(fc2, self.action_dim, activation=tf.nn.sigmoid, name='a')

            return actions[:, 0]

    def __make_update_exp__(self, vals, target_vals):
        polyak = 1.0 - 1e-2
        expression = []
        for var, var_target in zip(sorted(vals, key=lambda v: v.name), sorted(target_vals, key=lambda v: v.name)):
            expression.append(var_target.assign(polyak * var_target + (1.0 - polyak) * var))
        expression = tf.group(*expression)
        return expression

    def _build_net(self):

        self.s_cvr = tf.placeholder(tf.float32, [None, self.cvr_n_features], name='s_cvr')
        self.cvr = tf.placeholder(tf.float32, [None, ], name='r')

        self.s = tf.placeholder(tf.float32, [None, self.ddpg_n_features], name='s')
        self.s_ = tf.placeholder(tf.float32, [None, self.ddpg_n_features], name='s_')
        self.r = tf.placeholder(tf.float32, [None, ], name='r')
        self.a = tf.placeholder(tf.float32, [None, ], name='a')
        self.gamma = 1.
        self.done = tf.placeholder(tf.float32, [None, ], name='done')
        self.return_value = tf.placeholder(tf.float32, [None, ], name='return')
        self.important_sampling_weight_ph = tf.placeholder(tf.float32, [None], name="important_sampling_weight")

        self.cvr_net = self._build_cvr_net(self.s_cvr, variable_scope="cvr_net")
        self.predicted_cvr = self.cvr_net[:, 0]
        self.a_eval = self._build_action_net(self.s, variable_scope="actor_eval_net")
        self.a_target = self._build_action_net(self.s_, variable_scope="actor_target_net")
        self.critic_eval = self._build_q_net(self.s, self.a, variable_scope="eval_q_net")
        self.critic_eval_for_loss = self._build_q_net(self.s, self.a_eval, variable_scope="eval_q_net",
                                                      reuse=True)
        self.critic_target = self._build_q_net(self.s_, self.a, variable_scope="target_q_net")

        t_gmv_params = scope_vars(absolute_scope_name("target_q_net"))
        e_gmv_params = scope_vars(absolute_scope_name("eval_q_net"))

        ae_params = scope_vars(absolute_scope_name("actor_eval_net"))
        at_params = scope_vars(absolute_scope_name("actor_target_net"))

        cvr_params = scope_vars(absolute_scope_name("cvr_net"))

        with tf.variable_scope('hard_replacement'):
            self.a_target_replace_op = tf.group([tf.assign(t, e) for t, e in zip(at_params, ae_params)])
            self.target_replace_op = tf.group([tf.assign(t, e) for t, e in zip(t_gmv_params, e_gmv_params)])

        with tf.variable_scope('soft_update'):
            self.a_update_target_q = self.__make_update_exp__(ae_params, at_params)
            self.update_target_q = self.__make_update_exp__(e_gmv_params, t_gmv_params)

        with tf.variable_scope('q_target'):
            self.td0_q_target = tf.stop_gradient(self.r + self.gamma * (1. - self.done) * self.critic_target)

            self.montecarlo_target = self.return_value

        with tf.variable_scope('loss'):
            self.cvr_loss = tf.reduce_mean(tf.squared_difference(self.predicted_cvr, self.cvr))

            self._build_loss()

            self._pick_loss()

        with tf.variable_scope('train'):
            self._train_cvr_op = tf.train.AdamOptimizer(self.lr).minimize(self.cvr_loss, var_list=cvr_params)
            self._train_ddpg_critic_op = tf.train.AdamOptimizer(self.lr).minimize(self.loss, var_list=e_gmv_params)
            self._train_ddpg_a_op = tf.train.AdamOptimizer(self.lr).minimize(self.actor_loss, var_list=ae_params)

    def _pick_loss(self):
        self.has_target_net = True

        self.loss = self.ddpg_loss
        self.priority_values = self.td0_error
        self.actor_loss = self.a_loss

    def _build_loss(self):

        if self.use_prioritized_experience_replay:

            self.ddpg_loss = tf.reduce_mean(
                self.important_sampling_weight_ph * tf.squared_difference(self.td0_q_target, self.critic_eval,
                                                                          name='TD0_loss'))

            self.montecarlo_loss = tf.reduce_mean(self.important_sampling_weight_ph *
                                                  tf.squared_difference(self.montecarlo_target, self.critic_eval,
                                                                        name='MonteCarlo_error'))

        else:

            self.ddpg_loss = tf.reduce_mean(tf.squared_difference(self.td0_q_target, self.critic_eval, name='TD0_loss'))

            self.montecarlo_loss = tf.reduce_mean(tf.squared_difference(self.montecarlo_target, self.critic_eval,
                                                                        name='MonteCarlo_error'))

        self.a_loss = - tf.reduce_mean(self.critic_eval_for_loss)

        self.td0_error = tf.abs(self.td0_q_target - self.critic_eval)

        self.montecarlo_error = tf.abs(self.montecarlo_target - self.critic_eval)

    def build_model_saver(self, var_scope):
        var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=var_scope)

        self.model_saver = tf.train.Saver(var_list=var_list, max_to_keep=1)

    def save(self, sess, path, step):
        if not os.path.exists(os.path.dirname(path)):
            os.makedirs(os.path.dirname(path))
        self.model_saver.save(sess, save_path=path, global_step=step)

    def restore(self, sess, path):
        self.model_saver.restore(sess, save_path=path)
        print('%s model reloaded from %s' % (self.scope_name, path))

    def experience(self, new_trajectory, other_info=None):
        cvr_trajectory = other_info["cvr"]
        for ele in cvr_trajectory:
            state, cvr = ele
            self.cvr_replay_buffer.add(state, 0, cvr, state, 0, 0, 0)

    def experience_cmdp(self, new_trajectory, other_info=None):
        if self.use_prioritized_experience_replay:
            add_episode(self.prioritized_replay_buffer, new_trajectory, gamma=self.gamma)
        else:
            add_episode(self.replay_buffer, new_trajectory, gamma=self.gamma)

    def get_agent_name(self):
        return self.scope_name

    def get_action(self, sess, obs, is_test=False, other_info=None):
        item_price = other_info["proxy_ad_price"]
        ground_truth_cvr = other_info["cvr"]
        user_alpha = other_info["user_alpha"]
        roi_thr = other_info["roi_thr"]

        observations = obs[np.newaxis, :]
        cvr = sess.run(self.predicted_cvr, feed_dict={
            self.s_cvr: observations
        })[0]
        if self.use_predict_cvr:
            bid = cvr * item_price / roi_thr
        else:
            bid = ground_truth_cvr * item_price / roi_thr
        return bid, {"cvr_over_estimate": [user_alpha, ground_truth_cvr, cvr]}

    def get_cmdp_action(self, sess, obs, is_test=False, other_info=None):
        if is_test:
            discrete_action = self.__greedy__(sess, obs)
        else:
            discrete_action = self.__epsilon_greedy__(sess, obs)

        return discrete_action

    def __greedy__(self, sess, observation):
        observation = observation[np.newaxis, :]
        greedy_action = sess.run(self.a_eval, feed_dict={self.s: observation})

        return greedy_action[0]

    def __epsilon_greedy__(self, sess, observation):
        if np.random.uniform() < self.epsilon:
            observation = observation[np.newaxis, :]
            actions_value = sess.run(self.a_eval, feed_dict={self.s: observation})

            action_noise = self.exploration_noise.noise()

            action = actions_value + action_noise

            action = action[0]


        else:
            action = self.__greedy__(sess, observation)
        return action

    def _is_exploration_enough(self, buffer, min_pool_size):
        return len(buffer) >= min_pool_size

    def train_cvr(self, sess):
        if not self._is_exploration_enough(self.cvr_replay_buffer, self.cvr_batch_size):
            return False, [0, 0, 0]

        cvr_loss, predicted_cvrs, cvr_targets = 0, 0, 0
        for idx in range(self.update_times_per_train):
            sample_indices = self.cvr_replay_buffer.make_index(self.cvr_batch_size)
            obs, act, cvr_targets, obs_next, done, dis_2_end, returns = self.cvr_replay_buffer.sample_index(
                sample_indices)

            _, cvr_loss, predicted_cvrs = sess.run(
                [self._train_cvr_op, self.cvr_loss, self.predicted_cvr],
                feed_dict={
                    self.s_cvr: obs,
                    self.cvr: cvr_targets
                }
            )
        return True, [cvr_loss, np.average(predicted_cvrs), np.average(cvr_targets)]

    def get_memory_returns(self):
        if self.use_prioritized_experience_replay:
            return self.prioritized_replay_buffer.current_mean_return
        else:
            return self.replay_buffer.current_mean_return

    def update_target(self, sess):
        if self.softupdate:

            if self.epoch % self.soft_update_iter == 0:
                sess.run(self.update_target_q)
                sess.run(self.a_update_target_q)
        else:

            if self.epoch % self.replace_target_iter == 0:
                sess.run(self.target_replace_op)
                sess.run(self.a_target_replace_op)

    def train(self, sess):
        if self.has_target_net:
            self.update_target(sess)
        self.epoch += 1

        buffer = self.prioritized_replay_buffer if self.use_prioritized_experience_replay else self.replay_buffer
        if not self._is_exploration_enough(buffer, self.ddpg_batch_size):
            return False, [0, 0, 0, 0], 0, 0

        if self.use_prioritized_experience_replay:

            loss, montecarlo_loss, q_eval, returns = self.train_prioritized(sess)
        else:

            loss, montecarlo_loss, q_eval, returns = self.train_normal(sess)

        if self.epoch % self.epsilon_dec_iter == 0:
            self.epsilon = max(self.epsilon - self.epsilon_dec, self.epsilon_min)

            print("update epsilon:", self.epsilon)
        return True, [loss, montecarlo_loss, q_eval, returns], self.get_memory_returns(), self.epsilon

    def train_prioritized(self, sess):
        loss, montecarlo_loss, q_eval, returns = 0, 0, 0, 0
        for idx in range(self.update_times_per_train):
            sample_indices = self.prioritized_replay_buffer.make_index(self.ddpg_batch_size)
            obs, act, rew, obs_next, done, dis_2_end, returns, weights, ranges = self.prioritized_replay_buffer.sample_index(
                sample_indices)
            _, loss, montecarlo_loss, q_eval, \
            priority_values = sess.run(
                [self._train_ddpg_critic_op, self.loss, self.montecarlo_loss, self.critic_eval,
                 self.priority_values],
                feed_dict={
                    self.s: obs,
                    self.a: act,
                    self.r: rew,
                    self.s_: obs_next,
                    self.done: done,
                    self.return_value: returns,
                    self.important_sampling_weight_ph: weights,
                })

            priorities = priority_values + 1e-6
            self.prioritized_replay_buffer.update_priorities(sample_indices, priorities)
        return loss, montecarlo_loss, np.average(q_eval), np.average(returns)

    def train_normal(self, sess):
        loss, montecarlo_loss, q_eval, returns = 0, 0, 0, 0
        for idx in range(self.update_times_per_train):
            sample_indices = self.replay_buffer.make_index(self.ddpg_batch_size)

            obs, act, rew, obs_next, done, dis_2_end, returns = self.replay_buffer.sample_index(
                sample_indices)

            _, loss, montecarlo_loss, q_eval = sess.run(
                [self._train_ddpg_critic_op, self.loss, self.montecarlo_loss, self.critic_eval],
                feed_dict={
                    self.s: obs,
                    self.a: act,
                    self.r: rew,
                    self.s_: obs_next,
                    self.done: done,
                    self.return_value: returns,
                })
            _, actor_loss = sess.run(
                [self._train_ddpg_a_op, self.actor_loss],
                feed_dict={
                    self.s: obs,
                    self.a: act,
                    self.r: rew,
                    self.s_: obs_next,
                    self.done: done,
                    self.return_value: returns,
                })

        return loss, montecarlo_loss, np.average(q_eval), np.average(returns)
示例#7
0
class DQN_interface(LearningAgent):
    def __init__(
        self,
        n_actions=11,
        n_features=29,
        use_prioritized_experience_replay=True,
        max_trajectory_length=20,
    ):
        self.n_actions = n_actions
        self.n_features = n_features
        self.gamma = 1.

        self.lr = 0.001
        self.epsilon = 0.5
        self.epsilon_min = 0
        self.epsilon_dec = 0.1
        self.epsilon_dec_iter = 1000
        self.replace_target_iter = 100
        self.soft_update_iter = 1
        self.softupdate = False
        self.scope_name = "DQN-model"

        self.epoch = 0

        self.buffer_size = 5000 * max_trajectory_length
        self.batch_size = 512
        self.alpha = 0.6
        self.beta = 0.4
        self.use_prioritized_experience_replay = use_prioritized_experience_replay
        if self.use_prioritized_experience_replay:
            self.prioritized_replay_buffer = PrioritizedReplayBuffer(
                self.buffer_size, alpha=self.alpha, max_priority=20.)
        else:
            self.replay_buffer = ReplayBuffer(self.buffer_size,
                                              save_return=True)

        self.margin_constant = 2

        with tf.variable_scope(self.scope_name):

            self._build_net()

            self.build_model_saver(self.scope_name)

    def _build_net(self):

        self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s')
        self.s_ = tf.placeholder(tf.float32, [None, self.n_features],
                                 name='s_')
        self.r = tf.placeholder(tf.float32, [
            None,
        ], name='r')
        self.a = tf.placeholder(tf.int32, [
            None,
        ], name='a')
        self.done = tf.placeholder(tf.float32, [
            None,
        ], name='done')
        self.return_value = tf.placeholder(tf.float32, [
            None,
        ], name='return')
        self.important_sampling_weight_ph = tf.placeholder(
            tf.float32, [None], name="important_sampling_weight")

        self.q_eval = self._build_q_net(self.s,
                                        self.n_actions,
                                        variable_scope="eval_net")
        self.q_next = self._build_q_net(self.s_,
                                        self.n_actions,
                                        variable_scope="target_net")

        t_params = scope_vars(absolute_scope_name("target_net"))
        e_params = scope_vars(absolute_scope_name("eval_net"))

        with tf.variable_scope('hard_replacement'):
            self.target_replace_op = tf.group(
                [tf.assign(t, e) for t, e in zip(t_params, e_params)])

        with tf.variable_scope('soft_update'):
            self.update_target_q = self.__make_update_exp__(e_params, t_params)

        with tf.variable_scope('q_target'):
            self.td0_q_target = tf.stop_gradient(
                self.r + self.gamma * (1. - self.done) *
                tf.reduce_max(self.q_next, axis=1, name='Qmax_s_'))

            target_action = tf.argmax(self.q_eval,
                                      axis=-1,
                                      output_type=tf.int32)
            target_a_indices = tf.stack(
                [tf.range(tf.shape(self.a)[0], dtype=tf.int32), target_action],
                axis=1)
            target_q_sa = tf.gather_nd(params=self.q_next,
                                       indices=target_a_indices)
            self.double_dqn_target = tf.stop_gradient(self.r + self.gamma *
                                                      (1. - self.done) *
                                                      target_q_sa)

            self.montecarlo_target = self.return_value

        with tf.variable_scope('q_eval'):
            a_indices = tf.stack(
                [tf.range(tf.shape(self.a)[0], dtype=tf.int32), self.a],
                axis=1)
            self.q_eval_wrt_a = tf.gather_nd(params=self.q_eval,
                                             indices=a_indices)

        with tf.variable_scope('loss'):
            self._build_loss()

            self._pick_loss()

        with tf.variable_scope('train'):
            self._train_op = tf.train.AdamOptimizer(self.lr).minimize(
                self.loss, var_list=e_params)

    def _pick_loss(self):
        self.loss = self.double_dqn_loss
        self.priority_values = self.doubel_dqn_error

    def _build_loss(self):

        if self.use_prioritized_experience_replay:

            self.dqn_loss = tf.reduce_mean(
                self.important_sampling_weight_ph * tf.squared_difference(
                    self.td0_q_target, self.q_eval_wrt_a, name='TD0_loss'))

            self.double_dqn_loss = tf.reduce_mean(
                self.important_sampling_weight_ph *
                tf.squared_difference(self.double_dqn_target,
                                      self.q_eval_wrt_a,
                                      name='Double_DQN_error'))
        else:

            self.dqn_loss = tf.reduce_mean(
                tf.squared_difference(self.td0_q_target,
                                      self.q_eval_wrt_a,
                                      name='TD0_loss'))

            self.double_dqn_loss = tf.reduce_mean(
                tf.squared_difference(self.double_dqn_target,
                                      self.q_eval_wrt_a,
                                      name='Double_DQN_error'))

        self.montecarlo_loss = tf.reduce_mean(
            tf.squared_difference(self.montecarlo_target,
                                  self.q_eval_wrt_a,
                                  name='MonteCarlo_error'))

        self.td0_error = tf.abs(self.td0_q_target - self.q_eval_wrt_a)
        self.doubel_dqn_error = tf.abs(self.double_dqn_target -
                                       self.q_eval_wrt_a)
        self.montecarlo_error = tf.abs(self.montecarlo_target -
                                       self.q_eval_wrt_a)

        margin_diff = tf.one_hot(self.a,
                                 self.n_actions,
                                 on_value=0.,
                                 off_value=1.,
                                 dtype=tf.float32) * self.margin_constant
        self.margin_loss = tf.reduce_mean(
            tf.reduce_max(self.q_eval + margin_diff, axis=1, keepdims=False) -
            self.q_eval_wrt_a)
        self.mse_margin_loss = tf.reduce_mean(
            tf.squared_difference(
                tf.reduce_max(self.q_eval + margin_diff,
                              axis=1,
                              keepdims=False), self.q_eval_wrt_a))

    def _build_q_net(self, state, n_actions, variable_scope):
        with tf.variable_scope(variable_scope):
            fc1 = tf.layers.dense(state,
                                  units=self.n_features,
                                  activation=tf.nn.relu,
                                  name='fc1')
            q_out = tf.layers.dense(fc1, units=n_actions, name='q')
            return q_out

    def __make_update_exp__(self, vals, target_vals):
        polyak = 1.0 - 1e-2
        expression = []
        for var, var_target in zip(sorted(vals, key=lambda v: v.name),
                                   sorted(target_vals, key=lambda v: v.name)):
            expression.append(
                var_target.assign(polyak * var_target + (1.0 - polyak) * var))
        expression = tf.group(*expression)
        return expression

    def __make_hardreplace_exp__(self, vals, target_vals):
        expression = []
        for var, var_target in zip(sorted(vals, key=lambda v: v.name),
                                   sorted(target_vals, key=lambda v: v.name)):
            expression.append(var_target.assign(var))

        expression = tf.group(*expression)
        return expression

    def build_model_saver(self, var_scope):
        var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                     scope=var_scope)

        self.model_saver = tf.train.Saver(var_list=var_list, max_to_keep=3)

    def save(self, sess, path, step):
        if not os.path.exists(os.path.dirname(path)):
            os.makedirs(os.path.dirname(path))
        self.model_saver.save(sess, save_path=path, global_step=step)

    def restore(self, sess, path):
        self.model_saver.restore(sess, save_path=path)
        print('%s model reloaded from %s' % (self.scope_name, path))

    def experience(self, new_trajectory, other_info=None):
        if self.use_prioritized_experience_replay:
            add_episode(self.prioritized_replay_buffer,
                        new_trajectory,
                        gamma=self.gamma)
        else:
            add_episode(self.replay_buffer, new_trajectory, gamma=self.gamma)

    def get_action(self, sess, obs, is_test=False, other_info=None):
        if is_test:
            discrete_action = self.greedy_action(sess, obs)
        else:
            discrete_action = self.choose_action(sess, obs)

        other_action_info = {"learning_action": discrete_action}
        return 3 * discrete_action, other_action_info

    def choose_action(self, sess, observation):

        observation = observation[np.newaxis, :]
        if np.random.uniform() < self.epsilon:
            action = np.random.randint(0, self.n_actions)
        else:

            actions_value = sess.run(self.q_eval,
                                     feed_dict={self.s: observation})
            action = np.argmax(actions_value, axis=1)[0]

        return action

    def greedy_action(self, sess, single_observation):
        observation = single_observation[np.newaxis, :]
        actions_value = sess.run(self.q_eval, feed_dict={self.s: observation})
        greedy_action = np.argmax(actions_value, axis=1)[0]
        return greedy_action

    def get_memory_returns(self):
        if self.use_prioritized_experience_replay:
            return self.prioritized_replay_buffer.current_mean_return
        else:
            return self.replay_buffer.current_mean_return

    def _is_exploration_enough(self, min_pool_size):
        if self.use_prioritized_experience_replay:
            return len(self.prioritized_replay_buffer) >= min_pool_size
        else:
            return len(self.replay_buffer) >= min_pool_size

    def update_target(self, sess):
        if self.softupdate:

            if self.epoch % self.soft_update_iter == 0:
                sess.run(self.update_target_q)
        else:

            if self.epoch % self.replace_target_iter == 0:
                sess.run(self.target_replace_op)

    def train(self, sess):
        self.update_target(sess)

        self.epoch += 1
        if not self._is_exploration_enough(self.batch_size):
            return False, [0, 0, 0, 0], 0, 0

        if self.use_prioritized_experience_replay:

            loss, montecarlo_loss, q_eval, returns = self.train_prioritized(
                sess)
        else:

            loss, montecarlo_loss, q_eval, returns = self.train_normal(sess)

        if self.epoch % self.epsilon_dec_iter == 0:
            self.epsilon = max(self.epsilon - self.epsilon_dec,
                               self.epsilon_min)
            print("update epsilon:", self.epsilon)
        return True, [loss, montecarlo_loss, q_eval,
                      returns], self.get_memory_returns(), self.epsilon

    def train_prioritized(self, sess):
        loss, q_eval, returns, montecarlo_loss = 0, 0, 0, 0
        for idx in range(1):
            sample_indices = self.prioritized_replay_buffer.make_index(
                self.batch_size)
            obs, act, rew, obs_next, done, dis_2_end, returns, weights, ranges = self.prioritized_replay_buffer.sample_index(
                sample_indices)
            _, loss, q_eval, montecarlo_loss, priority_values = sess.run(
                [
                    self._train_op, self.loss, self.q_eval_wrt_a,
                    self.montecarlo_loss, self.priority_values
                ],
                feed_dict={
                    self.s: obs,
                    self.a: act,
                    self.r: rew,
                    self.s_: obs_next,
                    self.done: done,
                    self.return_value: returns,
                    self.important_sampling_weight_ph: weights
                })

            priorities = priority_values + 1e-6
            self.prioritized_replay_buffer.update_priorities(
                sample_indices, priorities)
        return loss, montecarlo_loss, np.average(q_eval), np.average(returns)

    def train_normal(self, sess):
        loss, q_eval, returns, montecarlo_loss = 0, 0, 0, 0
        for idx in range(1):
            sample_index = self.replay_buffer.make_index(self.batch_size)
            obs, act, rew, obs_next, done, dis_2_end, returns = self.replay_buffer.sample_index(
                sample_index)
            _, loss, q_eval, montecarlo_loss = sess.run(
                [
                    self._train_op, self.loss, self.q_eval_wrt_a,
                    self.montecarlo_loss
                ],
                feed_dict={
                    self.s: obs,
                    self.a: act,
                    self.r: rew,
                    self.s_: obs_next,
                    self.done: done,
                    self.return_value: returns,
                })
        return loss, montecarlo_loss, np.average(q_eval), np.average(returns)
示例#8
0
    def __init__(self, user_num, n_actions, cvr_n_features, ppo_n_features, init_roi, budget, use_budget_control,
                 use_prioritized_experience_replay,
                 max_trajectory_length,
                 update_times_per_train=1, use_predict_cvr=False):
        self.user_num = user_num
        self.use_budget_control = use_budget_control
        self.update_times_per_train = update_times_per_train
        self.n_actions = n_actions
        self.action_dim = 1
        self.cvr_n_features = cvr_n_features
        self.ppo_n_features = ppo_n_features
        self.lr = 0.001
        self.use_predict_cvr = use_predict_cvr

        self.user_based_adjust_times = 40
        self.epsilon = 0.4
        self.epsilon_min = 0.05

        self.epsilon_dec = 0.1
        self.epsilon_dec_iter = 5000 // self.user_based_adjust_times
        self.epsilon_dec_iter_min = 500 // self.user_based_adjust_times

        self.epsilon_clip = 0.2
        self.lam = 0.5
        self.update_step = 1
        self.kl_target = 0.01
        self.gamma = 1.
        self.method = 'clip'

        self.policy_logvar = 1e-7

        self.replace_target_iter = 1
        self.soft_update_iter = 1
        self.softupdate = False

        self.scope_name = "CPPO-model"

        self.epoch = 0

        self.cvr_buffer_size = 1000 * max_trajectory_length
        self.cvr_batch_size = 512
        self.cvr_replay_buffer = ReplayBuffer(self.cvr_buffer_size, save_return=False)

        self.alpha = 0.6
        self.beta = 0.4
        self.use_prioritized_experience_replay = use_prioritized_experience_replay

        self.ppo_buffer_size = 1000 * max_trajectory_length

        self.ppo_batch_size = 250
        if self.use_prioritized_experience_replay:
            self.prioritized_replay_buffer = PrioritizedReplayBuffer(self.ppo_buffer_size, alpha=self.alpha,
                                                                     max_priority=20.)
        else:
            self.replay_buffer = ReplayBuffer(self.ppo_buffer_size, save_return=True)

        with tf.variable_scope(self.scope_name):

            self._build_net()

            self.build_model_saver(self.scope_name)
示例#9
0
class ConstrainedPPO(CMDPAgent):

    def init_parameters(self, sess):
        if self.has_target_net:
            super(CMDPAgent, self).init_parameters(sess)

            sess.run(self.a_target_replace_op)

    def __init__(self, user_num, n_actions, cvr_n_features, ppo_n_features, init_roi, budget, use_budget_control,
                 use_prioritized_experience_replay,
                 max_trajectory_length,
                 update_times_per_train=1, use_predict_cvr=False):
        self.user_num = user_num
        self.use_budget_control = use_budget_control
        self.update_times_per_train = update_times_per_train
        self.n_actions = n_actions
        self.action_dim = 1
        self.cvr_n_features = cvr_n_features
        self.ppo_n_features = ppo_n_features
        self.lr = 0.001
        self.use_predict_cvr = use_predict_cvr

        self.user_based_adjust_times = 40
        self.epsilon = 0.4
        self.epsilon_min = 0.05

        self.epsilon_dec = 0.1
        self.epsilon_dec_iter = 5000 // self.user_based_adjust_times
        self.epsilon_dec_iter_min = 500 // self.user_based_adjust_times

        self.epsilon_clip = 0.2
        self.lam = 0.5
        self.update_step = 1
        self.kl_target = 0.01
        self.gamma = 1.
        self.method = 'clip'

        self.policy_logvar = 1e-7

        self.replace_target_iter = 1
        self.soft_update_iter = 1
        self.softupdate = False

        self.scope_name = "CPPO-model"

        self.epoch = 0

        self.cvr_buffer_size = 1000 * max_trajectory_length
        self.cvr_batch_size = 512
        self.cvr_replay_buffer = ReplayBuffer(self.cvr_buffer_size, save_return=False)

        self.alpha = 0.6
        self.beta = 0.4
        self.use_prioritized_experience_replay = use_prioritized_experience_replay

        self.ppo_buffer_size = 1000 * max_trajectory_length

        self.ppo_batch_size = 250
        if self.use_prioritized_experience_replay:
            self.prioritized_replay_buffer = PrioritizedReplayBuffer(self.ppo_buffer_size, alpha=self.alpha,
                                                                     max_priority=20.)
        else:
            self.replay_buffer = ReplayBuffer(self.ppo_buffer_size, save_return=True)

        with tf.variable_scope(self.scope_name):

            self._build_net()

            self.build_model_saver(self.scope_name)

    def _build_cvr_net(self, state, variable_scope, reuse=False):
        with tf.variable_scope(variable_scope, reuse=reuse):
            user_id_embedding_table = tf.get_variable(
                name="user_id", shape=[self.user_num, 10], initializer=initializers.xavier_initializer(),
                trainable=True, dtype=tf.float32)
            user_id = tf.cast(state[:, 0], dtype=tf.int32)
            user_id_embeddings = tf.nn.embedding_lookup(user_id_embedding_table, ids=user_id, name="user_id_embedding")
            state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1)
            n_features = state.get_shape()[1]
            fc1 = tf.layers.dense(state, units=n_features, activation=tf.nn.relu, name='fc1',
                                  kernel_initializer=initializers.xavier_initializer())

            fc2 = tf.layers.dense(fc1, units=n_features // 2, activation=tf.nn.relu, name='fc2',
                                  kernel_initializer=initializers.xavier_initializer())

            fc3 = tf.layers.dense(fc2, units=n_features // 2, activation=tf.nn.relu, name='fc3',
                                  kernel_initializer=initializers.xavier_initializer())
            cvr_out = tf.sigmoid(tf.layers.dense(fc3, units=1, name='cvr',
                                                 kernel_initializer=initializers.xavier_initializer()))
            return cvr_out

    def _build_action_net(self, state, variable_scope):
        with tf.variable_scope(variable_scope):
            user_id_embedding_table = tf.get_variable(
                name="user_id", shape=[self.user_num, 10], initializer=initializers.xavier_initializer(),
                trainable=True, dtype=tf.float32)
            user_id = tf.cast(state[:, 0], dtype=tf.int32)
            user_id_embeddings = tf.nn.embedding_lookup(user_id_embedding_table, ids=user_id, name="user_id_embedding")
            state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1)

            n_features = state.get_shape()[1]

            fc1 = tf.layers.dense(state, units=n_features, activation=tf.nn.relu, name='fc1',
                                  kernel_initializer=initializers.xavier_initializer())
            fc2 = tf.layers.dense(fc1, units=n_features // 2, activation=tf.nn.relu, name='fc2',
                                  kernel_initializer=initializers.xavier_initializer())
            fc3 = tf.layers.dense(fc2, units=n_features // 4, activation=tf.nn.relu, name='fc3',
                                  kernel_initializer=initializers.xavier_initializer())
            a_prob = tf.layers.dense(fc3, self.n_actions, tf.nn.softmax,
                                     kernel_initializer=initializers.xavier_initializer())
        return a_prob

    def _build_q_net(self, state, variable_scope, reuse=False):

        with tf.variable_scope(variable_scope, reuse=reuse):
            user_id_embedding_table = tf.get_variable(
                name="user_id", shape=[self.user_num, 10], initializer=initializers.xavier_initializer(),
                trainable=True, dtype=tf.float32)
            user_id = tf.cast(state[:, 0], dtype=tf.int32)
            user_id_embeddings = tf.nn.embedding_lookup(user_id_embedding_table, ids=user_id, name="user_id_embedding")
            state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1)

            n_features = state.get_shape()[1]

            fc1 = tf.layers.dense(state, units=n_features, activation=tf.nn.relu, name='fc1',
                                  kernel_initializer=initializers.xavier_initializer())
            fc2 = tf.layers.dense(fc1, units=n_features // 2, activation=tf.nn.relu, name='fc2',
                                  kernel_initializer=initializers.xavier_initializer())
            fc3 = tf.layers.dense(fc2, units=n_features // 4, activation=tf.nn.relu, name='fc3',
                                  kernel_initializer=initializers.xavier_initializer())
            v = tf.layers.dense(fc3, 1, kernel_initializer=initializers.xavier_initializer())
        return v[:, 0]

    def __make_update_exp__(self, vals, target_vals):
        polyak = 1.0 - 1e-2
        expression = []
        for var, var_target in zip(sorted(vals, key=lambda v: v.name), sorted(target_vals, key=lambda v: v.name)):
            expression.append(var_target.assign(polyak * var_target + (1.0 - polyak) * var))
        expression = tf.group(*expression)
        return expression

    def _build_net(self):

        self.s_cvr = tf.placeholder(tf.float32, [None, self.cvr_n_features], name='s_cvr')
        self.cvr = tf.placeholder(tf.float32, [None, ], name='r')

        self.s = tf.placeholder(tf.float32, [None, self.ppo_n_features], name='s')
        self.s_ = tf.placeholder(tf.float32, [None, self.ppo_n_features], name='s_')
        self.r = tf.placeholder(tf.float32, [None, ], name='r')
        self.a = tf.placeholder(tf.int32, [None, ], name='a')
        self.adv = tf.placeholder(tf.float32, [None, ], name='advantage')
        self.gamma = 1.
        self.done = tf.placeholder(tf.float32, [None, ], name='done')
        self.return_value = tf.placeholder(tf.float32, [None, ], name='return')
        self.important_sampling_weight_ph = tf.placeholder(tf.float32, [None], name="important_sampling_weight")

        self.cvr_net = self._build_cvr_net(self.s_cvr, variable_scope="cvr_net")
        self.predicted_cvr = self.cvr_net[:, 0]
        self.a_eval = self._build_action_net(self.s, variable_scope="actor_eval_net")
        self.a_target = self._build_action_net(self.s, variable_scope="actor_target_net")
        self.critic = self._build_q_net(self.s, variable_scope="eval_q_net")

        ae_params = scope_vars(absolute_scope_name("actor_eval_net"))
        at_params = scope_vars(absolute_scope_name("actor_target_net"))

        e_gmv_params = scope_vars(absolute_scope_name("eval_q_net"))
        cvr_params = scope_vars(absolute_scope_name("cvr_net"))

        with tf.variable_scope('hard_replacement'):
            self.a_target_replace_op = tf.group([tf.assign(t, e) for t, e in zip(at_params, ae_params)])

        with tf.variable_scope('loss'):
            self.cvr_loss = tf.reduce_mean(tf.squared_difference(self.predicted_cvr, self.cvr))

            self._build_loss()

            self._pick_loss()

        with tf.variable_scope('train'):
            self._train_cvr_op = tf.train.AdamOptimizer(self.lr).minimize(self.cvr_loss, var_list=cvr_params)
            self._train_ppo_critic_op = tf.train.AdamOptimizer(self.lr).minimize(self.critic_loss)
            self._train_ppo_actor_op = tf.train.AdamOptimizer(self.lr).minimize(self.actor_loss)

    def _pick_loss(self):
        self.has_target_net = True
        self.critic_loss = self.closs

        self.actor_loss = self.aloss

    def _build_loss(self):
        with tf.variable_scope('critic'):
            self.c_loss = self.return_value - self.critic
            self.closs = tf.reduce_mean(tf.square(self.c_loss))

            self.advantage = self.return_value - self.critic

        with tf.variable_scope('surrogate'):

            a_indices = tf.stack([tf.range(tf.shape(self.a)[0], dtype=tf.int32), self.a], axis=1)
            pi_prob = tf.gather_nd(params=self.a_eval, indices=a_indices)
            oldpi_prob = tf.gather_nd(params=self.a_target, indices=a_indices)
            ratio = pi_prob / (oldpi_prob + 1e-8)
            surr = ratio * self.adv
            if self.method == 'kl_pen':

                kl = tf.distributions.kl_divergence(self.a_target, self.a_eval)
                self.kl_mean = tf.reduce_mean(kl)
                self.aloss = -(tf.reduce_mean(surr - self.lam * kl))
            else:
                self.aloss = -tf.reduce_mean(tf.minimum(
                    surr,
                    tf.clip_by_value(ratio, 1. - self.epsilon_clip, 1. + self.epsilon_clip) * self.adv))

    def build_model_saver(self, var_scope):
        var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=var_scope)

        self.model_saver = tf.train.Saver(var_list=var_list, max_to_keep=1)

    def save(self, sess, path, step):
        if not os.path.exists(os.path.dirname(path)):
            os.makedirs(os.path.dirname(path))
        self.model_saver.save(sess, save_path=path, global_step=step)

    def restore(self, sess, path):
        self.model_saver.restore(sess, save_path=path)
        print('%s model reloaded from %s' % (self.scope_name, path))

    def experience(self, new_trajectory, other_info=None):
        cvr_trajectory = other_info["cvr"]
        for ele in cvr_trajectory:
            state, cvr = ele
            self.cvr_replay_buffer.add(state, 0, cvr, state, 0, 0, 0)

    def experience_cmdp(self, new_trajectory, other_info=None):
        if self.use_prioritized_experience_replay:
            add_episode(self.prioritized_replay_buffer, new_trajectory, gamma=self.gamma)
        else:
            add_episode(self.replay_buffer, new_trajectory, gamma=self.gamma)

    def get_agent_name(self):
        return self.scope_name

    def get_action(self, sess, obs, is_test=False, other_info=None):
        item_price = other_info["proxy_ad_price"]
        ground_truth_cvr = other_info["cvr"]
        user_alpha = other_info["user_alpha"]
        roi_thr = other_info["roi_thr"]

        observations = obs[np.newaxis, :]
        cvr = sess.run(self.predicted_cvr, feed_dict={
            self.s_cvr: observations
        })[0]
        if self.use_predict_cvr:
            bid = cvr * item_price / roi_thr
        else:
            bid = ground_truth_cvr * item_price / roi_thr
        return bid, {"cvr_over_estimate": [user_alpha, ground_truth_cvr, cvr]}

    def get_cmdp_action(self, sess, obs, is_test=False, other_info=None):
        if is_test:
            discrete_action = self.__greedy__(sess, obs)
        else:
            discrete_action = self.__epsilon_greedy__(sess, obs)

        return discrete_action

    def __greedy__(self, sess, observation):
        s = observation[np.newaxis, :]

        prob_weights = sess.run(self.a_eval, feed_dict={self.s: s})
        greedy_action = np.argmax(prob_weights, axis=1)[0]

        return greedy_action

    def __epsilon_greedy__(self, sess, observation):
        if np.random.uniform() < self.epsilon:

            action = np.random.randint(0, self.n_actions)
        else:
            action = self.__greedy__(sess, observation)
        return action

    def _is_exploration_enough(self, buffer, min_pool_size):
        return len(buffer) >= min_pool_size

    def train_cvr(self, sess):
        if not self._is_exploration_enough(self.cvr_replay_buffer, self.cvr_batch_size):
            return False, [0, 0, 0]

        cvr_loss, predicted_cvrs, cvr_targets = 0, 0, 0
        for idx in range(self.update_times_per_train):
            sample_indices = self.cvr_replay_buffer.make_index(self.cvr_batch_size)
            obs, act, cvr_targets, obs_next, done, dis_2_end, returns = self.cvr_replay_buffer.sample_index(
                sample_indices)

            _, cvr_loss, predicted_cvrs = sess.run(
                [self._train_cvr_op, self.cvr_loss, self.predicted_cvr],
                feed_dict={
                    self.s_cvr: obs,
                    self.cvr: cvr_targets
                }
            )
        return True, [cvr_loss, np.average(predicted_cvrs), np.average(cvr_targets)]

    def get_memory_returns(self):
        if self.use_prioritized_experience_replay:
            return self.prioritized_replay_buffer.current_mean_return
        else:
            return self.replay_buffer.current_mean_return

    def update_target(self, sess):
        if self.epoch % self.replace_target_iter == 0:
            sess.run(self.a_target_replace_op)

    def train(self, sess):
        if self.has_target_net:
            self.update_target(sess)
        self.epoch += 1

        buffer = self.prioritized_replay_buffer if self.use_prioritized_experience_replay else self.replay_buffer
        if not self._is_exploration_enough(buffer, self.ppo_batch_size):
            return False, [0, 0, 0, 0], 0, 0

        if self.use_prioritized_experience_replay:

            loss, montecarlo_loss, q_eval, returns = self.train_prioritized(sess)
        else:

            loss, montecarlo_loss, q_eval, returns = self.train_normal(sess)

        if self.epoch % self.epsilon_dec_iter == 0:
            self.epsilon = max(self.epsilon - self.epsilon_dec, self.epsilon_min)

            print("update epsilon:", self.epsilon)
        return True, [loss, montecarlo_loss, q_eval, returns], self.get_memory_returns(), self.epsilon

    def train_prioritized(self, sess):
        loss, montecarlo_loss, q_eval, returns = 0, 0, 0, 0
        for idx in range(self.update_times_per_train):
            sample_indices = self.prioritized_replay_buffer.make_index(self.ppo_batch_size)
            obs, act, rew, obs_next, done, dis_2_end, returns, weights, ranges = self.prioritized_replay_buffer.sample_index(
                sample_indices)
            _, loss, montecarlo_loss, q_eval, \
            priority_values = sess.run(
                [self._train_ppo_op, self.loss, self.montecarlo_loss, self.q_eval_wrt_a,
                 self.priority_values],
                feed_dict={
                    self.s: obs,
                    self.a: act,
                    self.r: rew,
                    self.s_: obs_next,
                    self.done: done,
                    self.return_value: returns,
                    self.important_sampling_weight_ph: weights,
                })

            priorities = priority_values + 1e-6
            self.prioritized_replay_buffer.update_priorities(sample_indices, priorities)
        return loss, montecarlo_loss, np.average(q_eval), np.average(returns)

    def train_normal(self, sess):
        loss, montecarlo_loss, q_eval, returns = 0, 0, 0, 0
        for idx in range(self.update_times_per_train):

            sample_indices = self.replay_buffer.make_index(self.ppo_batch_size)

            obs, act, rew, obs_next, done, dis_2_end, returns = self.replay_buffer.sample_index(
                sample_indices)

            adv = sess.run(self.advantage, {self.s: obs, self.return_value: returns})

            _, montecarlo_loss, q_eval = sess.run(
                [self._train_ppo_critic_op, self.critic_loss, self.critic],
                feed_dict={
                    self.s: obs,
                    self.a: act,
                    self.adv: adv,
                    self.r: rew,
                    self.s_: obs_next,
                    self.done: done,
                    self.return_value: returns,
                })
            if self.method == 'kl_pen':
                for _ in range(self.update_step):
                    _, kl, loss = sess.run(
                        [self._train_ppo_actor_op, self.kl_mean, self.actor_loss],
                        feed_dict={
                            self.adv: adv,
                            self.s: obs,
                            self.a: act,
                            self.r: rew,
                            self.done: done,
                        })
                    if kl > 4 * self.kl_target:
                        break
                if kl < self.kl_target / 1.5:
                    self.lam /= 2
                elif kl > self.kl_target * 1.5:
                    self.lam *= 2
                self.lam = np.clip(self.lam, 1e-4, 10)
            else:

                for _ in range(self.update_step):
                    _, loss = sess.run(
                        [self._train_ppo_actor_op, self.actor_loss],
                        feed_dict={
                            self.adv: adv,
                            self.s: obs,
                            self.a: act,
                            self.r: rew,
                            self.done: done,
                            self.return_value: returns,

                        })

        return loss, montecarlo_loss, np.average(q_eval), np.average(returns)
示例#10
0
    def __init__(
        self,
        user_num,
        n_actions,
        n_features,
        init_roi,
        budget,
        use_budget_control,
        use_prioritized_experience_replay,
        max_trajectory_length,
        update_times_per_train=1,
    ):
        PIDAgent.__init__(self,
                          init_roi=init_roi,
                          default_alpha=1,
                          budget=budget,
                          integration=2)
        self.user_num = user_num
        self.use_budget_control = use_budget_control
        self.update_times_per_train = update_times_per_train
        self.n_actions = n_actions
        self.n_features = n_features
        self.gamma = 1.
        self.lr = 0.001

        self.user_based_adjust_times = 40

        self.epsilon = 0.4
        self.epsilon_min = 0.05

        self.epsilon_dec = 0.1
        self.epsilon_dec_iter = 5000 // self.user_based_adjust_times
        self.epsilon_dec_iter_min = 500 // self.user_based_adjust_times

        self.replace_target_iter = 1
        self.soft_update_iter = 1
        self.softupdate = True

        self.scope_name = "DQN-model"

        self.epoch = 0

        self.buffer_size = 1000 * max_trajectory_length

        self.batch_size = 512
        self.alpha = 0.6
        self.beta = 0.4
        self.use_prioritized_experience_replay = use_prioritized_experience_replay
        if self.use_prioritized_experience_replay:
            self.prioritized_replay_buffer = PrioritizedReplayBuffer(
                self.buffer_size, alpha=self.alpha, max_priority=20.)
        else:
            self.replay_buffer = ReplayBuffer(self.buffer_size,
                                              save_return=True)
        self.cost_replay_buffer = ReplayBuffer(self.buffer_size,
                                               save_return=True)
        self.gmv_replay_buffer = ReplayBuffer(self.buffer_size,
                                              save_return=True)

        self.margin_constant = 2

        with tf.variable_scope(self.scope_name):

            self._build_net()

            self.build_model_saver(self.scope_name)
示例#11
0
class DQN2Net_interface(LearningAgent, PIDAgent):
    def __init__(
        self,
        user_num,
        n_actions,
        n_features,
        init_roi,
        budget,
        use_budget_control,
        use_prioritized_experience_replay,
        max_trajectory_length,
        update_times_per_train=1,
    ):
        PIDAgent.__init__(self,
                          init_roi=init_roi,
                          default_alpha=1,
                          budget=budget,
                          integration=2)
        self.user_num = user_num
        self.use_budget_control = use_budget_control
        self.update_times_per_train = update_times_per_train
        self.n_actions = n_actions
        self.n_features = n_features
        self.gamma = 1.
        self.lr = 0.001

        self.user_based_adjust_times = 40

        self.epsilon = 0.4
        self.epsilon_min = 0.05

        self.epsilon_dec = 0.1
        self.epsilon_dec_iter = 5000 // self.user_based_adjust_times
        self.epsilon_dec_iter_min = 500 // self.user_based_adjust_times

        self.replace_target_iter = 1
        self.soft_update_iter = 1
        self.softupdate = True

        self.scope_name = "DQN-model"

        self.epoch = 0

        self.buffer_size = 1000 * max_trajectory_length

        self.batch_size = 512
        self.alpha = 0.6
        self.beta = 0.4
        self.use_prioritized_experience_replay = use_prioritized_experience_replay
        if self.use_prioritized_experience_replay:
            self.prioritized_replay_buffer = PrioritizedReplayBuffer(
                self.buffer_size, alpha=self.alpha, max_priority=20.)
        else:
            self.replay_buffer = ReplayBuffer(self.buffer_size,
                                              save_return=True)
        self.cost_replay_buffer = ReplayBuffer(self.buffer_size,
                                               save_return=True)
        self.gmv_replay_buffer = ReplayBuffer(self.buffer_size,
                                              save_return=True)

        self.margin_constant = 2

        with tf.variable_scope(self.scope_name):

            self._build_net()

            self.build_model_saver(self.scope_name)

    def _build_q_net(self, state, n_actions, variable_scope, reuse=False):
        with tf.variable_scope(variable_scope, reuse=reuse):
            user_id_embedding_table = tf.get_variable(
                name="user_id",
                shape=[self.user_num, 10],
                initializer=initializers.xavier_initializer(),
                trainable=True,
                dtype=tf.float32)
            user_id = tf.cast(state[:, 0], dtype=tf.int32)
            user_id_embeddings = tf.nn.embedding_lookup(
                user_id_embedding_table, ids=user_id, name="user_id_embedding")
            state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1)

            n_features = state.get_shape()[1]

            fc1 = tf.layers.dense(
                state,
                units=n_features,
                activation=tf.nn.relu,
                name='fc1',
                kernel_initializer=initializers.xavier_initializer())

            fc2 = tf.layers.dense(
                fc1,
                units=n_features // 2,
                activation=tf.nn.relu,
                name='fc2',
                kernel_initializer=initializers.xavier_initializer())

            fc3 = tf.layers.dense(
                fc2,
                units=n_features // 2,
                activation=tf.nn.relu,
                name='fc3',
                kernel_initializer=initializers.xavier_initializer())
            q_out = tf.maximum(
                tf.layers.dense(
                    fc3,
                    units=n_actions,
                    name='q',
                    kernel_initializer=initializers.xavier_initializer()), 0)
            return q_out

    def _build_net(self):

        self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s')
        self.s_ = tf.placeholder(tf.float32, [None, self.n_features],
                                 name='s_')
        self.r_gmv = tf.placeholder(tf.float32, [
            None,
        ], name='r_gmv')
        self.r_cost = tf.placeholder(tf.float32, [
            None,
        ], name='r_cost')
        self.roi_thr = tf.placeholder(tf.float32, [], name="roi_thr")
        self.r = tf.placeholder(tf.float32, [
            None,
        ], name='r')
        self.a = tf.placeholder(tf.int32, [
            None,
        ], name='a')
        self.done = tf.placeholder(tf.float32, [
            None,
        ], name='done')
        self.return_gmv_value = tf.placeholder(tf.float32, [
            None,
        ],
                                               name='return_gmv')
        self.return_cost_value = tf.placeholder(tf.float32, [
            None,
        ],
                                                name='return_cost')
        self.return_value = tf.placeholder(tf.float32, [
            None,
        ], name='return')
        self.important_sampling_weight_ph = tf.placeholder(
            tf.float32, [None], name="important_sampling_weight")

        self.q_eval_gmv = self._build_q_net(self.s,
                                            self.n_actions,
                                            variable_scope="eval_gmv_net")
        self.q_next_gmv = self._build_q_net(self.s_,
                                            self.n_actions,
                                            variable_scope="target_gmv_net")
        self.q_eval_cost = self._build_q_net(self.s,
                                             self.n_actions,
                                             variable_scope="eval_cost_net")
        self.q_next_cost = self._build_q_net(self.s_,
                                             self.n_actions,
                                             variable_scope="target_cost_net")
        self.q_eval = self.q_eval_gmv - self.roi_thr * self.q_eval_cost
        self.q_next = self.q_next_gmv - self.roi_thr * self.q_next_cost

        t_gmv_params = scope_vars(absolute_scope_name("target_gmv_net"))
        e_gmv_params = scope_vars(absolute_scope_name("eval_gmv_net"))
        t_cost_params = scope_vars(absolute_scope_name("target_cost_net"))
        e_cost_params = scope_vars(absolute_scope_name("eval_cost_net"))

        with tf.variable_scope('hard_replacement'):
            self.target_gmv_replace_op = tf.group(
                [tf.assign(t, e) for t, e in zip(t_gmv_params, e_gmv_params)])
            self.target_cost_replace_op = tf.group([
                tf.assign(t, e) for t, e in zip(t_cost_params, e_cost_params)
            ])

        with tf.variable_scope('soft_update'):
            self.update_gmv_target_q = self.__make_update_exp__(
                e_gmv_params, t_gmv_params)
            self.update_cost_target_q = self.__make_update_exp__(
                e_cost_params, t_cost_params)

        with tf.variable_scope('q_target'):
            greedy_action_s_ = tf.argmax(self.q_next,
                                         axis=-1,
                                         name="td0_argmax_action",
                                         output_type=tf.int32)
            greedy_a_indices = tf.stack([
                tf.range(tf.cast(tf.shape(self.a)[0], dtype=tf.int32),
                         dtype=tf.int32), greedy_action_s_
            ],
                                        axis=1)
            target_q_gmv_sa = tf.gather_nd(params=self.q_next_gmv,
                                           indices=greedy_a_indices)
            target_q_cost_sa = tf.gather_nd(params=self.q_next_cost,
                                            indices=greedy_a_indices)
            target_q_sa = tf.gather_nd(params=self.q_next,
                                       indices=greedy_a_indices)
            self.td0_q_gmv_target = tf.stop_gradient(self.r_gmv + self.gamma *
                                                     (1. - self.done) *
                                                     target_q_gmv_sa)
            self.td0_q_cost_target = tf.stop_gradient(self.r_cost +
                                                      self.gamma *
                                                      (1. - self.done) *
                                                      target_q_cost_sa)
            self.td0_q_target = tf.stop_gradient(self.r + self.gamma *
                                                 (1. - self.done) *
                                                 target_q_sa)

            target_action = tf.argmax(self.q_eval,
                                      axis=-1,
                                      name="doubeldqn_argmax_action",
                                      output_type=tf.int32)
            target_a_indices = tf.stack([
                tf.range(tf.cast(tf.shape(self.a)[0], dtype=tf.int32),
                         dtype=tf.int32), target_action
            ],
                                        axis=1)
            ddqn_target_q_gmv_sa = tf.gather_nd(params=self.q_next_gmv,
                                                indices=target_a_indices)
            ddqn_target_q_cost_sa = tf.gather_nd(params=self.q_next_cost,
                                                 indices=target_a_indices)
            ddqn_target_q_sa = tf.gather_nd(params=self.q_next,
                                            indices=target_a_indices)
            self.double_dqn_gmv_target = tf.stop_gradient(self.r_gmv +
                                                          self.gamma *
                                                          (1. - self.done) *
                                                          ddqn_target_q_gmv_sa)
            self.double_dqn_cost_target = tf.stop_gradient(
                self.r_cost + self.gamma *
                (1. - self.done) * ddqn_target_q_cost_sa)
            self.double_dqn_target = tf.stop_gradient(self.r + self.gamma *
                                                      (1. - self.done) *
                                                      ddqn_target_q_sa)

            self.montecarlo_gmv_target = self.return_gmv_value
            self.montecarlo_cost_target = self.return_cost_value
            self.montecarlo_target = self.return_value

        with tf.variable_scope('q_eval'):
            a_indices = tf.stack([
                tf.range(tf.cast(tf.shape(self.a)[0], dtype=tf.int32),
                         dtype=tf.int32), self.a
            ],
                                 axis=1)
            self.q_eval_gmv_wrt_a = tf.gather_nd(params=self.q_eval_gmv,
                                                 indices=a_indices)
            self.q_eval_cost_wrt_a = tf.gather_nd(params=self.q_eval_cost,
                                                  indices=a_indices)
            self.q_eval_wrt_a = tf.gather_nd(params=self.q_eval,
                                             indices=a_indices)

        with tf.variable_scope('loss'):
            self._build_loss()

            self._pick_loss()

        with tf.variable_scope('train'):
            self._train_op = tf.train.AdamOptimizer(self.lr).minimize(
                self.loss, var_list=e_gmv_params + e_cost_params)
            self._train_gmv_op = tf.train.AdamOptimizer(self.lr).minimize(
                self.gmv_loss, var_list=e_gmv_params)
            self._train_cost_op = tf.train.AdamOptimizer(self.lr).minimize(
                self.cost_loss, var_list=e_cost_params)

        with tf.variable_scope('roi'):
            greedy_action_indices = tf.stack([
                tf.range(tf.cast(tf.shape(self.a)[0], dtype=tf.int32),
                         dtype=tf.int32), self.a
            ],
                                             axis=1)
            self.plongterm_roi = tf.gather_nd(
                params=self.q_eval_gmv, indices=greedy_action_indices) / (
                    tf.gather_nd(params=self.q_eval_cost,
                                 indices=greedy_action_indices) + 1e-6)

    def _pick_loss(self):
        self.has_target_net = True
        self.gmv_loss = self.gmv_double_dqn_loss
        self.cost_loss = self.cost_double_dqn_loss
        self.loss = self.double_dqn_loss
        self.priority_values = self.gmv_doubel_dqn_error + self.cost_doubel_dqn_error + self.doubel_dqn_error

    def _build_loss(self):

        if self.use_prioritized_experience_replay:

            self.gmv_dqn_loss = tf.reduce_mean(
                self.important_sampling_weight_ph *
                tf.squared_difference(self.td0_q_gmv_target,
                                      self.q_eval_gmv_wrt_a,
                                      name='TD0_gmv_loss'))
            self.cost_dqn_loss = tf.reduce_mean(
                self.important_sampling_weight_ph *
                tf.squared_difference(self.td0_q_cost_target,
                                      self.q_eval_cost_wrt_a,
                                      name='TD0_cost_loss'))
            self.dqn_loss = tf.reduce_mean(
                self.important_sampling_weight_ph * tf.squared_difference(
                    self.td0_q_target, self.q_eval_wrt_a, name='TD0_loss'))

            self.gmv_double_dqn_loss = tf.reduce_mean(
                self.important_sampling_weight_ph *
                tf.squared_difference(self.double_dqn_gmv_target,
                                      self.q_eval_gmv_wrt_a,
                                      name='Double_DQN_gmv_loss'))
            self.cost_double_dqn_loss = tf.reduce_mean(
                self.important_sampling_weight_ph *
                tf.squared_difference(self.double_dqn_cost_target,
                                      self.q_eval_cost_wrt_a,
                                      name='Double_DQN_cost_loss'))
            self.double_dqn_loss = tf.reduce_mean(
                self.important_sampling_weight_ph *
                tf.squared_difference(self.double_dqn_target,
                                      self.q_eval_wrt_a,
                                      name='Double_DQN_error'))

            self.gmv_montecarlo_loss = tf.reduce_mean(
                self.important_sampling_weight_ph *
                tf.squared_difference(self.montecarlo_gmv_target,
                                      self.q_eval_gmv_wrt_a,
                                      name='GMV_error'))
            self.cost_montecarlo_loss = tf.reduce_mean(
                self.important_sampling_weight_ph *
                tf.squared_difference(self.montecarlo_cost_target,
                                      self.q_eval_cost_wrt_a,
                                      name='COST_error'))
            self.montecarlo_loss = tf.reduce_mean(
                self.important_sampling_weight_ph *
                tf.squared_difference(self.montecarlo_target,
                                      self.q_eval_wrt_a,
                                      name='MonteCarlo_error'))

        else:

            self.gmv_dqn_loss = tf.reduce_mean(
                tf.squared_difference(self.td0_q_gmv_target,
                                      self.q_eval_gmv_wrt_a,
                                      name='TD0_gmv_loss'))
            self.cost_dqn_loss = tf.reduce_mean(
                tf.squared_difference(self.td0_q_cost_target,
                                      self.q_eval_cost_wrt_a,
                                      name='TD0_cost_loss'))
            self.dqn_loss = tf.reduce_mean(
                tf.squared_difference(self.td0_q_target,
                                      self.q_eval_wrt_a,
                                      name='TD0_loss'))

            self.gmv_double_dqn_loss = tf.reduce_mean(
                tf.squared_difference(self.double_dqn_gmv_target,
                                      self.q_eval_gmv_wrt_a,
                                      name='Double_DQN_gmv_loss'))
            self.cost_double_dqn_loss = tf.reduce_mean(
                tf.squared_difference(self.double_dqn_cost_target,
                                      self.q_eval_cost_wrt_a,
                                      name='Double_DQN_cost_loss'))
            self.double_dqn_loss = tf.reduce_mean(
                tf.squared_difference(self.double_dqn_target,
                                      self.q_eval_wrt_a,
                                      name='Double_DQN_error'))

            self.gmv_montecarlo_loss = tf.reduce_mean(
                tf.squared_difference(self.montecarlo_gmv_target,
                                      self.q_eval_gmv_wrt_a,
                                      name='MonteCarlo_gmv_loss'))
            self.cost_montecarlo_loss = tf.reduce_mean(
                tf.squared_difference(self.montecarlo_cost_target,
                                      self.q_eval_cost_wrt_a,
                                      name='MonteCarlo_cost_loss'))
            self.montecarlo_loss = tf.reduce_mean(
                tf.squared_difference(self.montecarlo_target,
                                      self.q_eval_wrt_a,
                                      name='MonteCarlo_error'))

        self.gmv_td0_error = tf.abs(self.td0_q_gmv_target -
                                    self.q_eval_gmv_wrt_a)
        self.cost_td0_error = tf.abs(self.td0_q_cost_target -
                                     self.q_eval_cost_wrt_a)
        self.td0_error = tf.abs(self.td0_q_target - self.q_eval_wrt_a)

        self.gmv_doubel_dqn_error = tf.abs(self.double_dqn_gmv_target -
                                           self.q_eval_gmv_wrt_a)
        self.cost_doubel_dqn_error = tf.abs(self.double_dqn_cost_target -
                                            self.q_eval_cost_wrt_a)
        self.doubel_dqn_error = tf.abs(self.double_dqn_target -
                                       self.q_eval_wrt_a)

        self.gmv_montecarlo_error = tf.abs(self.montecarlo_gmv_target -
                                           self.q_eval_gmv_wrt_a)
        self.cost_montecarlo_error = tf.abs(self.montecarlo_cost_target -
                                            self.q_eval_cost_wrt_a)
        self.montecarlo_error = tf.abs(self.montecarlo_target -
                                       self.q_eval_wrt_a)

    def __make_update_exp__(self, vals, target_vals):
        polyak = 1.0 - 1e-2
        expression = []
        for var, var_target in zip(sorted(vals, key=lambda v: v.name),
                                   sorted(target_vals, key=lambda v: v.name)):
            expression.append(
                var_target.assign(polyak * var_target + (1.0 - polyak) * var))
        expression = tf.group(*expression)
        return expression

    def __make_hardreplace_exp__(self, vals, target_vals):
        expression = []
        for var, var_target in zip(sorted(vals, key=lambda v: v.name),
                                   sorted(target_vals, key=lambda v: v.name)):
            expression.append(var_target.assign(var))

        expression = tf.group(*expression)
        return expression

    def build_model_saver(self, var_scope):
        var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                     scope=var_scope)

        self.model_saver = tf.train.Saver(var_list=var_list, max_to_keep=1)

    def save(self, sess, path, step):
        if not os.path.exists(os.path.dirname(path)):
            os.makedirs(os.path.dirname(path))
        self.model_saver.save(sess, save_path=path, global_step=step)

    def restore(self, sess, path):
        self.model_saver.restore(sess, save_path=path)
        print('%s model reloaded from %s' % (self.scope_name, path))

    def experience(self, new_trajectory, other_info=None):
        new_trajectory_gmv = other_info["gmv"]
        new_trajectory_cost = other_info["cost"]
        if self.use_prioritized_experience_replay:
            add_episode(self.prioritized_replay_buffer,
                        new_trajectory,
                        gamma=self.gamma)
        else:
            add_episode(self.replay_buffer, new_trajectory, gamma=self.gamma)

        add_episode(self.gmv_replay_buffer,
                    new_trajectory_gmv,
                    gamma=self.gamma)
        add_episode(self.cost_replay_buffer,
                    new_trajectory_cost,
                    gamma=self.gamma)

    def get_action(self, sess, obs, is_test=False, other_info=None):

        if is_test:
            discrete_action = self.greedy_action(sess, obs, other_info)
        else:
            discrete_action = self.choose_action(sess, obs, other_info)
        bid_max = MultiUserEnv.bid_max
        bid_min = MultiUserEnv.bid_min
        other_action_info = {"learning_action": discrete_action}
        return bid_min + (bid_max - bid_min) / (
            self.n_actions - 1) * discrete_action, other_action_info

    def __greedy__(self, sess, observation, roi_thr):
        observations = observation[np.newaxis, :]
        actions_value = sess.run(self.q_eval,
                                 feed_dict={
                                     self.s: observations,
                                     self.roi_thr: roi_thr
                                 })
        greedy_action = np.argmax(actions_value, axis=1)[0]
        return greedy_action

    def __epsilon_greedy__(self, sess, observation, roi_thr):
        if np.random.uniform() < self.epsilon:
            action = np.random.randint(0, self.n_actions)
        else:
            action = self.__greedy__(sess, observation, roi_thr)
        return action

    def choose_action(self, sess, observation, other_info):
        if self.use_budget_control:
            roi_thr = self.get_roi_threshold()
        else:
            roi_thr = self.init_roi

        return self.__epsilon_greedy__(sess, observation, roi_thr)

    def greedy_action(self, sess, observation, other_info):
        if self.use_budget_control:
            roi_thr = self.get_roi_threshold()
        else:
            roi_thr = self.init_roi

        greedy_action = self.__greedy__(sess, observation, roi_thr)
        if self.use_budget_control:
            user_idx = other_info["user_idx"]
            request_idx = other_info["request_idx"]
            roi_threshold = self.get_roi_threshold()
            if request_idx == 0:
                observations = np.expand_dims(observation, axis=0)
                max_plongterm_roi = sess.run(self.plongterm_roi,
                                             feed_dict={
                                                 self.s: observations,
                                                 self.a: [greedy_action],
                                             })
                if max_plongterm_roi >= roi_threshold:
                    self.explore_user(user_idx)
                    return greedy_action
                else:
                    return 0
            else:
                if self.is_user_selected(user_idx):
                    return greedy_action
                else:
                    return 0
        else:
            return greedy_action

    def get_memory_returns(self):
        if self.use_prioritized_experience_replay:
            return self.prioritized_replay_buffer.current_mean_return
        else:
            return self.replay_buffer.current_mean_return

    def _is_exploration_enough(self, min_pool_size):
        if self.use_prioritized_experience_replay:
            return len(self.prioritized_replay_buffer) >= min_pool_size
        else:
            return len(self.replay_buffer) >= min_pool_size

    def update_target(self, sess):
        if self.softupdate:

            if self.epoch % self.soft_update_iter == 0:
                sess.run(self.update_gmv_target_q)
                sess.run(self.update_cost_target_q)
        else:

            if self.epoch % self.replace_target_iter == 0:
                sess.run(self.target_gmv_replace_op)
                sess.run(self.target_cost_replace_op)

    def train(self, sess):
        if self.has_target_net:
            self.update_target(sess)

        self.epoch += 1

        if not self._is_exploration_enough(self.batch_size):
            return False, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 0, 0

        if self.use_prioritized_experience_replay:

            loss, montecarlo_loss, q_eval, returns, \
            gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns, \
            cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns = self.train_prioritized(sess)
        else:

            loss, montecarlo_loss, q_eval, returns, \
            gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns, \
            cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns = self.train_normal(sess)

        if self.epoch % self.epsilon_dec_iter == 0:
            self.epsilon = max(self.epsilon - self.epsilon_dec,
                               self.epsilon_min)
            self.epsilon_dec_iter //= 1.5
            self.epsilon_dec_iter = max(self.epsilon_dec_iter,
                                        self.epsilon_dec_iter_min)
            print("update epsilon:", self.epsilon)
        return True, [
            0, 0, loss, montecarlo_loss, q_eval, returns, gmv_loss,
            gmv_montecarlo_loss, gmv_q_eval, gmv_returns, cost_loss,
            cost_montecarlo_loss, cost_q_eval, cost_returns
        ], self.get_memory_returns(), self.epsilon

    def train_prioritized(self, sess):
        loss, montecarlo_loss, q_eval, returns = 0, 0, 0, 0
        gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns = 0, 0, 0, 0
        cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns = 0, 0, 0, 0
        if self.use_budget_control:
            roi_thr = self.get_roi_threshold()
        else:
            roi_thr = self.init_roi
        for idx in range(self.update_times_per_train):
            sample_indices = self.prioritized_replay_buffer.make_index(
                self.batch_size)
            obs, act, rew, obs_next, done, dis_2_end, returns, weights, ranges = self.prioritized_replay_buffer.sample_index(
                sample_indices)
            obs, act, rew_gmv, obs_next, done, dis_2_end, gmv_returns, weights, ranges = self.gmv_replay_buffer.sample_index(
                sample_indices)
            obs, act, rew_cost, obs_next, done, dis_2_end, cost_returns = self.cost_replay_buffer.sample_index(
                sample_indices)
            _, loss, montecarlo_loss, q_eval, \
            _1, gmv_loss, gmv_montecarlo_loss, gmv_q_eval, \
            _2, cost_loss, cost_montecarlo_loss, cost_q_eval, \
            priority_values = sess.run(
                [self._train_op, self.loss, self.montecarlo_loss, self.q_eval_wrt_a,
                 self._train_gmv_op, self.gmv_loss, self.gmv_montecarlo_loss, self.q_eval_gmv_wrt_a,
                 self._train_cost_op, self.cost_loss, self.cost_montecarlo_loss, self.q_eval_cost_wrt_a,
                 self.priority_values],
                feed_dict={
                    self.s: obs,
                    self.a: act,
                    self.r_gmv: rew_gmv,
                    self.r_cost: rew_cost,
                    self.r: rew,
                    self.s_: obs_next,
                    self.done: done,
                    self.return_gmv_value: gmv_returns,
                    self.return_cost_value: cost_returns,
                    self.return_value: returns,
                    self.important_sampling_weight_ph: weights,
                    self.roi_thr: roi_thr
                })

            priorities = priority_values + 1e-6
            self.prioritized_replay_buffer.update_priorities(
                sample_indices, priorities)
        return loss, montecarlo_loss, np.average(q_eval), np.average(returns), \
               gmv_loss, gmv_montecarlo_loss, np.average(gmv_q_eval), np.average(gmv_returns), \
               cost_loss, cost_montecarlo_loss, np.average(cost_q_eval), np.average(cost_returns)

    def train_normal(self, sess):
        loss, montecarlo_loss, q_eval, returns = 0, 0, 0, 0
        gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns = 0, 0, 0, 0
        cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns = 0, 0, 0, 0
        if self.use_budget_control:
            roi_thr = self.get_roi_threshold()
        else:
            roi_thr = self.init_roi
        for idx in range(self.update_times_per_train):
            sample_indices = self.replay_buffer.make_index(self.batch_size)

            obs, act, rew, obs_next, done, dis_2_end, returns = self.replay_buffer.sample_index(
                sample_indices)
            obs, act, rew_gmv, obs_next, done, dis_2_end, gmv_returns = self.gmv_replay_buffer.sample_index(
                sample_indices)
            obs, act, rew_cost, obs_next, done, dis_2_end, cost_returns = self.cost_replay_buffer.sample_index(
                sample_indices)

            _, loss, montecarlo_loss, q_eval, \
            _1, gmv_loss, gmv_montecarlo_loss, gmv_q_eval, \
            _2, cost_loss, cost_montecarlo_loss, cost_q_eval \
                = sess.run(
                [self._train_op, self.loss, self.montecarlo_loss, self.q_eval_wrt_a,

                 self._train_gmv_op, self.gmv_loss, self.gmv_montecarlo_loss, self.q_eval_gmv_wrt_a,
                 self._train_cost_op, self.cost_loss, self.cost_montecarlo_loss, self.q_eval_cost_wrt_a],
                feed_dict={
                    self.s: obs,
                    self.a: act,
                    self.r_gmv: rew_gmv,
                    self.r_cost: rew_cost,
                    self.r: rew,
                    self.s_: obs_next,
                    self.done: done,
                    self.return_gmv_value: gmv_returns,
                    self.return_cost_value: cost_returns,
                    self.return_value: returns,
                    self.roi_thr: roi_thr
                })
        return loss, montecarlo_loss, np.average(q_eval), np.average(returns), \
               gmv_loss, gmv_montecarlo_loss, np.average(gmv_q_eval), np.average(gmv_returns), \
               cost_loss, cost_montecarlo_loss, np.average(cost_q_eval), np.average(cost_returns)
示例#12
0
    def __init__(self,
                 user_num,
                 action_dim,
                 n_features,
                 init_roi,
                 budget,
                 use_budget_control,
                 use_prioritized_experience_replay,
                 max_trajectory_length,
                 update_times_per_train
                 ):
        PIDAgent.__init__(self, init_roi=init_roi, default_alpha=1, budget=budget, integration=1)
        self.user_num = user_num
        self.use_budget_control = use_budget_control
        self.action_dim = action_dim
        self.n_actions = 11
        self.n_features = n_features
        self.lr = 0.001
        self.update_times_per_train = update_times_per_train

        self.epsilon = 0.5
        self.epsilon_min = 0.01
        self.epsilon_dec = 0.2
        self.epsilon_dec_iter = 100

        self.epsilon_clip = 0.2
        self.replace_target_iter = 1
        self.soft_update_iter = 1
        self.softupdate = False
        self.scope_name = "PPO-model"

        self.epoch = 0
        self.lam = 0.5

        self.update_step = 1
        self.kl_target = 0.01
        self.gamma = 1.
        self.method = 'clip'

        self.policy_logvar = 1e-7

        self.decay_rate = 0.9
        self.decay_steps = 5000

        self.global_ = tf.Variable(tf.constant(0))

        self.buffer_size = 1000 * max_trajectory_length
        self.batch_size = 500
        self.alpha = 0.6
        self.beta = 0.4
        self.use_prioritized_experience_replay = use_prioritized_experience_replay
        if self.use_prioritized_experience_replay:
            self.prioritized_replay_buffer = PrioritizedReplayBuffer(self.buffer_size, alpha=self.alpha,
                                                                     max_priority=20.)
        else:
            self.replay_buffer = ReplayBuffer(self.buffer_size, save_return=True)
        self.cost_replay_buffer = ReplayBuffer(self.buffer_size, save_return=True)
        self.gmv_replay_buffer = ReplayBuffer(self.buffer_size, save_return=True)

        with tf.variable_scope(self.scope_name):

            self._build_net()

            self.build_model_saver(self.scope_name)
示例#13
0
    def __init__(
        self,
        user_num,
        action_dim,
        action_bound,
        n_features,
        init_roi,
        budget,
        use_budget_control,
        use_prioritized_experience_replay,
        max_trajectory_length,
        update_times_per_train,
    ):
        PIDAgent.__init__(self,
                          init_roi=init_roi,
                          default_alpha=1,
                          budget=budget,
                          integration=2)
        self.use_budget_control = use_budget_control
        self.user_num = user_num
        self.action_bound = action_bound
        self.action_dim = action_dim
        self.n_actions = 1
        self.n_features = n_features
        self.gamma = 1.
        self.update_times_per_train = update_times_per_train

        self.lr = 0.001

        self.epsilon = 0.9
        self.epsilon_min = 0.1
        self.epsilon_dec = 0.3
        self.epsilon_dec_iter = 100

        self.replace_target_iter = 300
        self.soft_update_iter = 1
        self.softupdate = True
        self.scope_name = "DDPG-model"

        self.epoch = 0

        self.exploration_noise = OUNoise(self.action_dim)
        self.noise_weight = 1
        self.noise_descrement_per_sampling = 0.0001

        self.buffer_size = 20000 * max_trajectory_length
        self.batch_size = 512

        self.alpha = 0.6
        self.beta = 0.4
        self.use_prioritized_experience_replay = use_prioritized_experience_replay
        if self.use_prioritized_experience_replay:
            self.prioritized_replay_buffer = PrioritizedReplayBuffer(
                self.buffer_size, alpha=self.alpha, max_priority=20.)
        else:
            self.replay_buffer = ReplayBuffer(self.buffer_size,
                                              save_return=True)
        self.cost_replay_buffer = ReplayBuffer(self.buffer_size,
                                               save_return=True)
        self.gmv_replay_buffer = ReplayBuffer(self.buffer_size,
                                              save_return=True)

        with tf.variable_scope(self.scope_name):

            self._build_net()

            self.build_model_saver(self.scope_name)
示例#14
0
class DDPG_interface(LearningAgent, PIDAgent):
    def __init__(
        self,
        user_num,
        action_dim,
        action_bound,
        n_features,
        init_roi,
        budget,
        use_budget_control,
        use_prioritized_experience_replay,
        max_trajectory_length,
        update_times_per_train,
    ):
        PIDAgent.__init__(self,
                          init_roi=init_roi,
                          default_alpha=1,
                          budget=budget,
                          integration=2)
        self.use_budget_control = use_budget_control
        self.user_num = user_num
        self.action_bound = action_bound
        self.action_dim = action_dim
        self.n_actions = 1
        self.n_features = n_features
        self.gamma = 1.
        self.update_times_per_train = update_times_per_train

        self.lr = 0.001

        self.epsilon = 0.9
        self.epsilon_min = 0.1
        self.epsilon_dec = 0.3
        self.epsilon_dec_iter = 100

        self.replace_target_iter = 300
        self.soft_update_iter = 1
        self.softupdate = True
        self.scope_name = "DDPG-model"

        self.epoch = 0

        self.exploration_noise = OUNoise(self.action_dim)
        self.noise_weight = 1
        self.noise_descrement_per_sampling = 0.0001

        self.buffer_size = 20000 * max_trajectory_length
        self.batch_size = 512

        self.alpha = 0.6
        self.beta = 0.4
        self.use_prioritized_experience_replay = use_prioritized_experience_replay
        if self.use_prioritized_experience_replay:
            self.prioritized_replay_buffer = PrioritizedReplayBuffer(
                self.buffer_size, alpha=self.alpha, max_priority=20.)
        else:
            self.replay_buffer = ReplayBuffer(self.buffer_size,
                                              save_return=True)
        self.cost_replay_buffer = ReplayBuffer(self.buffer_size,
                                               save_return=True)
        self.gmv_replay_buffer = ReplayBuffer(self.buffer_size,
                                              save_return=True)

        with tf.variable_scope(self.scope_name):

            self._build_net()

            self.build_model_saver(self.scope_name)

    def _build_net(self):

        self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s')
        self.s_ = tf.placeholder(tf.float32, [None, self.n_features],
                                 name='s_')
        self.r_gmv = tf.placeholder(tf.float32, [
            None,
        ], name='r_gmv')
        self.r_cost = tf.placeholder(tf.float32, [
            None,
        ], name='r_cost')
        self.r = tf.placeholder(tf.float32, [
            None,
        ], name='r')
        self.roi_thr = tf.placeholder(tf.float32, [], name="roi_thr")
        self.a = tf.placeholder(tf.float32, [
            None,
        ], name='a')
        self.done = tf.placeholder(tf.float32, [
            None,
        ], name='done')
        self.gmv_return_value = tf.placeholder(tf.float32, [
            None,
        ],
                                               name='gmv_return')
        self.cost_return_value = tf.placeholder(tf.float32, [
            None,
        ],
                                                name='cost_return')
        self.return_value = tf.placeholder(tf.float32, [
            None,
        ], name='return')
        self.important_sampling_weight_ph = tf.placeholder(
            tf.float32, [None], name="important_sampling_weight")

        self.a_eval = self._build_action_net(self.s,
                                             variable_scope="actor_eval_net")
        self.a_target = self._build_action_net(
            self.s_, variable_scope="actor_target_net")
        self.gmv_critic_eval = self._build_q_net(
            self.s, self.a, variable_scope="gmv_critic_eval_net")
        self.gmv_critic_eval_for_loss = self._build_q_net(
            self.s,
            self.a_eval,
            variable_scope="gmv_critic_eval_net",
            reuse=True)
        self.gmv_critic_target = self._build_q_net(
            self.s_, self.a_target, variable_scope="gmv_critic_target_net")

        self.cost_critic_eval = self._build_q_net(
            self.s, self.a, variable_scope="cost_critic_eval_net")
        self.cost_critic_eval_for_loss = self._build_q_net(
            self.s,
            self.a_eval,
            variable_scope="cost_critic_eval_net",
            reuse=True)
        self.cost_critic_target = self._build_q_net(
            self.s_, self.a_target, variable_scope="cost_critic_target_net")

        self.critic_eval = self.gmv_critic_eval - self.roi_thr * self.cost_critic_eval
        self.critic_eval_for_loss = self.gmv_critic_eval_for_loss - self.roi_thr * self.cost_critic_eval_for_loss
        self.critic_target = self.gmv_critic_target - self.roi_thr * self.cost_critic_target

        ae_params = scope_vars(absolute_scope_name("actor_eval_net"))
        at_params = scope_vars(absolute_scope_name("actor_target_net"))
        gmv_ce_params = scope_vars(absolute_scope_name("gmv_critic_eval_net"))
        gmv_ct_params = scope_vars(
            absolute_scope_name("gmv_critic_target_net"))
        cost_ce_params = scope_vars(
            absolute_scope_name("cost_critic_eval_net"))
        cost_ct_params = scope_vars(
            absolute_scope_name("cost_critic_target_net"))
        print(ae_params)
        print(at_params)
        print(gmv_ce_params)
        print(gmv_ct_params)
        print(cost_ce_params)
        print(cost_ct_params)

        with tf.variable_scope('hard_replacement'):
            self.a_target_replace_op = tf.group(
                [tf.assign(t, e) for t, e in zip(at_params, ae_params)])
            self.gmv_c_target_replace_op = tf.group([
                tf.assign(t, e) for t, e in zip(gmv_ct_params, gmv_ce_params)
            ])
            self.cost_c_target_replace_op = tf.group([
                tf.assign(t, e) for t, e in zip(cost_ct_params, cost_ce_params)
            ])

        with tf.variable_scope('soft_update'):
            self.a_update_target_q = self.__make_update_exp__(
                ae_params, at_params)
            self.gmv_c_update_target_q = self.__make_update_exp__(
                gmv_ce_params, gmv_ct_params)
            self.cost_c_update_target_q = self.__make_update_exp__(
                cost_ce_params, cost_ct_params)

        with tf.variable_scope('q_target'):
            self.td0_gmv_q_target = tf.stop_gradient(self.r_gmv + self.gamma *
                                                     (1. - self.done) *
                                                     self.gmv_critic_target)
            self.td0_cost_q_target = tf.stop_gradient(self.r_cost +
                                                      self.gamma *
                                                      (1. - self.done) *
                                                      self.cost_critic_target)
            self.td0_q_target = tf.stop_gradient(self.r + self.gamma *
                                                 (1. - self.done) *
                                                 self.critic_target)

            self.montecarlo_gmv_target = self.gmv_return_value
            self.montecarlo_cost_target = self.cost_return_value
            self.montecarlo_target = self.return_value

        with tf.variable_scope('loss'):
            self._build_loss()

            self._pick_loss()

        with tf.variable_scope('train'):
            self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(
                self.loss, var_list=gmv_ce_params + cost_ce_params)
            self._train_gmv_c_op = tf.train.AdamOptimizer(self.lr).minimize(
                self.gmv_loss, var_list=gmv_ce_params)
            self._train_cost_c_op = tf.train.AdamOptimizer(self.lr).minimize(
                self.cost_loss, var_list=cost_ce_params)
            self._train_a_op = tf.train.AdamOptimizer(self.lr).minimize(
                self.actor_loss, var_list=ae_params)

        with tf.variable_scope('roi'):
            self.max_longterm_roi = self.gmv_critic_eval / (
                self.cost_critic_eval + 1e-4)

    def _pick_loss(self):

        self.has_target_net = True
        self.loss = self.td_loss
        self.gmv_loss = self.gmv_td_loss
        self.cost_loss = self.cost_td_loss
        self.actor_loss = self.a_loss
        self.priority_values = self.montecarlo_gmv_error + self.montecarlo_cost_error

    def _build_loss(self):

        if self.use_prioritized_experience_replay:

            self.gmv_td_loss = tf.reduce_mean(
                self.important_sampling_weight_ph *
                tf.squared_difference(self.td0_gmv_q_target,
                                      self.gmv_critic_eval,
                                      name='TD0_gmv_loss'))
            self.cost_td_loss = tf.reduce_mean(
                self.important_sampling_weight_ph *
                tf.squared_difference(self.td0_cost_q_target,
                                      self.cost_critic_eval,
                                      name='TD0_cost_loss'))
        else:

            self.gmv_td_loss = tf.reduce_mean(
                tf.squared_difference(self.td0_gmv_q_target,
                                      self.gmv_critic_eval,
                                      name='TD0_gmv_loss'))
            self.cost_td_loss = tf.reduce_mean(
                tf.squared_difference(self.td0_cost_q_target,
                                      self.cost_critic_eval,
                                      name='TD0_cost_loss'))
            self.td_loss = tf.reduce_mean(
                tf.squared_difference(self.td0_q_target,
                                      self.critic_eval,
                                      name='TD0_loss'))

        self.a_loss = -tf.reduce_mean(self.critic_eval_for_loss)

        self.gmv_montecarlo_loss = tf.reduce_mean(
            tf.squared_difference(self.montecarlo_gmv_target,
                                  self.gmv_critic_eval,
                                  name='MonteCarlo_gmv_error'))
        self.cost_montecarlo_loss = tf.reduce_mean(
            tf.squared_difference(self.montecarlo_cost_target,
                                  self.cost_critic_eval,
                                  name='MonteCarlo_cost_error'))
        self.montecarlo_loss = tf.reduce_mean(
            tf.squared_difference(self.montecarlo_target,
                                  self.critic_eval,
                                  name='MonteCarlo_error'))

        self.td0_gmv_error = tf.abs(self.td0_gmv_q_target -
                                    self.gmv_critic_eval)
        self.td0_cost_error = tf.abs(self.td0_cost_q_target -
                                     self.cost_critic_eval)
        self.td0_error = tf.abs(self.td0_q_target - self.critic_eval)

        self.montecarlo_gmv_error = tf.abs(self.montecarlo_gmv_target -
                                           self.gmv_critic_eval)
        self.montecarlo_cost_error = tf.abs(self.montecarlo_cost_target -
                                            self.cost_critic_eval)
        self.montecarlo_error = tf.abs(self.montecarlo_target -
                                       self.critic_eval)

    def _build_q_net(self, state, action, variable_scope, reuse=False):
        with tf.variable_scope(variable_scope, reuse=reuse):
            user_id_embedding_table = tf.get_variable(
                name="user_id",
                shape=[self.user_num, 20],
                initializer=initializers.xavier_initializer(),
                trainable=True,
                dtype=tf.float32)
            user_id = tf.cast(state[:, 0], dtype=tf.int32)
            user_id_embeddings = tf.nn.embedding_lookup(
                user_id_embedding_table, ids=user_id, name="user_id_embedding")
            state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1)

            n_features = state.get_shape()[1]

            state = tf.concat(
                [state,
                 tf.expand_dims(action, axis=1, name="2d-action")],
                axis=1)
            fc1 = tf.layers.dense(state,
                                  units=n_features,
                                  activation=tf.nn.relu,
                                  name='fc1')
            fc2 = tf.layers.dense(fc1,
                                  units=n_features // 2,
                                  activation=tf.nn.relu,
                                  name='fc2')

            q = tf.layers.dense(fc2, units=self.action_dim, name='q')

            return q[:, 0]

    def _build_action_net(self, state, variable_scope):
        with tf.variable_scope(variable_scope):
            user_id_embedding_table = tf.get_variable(
                name="user_id",
                shape=[self.user_num, 20],
                initializer=initializers.xavier_initializer(),
                trainable=True,
                dtype=tf.float32)
            user_id = tf.cast(state[:, 0], dtype=tf.int32)
            user_id_embeddings = tf.nn.embedding_lookup(
                user_id_embedding_table, ids=user_id, name="user_id_embedding")
            state = tf.concat([user_id_embeddings, state[:, 1:]], axis=1)

            n_features = state.get_shape()[1]
            fc1 = tf.layers.dense(state,
                                  units=n_features // 2,
                                  activation=tf.nn.relu,
                                  name='fc1')
            actions = tf.layers.dense(fc1,
                                      self.action_dim,
                                      activation=tf.nn.sigmoid,
                                      name='a')
            scaled_a = tf.multiply(actions, 1, name='scaled_a')

            return scaled_a[:, 0]

    def __make_update_exp__(self, vals, target_vals):
        polyak = 1.0 - 1e-2
        expression = []
        for var, var_target in zip(sorted(vals, key=lambda v: v.name),
                                   sorted(target_vals, key=lambda v: v.name)):
            expression.append(
                var_target.assign(polyak * var_target + (1.0 - polyak) * var))
        expression = tf.group(*expression)
        return expression

    def __make_hardreplace_exp__(self, vals, target_vals):
        expression = []
        for var, var_target in zip(sorted(vals, key=lambda v: v.name),
                                   sorted(target_vals, key=lambda v: v.name)):
            expression.append(var_target.assign(var))

        expression = tf.group(*expression)
        return expression

    def build_model_saver(self, var_scope):
        var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                     scope=var_scope)

        self.model_saver = tf.train.Saver(var_list=var_list, max_to_keep=3)

    def save(self, sess, path, step):
        if not os.path.exists(os.path.dirname(path)):
            os.makedirs(os.path.dirname(path))
        self.model_saver.save(sess, save_path=path, global_step=step)

    def restore(self, sess, path):
        self.model_saver.restore(sess, save_path=path)
        print('%s model reloaded from %s' % (self.scope_name, path))

    def experience(self, new_trajectory, other_info=None):
        new_trajectory_gmv = other_info["gmv"]
        new_trajectory_cost = other_info["cost"]
        if self.use_prioritized_experience_replay:
            add_episode(self.prioritized_replay_buffer,
                        new_trajectory,
                        gamma=self.gamma)
        else:
            add_episode(self.replay_buffer, new_trajectory, gamma=self.gamma)

        add_episode(self.gmv_replay_buffer,
                    new_trajectory_gmv,
                    gamma=self.gamma)
        add_episode(self.cost_replay_buffer,
                    new_trajectory_cost,
                    gamma=self.gamma)

    def __epsilon_greedy__(self, sess, observation, roi_thr):

        if np.random.uniform() < self.epsilon:
            observation = observation[np.newaxis, :]
            actions_value = sess.run(self.a_eval,
                                     feed_dict={
                                         self.s: observation,
                                         self.roi_thr: roi_thr
                                     })

            action_noise = self.exploration_noise.noise()

            bid = actions_value + action_noise

            bid = bid[0]

        else:
            bid = self.__greedy__(sess, observation, roi_thr)

        return bid

    def __greedy__(self, sess, observation, roi_thr):

        observation = observation[np.newaxis, :]

        bid = sess.run(self.a_eval,
                       feed_dict={
                           self.s: observation,
                           self.roi_thr: roi_thr
                       })

        return bid[0]

    def choose_action(self, sess, observation, other_info):
        if self.use_budget_control:
            roi_thr = self.get_roi_threshold()
        else:
            roi_thr = self.init_roi

        return self.__epsilon_greedy__(sess, observation, roi_thr)

    def greedy_action(self, sess, observation, other_info):
        if self.use_budget_control:
            roi_thr = self.get_roi_threshold()
        else:
            roi_thr = self.init_roi

        bid = self.__greedy__(sess, observation, roi_thr)
        if self.use_budget_control:
            user_idx = other_info["user_idx"]
            request_idx = other_info["request_idx"]
            roi_threshold = self.get_roi_threshold()
            if request_idx == 0:
                observations = observation[np.newaxis, :]
                max_plongterm_roi = sess.run(self.max_longterm_roi,
                                             feed_dict={
                                                 self.s: observations,
                                                 self.a: [bid]
                                             })

                if max_plongterm_roi >= roi_threshold:
                    self.explore_user(user_idx)

                    return bid
                else:

                    return 0.
            else:
                if self.is_user_selected(user_idx):

                    return bid
                else:
                    return 0
        else:

            return bid

    def get_action(self, sess, obs, is_test=False, other_info=None):
        if is_test:
            discrete_action = self.greedy_action(sess, obs, other_info)
        else:
            discrete_action = self.choose_action(sess, obs, other_info)

        other_action_info = {"learning_action": discrete_action}
        return self.action_bound * np.clip(discrete_action, 0,
                                           1), other_action_info

    def get_memory_returns(self):
        if self.use_prioritized_experience_replay:
            return self.prioritized_replay_buffer.current_mean_return
        else:
            return self.replay_buffer.current_mean_return

    def _is_exploration_enough(self, min_pool_size):
        if self.use_prioritized_experience_replay:
            return len(self.prioritized_replay_buffer) >= min_pool_size
        else:
            return len(self.replay_buffer) >= min_pool_size

    def update_target(self, sess):
        if self.softupdate:

            if self.epoch % self.soft_update_iter == 0:
                sess.run(self.gmv_c_update_target_q)
                sess.run(self.cost_c_update_target_q)
                sess.run(self.a_update_target_q)
        else:

            if self.epoch % self.replace_target_iter == 0:
                sess.run(self.gmv_c_update_target_q)
                sess.run(self.cost_c_update_target_q)
                sess.run(self.a_target_replace_op)

    def train(self, sess):
        if self.has_target_net:
            self.update_target(sess)

        self.epoch += 1

        if not self._is_exploration_enough(self.batch_size):
            return False, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 0, 0

        if self.use_prioritized_experience_replay:

            policy_loss, policy_entropy, loss, montecarlo_loss, q_eval, returns, \
            gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns, \
            cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns = self.train_prioritized(sess)
        else:

            policy_loss, policy_entropy, loss, montecarlo_loss, q_eval, returns, \
            gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns, \
            cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns = self.train_normal(sess)

        if self.epoch % self.epsilon_dec_iter == 0:
            self.epsilon = max(self.epsilon - self.epsilon_dec,
                               self.epsilon_min)
            print("update epsilon:", self.epsilon)
        return True, [
            policy_loss, policy_entropy, loss, montecarlo_loss, q_eval,
            returns, gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns,
            cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns
        ], self.get_memory_returns(), self.epsilon

    def train_prioritized(self, sess):
        loss, q_eval, returns, montecarlo_loss = 0, 0, 0, 0
        for idx in range(self.update_times_per_train):
            sample_indices = self.prioritized_replay_buffer.make_index(
                self.batch_size)
            obs, act, rew, obs_next, done, dis_2_end, returns, weights, ranges = self.prioritized_replay_buffer.sample_index(
                sample_indices)
            _, loss, q_eval, montecarlo_loss, priority_values = sess.run(
                [
                    self._train_c_op, self.loss, self.critic_eval,
                    self.montecarlo_loss, self.priority_values
                ],
                feed_dict={
                    self.s: obs,
                    self.a: act,
                    self.r: rew,
                    self.s_: obs_next,
                    self.done: done,
                    self.return_value: returns,
                    self.important_sampling_weight_ph: weights
                })
            sess.run(self._train_a_op,
                     feed_dict={
                         self.s: obs,
                         self.a: act,
                         self.r: rew,
                         self.s_: obs_next,
                         self.done: done,
                         self.return_value: returns,
                         self.important_sampling_weight_ph: weights
                     })

            priorities = priority_values + 1e-6
            self.prioritized_replay_buffer.update_priorities(
                sample_indices, priorities)

        return loss, montecarlo_loss, np.average(q_eval), np.average(returns)

    def train_normal(self, sess):
        policy_loss, policy_entropy = 0, 0
        loss, montecarlo_loss, q_eval, returns = 0, 0, 0, 0
        gmv_loss, gmv_montecarlo_loss, gmv_q_eval, gmv_returns = 0, 0, 0, 0
        cost_loss, cost_montecarlo_loss, cost_q_eval, cost_returns = 0, 0, 0, 0
        if self.use_budget_control:
            roi_thr = self.get_roi_threshold()
        else:
            roi_thr = self.init_roi
        for idx in range(self.update_times_per_train):
            sample_indices = self.replay_buffer.make_index(self.batch_size)
            obs, act, rew, obs_next, done, dis_2_end, returns = self.replay_buffer.sample_index(
                sample_indices)
            obs, act, rew_gmv, obs_next, done, dis_2_end, gmv_returns = self.gmv_replay_buffer.sample_index(
                sample_indices)
            obs, act, rew_cost, obs_next, done, dis_2_end, cost_returns = self.cost_replay_buffer.sample_index(
                sample_indices)

            _, loss, montecarlo_loss, q_eval, \
            _1, gmv_loss, gmv_montecarlo_loss, gmv_q_eval, \
            _2, cost_loss, cost_montecarlo_loss, cost_q_eval \
                = sess.run(
                [self._train_op, self.loss, self.montecarlo_loss, self.critic_eval,
                 self._train_gmv_c_op, self.gmv_loss, self.gmv_montecarlo_loss, self.gmv_critic_eval,
                 self._train_cost_c_op, self.cost_loss, self.cost_montecarlo_loss, self.cost_critic_eval],
                feed_dict={
                    self.s: obs,
                    self.a: act,
                    self.r_gmv: rew_gmv,
                    self.r_cost: rew_cost,
                    self.r: rew,
                    self.s_: obs_next,
                    self.done: done,
                    self.gmv_return_value: gmv_returns,
                    self.cost_return_value: cost_returns,
                    self.return_value: returns,
                    self.roi_thr: roi_thr
                })
            _, actor_loss = sess.run(
                [self._train_a_op, self.actor_loss],
                feed_dict={
                    self.roi_thr: roi_thr,
                    self.s: obs,
                    self.a: act,
                    self.r_gmv: rew_gmv,
                    self.r_cost: rew_cost,
                    self.s_: obs_next,
                    self.done: done,
                    self.gmv_return_value: gmv_returns,
                    self.cost_return_value: cost_returns,
                })

        return 0, 0, loss, montecarlo_loss, np.average(q_eval), np.average(returns), \
               gmv_loss, gmv_montecarlo_loss, np.average(gmv_q_eval), np.average(gmv_returns), \
               cost_loss, cost_montecarlo_loss, np.average(cost_q_eval), np.average(cost_returns)