예제 #1
0
def plot_table(returns,
               w,
               MAR=0,
               alpha=0.05,
               height=9,
               width=12,
               t_factor=252,
               ax=None):
    r"""
    Create a table with information about risk measures and risk adjusted
    return ratios.

    Parameters
    ----------
    returns : DataFrame
        Assets returns.
    w : DataFrame
        Portfolio weights.
    MAR: float, optional
        Minimum acceptable return.
    alpha: float, optional
        Significance level for VaR, CVaR, EVaR, DaR and CDaR.
    height : float, optional
        Height of the image in inches. The default is 9.
    width : float, optional
        Width of the image in inches. The default is 12.
    t_factor : float, optional
        Factor used to annualize expected return and expected risks for
        risk measures based on returns (not drawdowns). The default is 252.
        
        .. math::
            
            \begin{align}
            \text{Annualized Return} & = \text{Return} \, \times \, \text{t_factor} \\
            \text{Annualized Risk} & = \text{Risk} \, \times \, \sqrt{\text{t_factor}}
            \end{align}
        
    ax : matplotlib axis, optional
        If provided, plot on this axis. The default is None.

    Raises
    ------
    ValueError
        When the value cannot be calculated.

    Returns
    -------
    ax : matplotlib axis
        Returns the Axes object with the plot for further tweaking.

    Example
    -------
    ::

        ax = plf.plot_table(returns=Y, w=w1, MAR=0, alpha=0.05, ax=None)

    .. image:: images/Port_Table.png


    """
    if not isinstance(returns, pd.DataFrame):
        raise ValueError("returns must be a DataFrame")

    if not isinstance(w, pd.DataFrame):
        raise ValueError("w must be a DataFrame")

    if returns.shape[1] != w.shape[0]:
        a1 = str(returns.shape)
        a2 = str(w.shape)
        raise ValueError("shapes " + a1 + " and " + a2 + " not aligned")

    if ax is None:
        ax = plt.gca()
        fig = plt.gcf()
        fig.set_figwidth(width)
        fig.set_figheight(height)

    mu = returns.mean()
    cov = returns.cov()
    days = (returns.index[-1] - returns.index[0]).days + 1

    X = returns @ w
    X = X.to_numpy().ravel()

    rowLabels = [
        "Profitability and Other Inputs",
        "Mean Return (1)",
        "Compound Annual Growth Rate (CAGR)",
        "Minimum Acceptable Return (MAR) (1)",
        "Significance Level",
        "",
        "Risk Measures based on Returns",
        "Standard Deviation (2)",
        "Mean Absolute Deviation (MAD) (2)",
        "Semi Standard Deviation (2)",
        "First Lower Partial Moment (FLPM) (2)",
        "Second Lower Partial Moment (SLPM) (2)",
        "Value at Risk (VaR) (2)",
        "Conditional Value at Risk (CVaR) (2)",
        "Entropic Value at Risk (EVaR) (2)",
        "Worst Realization (2)",
        "Skewness",
        "Kurtosis",
        "",
        "Risk Measures based on Drawdowns (3)",
        "Max Drawdown (MDD)",
        "Average Drawdown (ADD)",
        "Drawdown at Risk (DaR)",
        "Conditional Drawdown at Risk (CDaR)",
        "Ulcer Index",
        "(1) Annualized, multiplied by " + str(t_factor),
        "(2) Annualized, multiplied by √" + str(t_factor),
        "(3) Based on uncompounded cumulated returns",
    ]

    indicators = [
        "",
        (mu @ w).to_numpy().item() * t_factor,
        np.power(np.prod(1 + X), 360 / days) - 1,
        MAR,
        alpha,
        "",
        "",
        np.sqrt(w.T @ cov @ w).to_numpy().item() * t_factor**0.5,
        rk.MAD(X) * t_factor**0.5,
        rk.SemiDeviation(X) * t_factor**0.5,
        rk.LPM(X, MAR=MAR, p=1) * t_factor**0.5,
        rk.LPM(X, MAR=MAR, p=2) * t_factor**0.5,
        rk.VaR_Hist(X, alpha=alpha) * t_factor**0.5,
        rk.CVaR_Hist(X, alpha=alpha) * t_factor**0.5,
        rk.EVaR_Hist(X, alpha=alpha)[0] * t_factor**0.5,
        rk.WR(X) * t_factor**0.5,
        st.skew(X, bias=False),
        st.kurtosis(X, bias=False),
        "",
        "",
        rk.MDD_Abs(X),
        rk.ADD_Abs(X),
        rk.DaR_Abs(X),
        rk.CDaR_Abs(X, alpha=alpha),
        rk.UCI_Abs(X),
        "",
        "",
        "",
    ]

    ratios = []
    for i in range(len(indicators)):
        if i < 6 or indicators[i] == "" or rowLabels[i] in [
                "Skewness", "Kurtosis"
        ]:
            ratios.append("")
        else:
            ratio = (indicators[1] - MAR) / indicators[i]
            ratios.append(ratio)

    for i in range(len(indicators)):
        if indicators[i] != "":
            if rowLabels[i] in ["Skewness", "Kurtosis"]:
                indicators[i] = "{:.5f}".format(indicators[i])
            else:
                indicators[i] = "{:.4%}".format(indicators[i])
        if ratios[i] != "":
            ratios[i] = "{:.6f}".format(ratios[i])

    data = pd.DataFrame({
        "A": rowLabels,
        "B": indicators,
        "C": ratios
    }).to_numpy()

    ax.set_axis_off()
    ax.axis("tight")
    ax.axis("off")

    colLabels = ["", "Values", "(Return - MAR)/Risk"]
    colWidths = [0.45, 0.275, 0.275]
    rowHeight = 0.07

    table = ax.table(
        cellText=data,
        colLabels=colLabels,
        colWidths=colWidths,
        cellLoc="center",
        loc="upper left",
        bbox=[-0.03, 0, 1, 1],
    )

    table.auto_set_font_size(False)

    cellDict = table.get_celld()
    k = 1

    rowHeight = 1 / len(rowLabels)
    ncols = len(colLabels)
    nrows = len(rowLabels)

    for i in range(0, ncols):
        cellDict[(0, i)].set_text_props(weight="bold",
                                        color="white",
                                        size="x-large")
        cellDict[(0, i)].set_facecolor("darkblue")
        cellDict[(0, i)].set_edgecolor("white")
        cellDict[(0, i)].set_height(rowHeight)
        for j in range(1, nrows + 1):
            cellDict[(j, 0)].set_text_props(weight="bold",
                                            color="black",
                                            size="x-large",
                                            ha="left")
            cellDict[(j, i)].set_text_props(color="black", size="x-large")
            cellDict[(j, 0)].set_edgecolor("white")
            cellDict[(j, i)].set_edgecolor("white")
            if k % 2 != 0:
                cellDict[(j, 0)].set_facecolor("whitesmoke")
                cellDict[(j, i)].set_facecolor("whitesmoke")
            if j in [6, 19]:
                cellDict[(j, 0)].set_facecolor("white")
                cellDict[(j, i)].set_facecolor("white")
            if j in [1, 7, 20]:
                cellDict[(j, 0)].set_text_props(color="white")
                cellDict[(j, 0)].set_facecolor("orange")
                cellDict[(j, i)].set_facecolor("orange")
                k = 1
            k += 1

            cellDict[(j, i)].set_height(rowHeight)

    for i in range(0, ncols):
        for j in range(nrows - 2, nrows + 1):
            cellDict[(j, i)].set_text_props(weight="normal",
                                            color="black",
                                            size="large")
            cellDict[(j, i)].set_facecolor("white")

    fig = plt.gcf()
    fig.tight_layout()

    return ax
예제 #2
0
def plot_hist(returns, w, alpha=0.05, bins=50, height=6, width=10, ax=None):
    r"""
    Create a histogram of portfolio returns with the risk measures.

    Parameters
    ----------
    returns : DataFrame
        Assets returns.
    w : DataFrame of shape (n_assets, 1)
        Portfolio weights.
    alpha : float, optional
        Significante level of VaR, CVaR and EVaR. The default is 0.05.
    bins : float, optional
        Number of bins of the histogram. The default is 50.
    height : float, optional
        Height of the image in inches. The default is 6.
    width : float, optional
        Width of the image in inches. The default is 10.
    ax : matplotlib axis, optional
        If provided, plot on this axis. The default is None.

    Raises
    ------
    ValueError
        When the value cannot be calculated.

    Returns
    -------
    ax : matplotlib axis.
        Returns the Axes object with the plot for further tweaking.

    Example
    -------
    ::

        ax = plf.plot_hist(returns=Y, w=w1, alpha=0.05, bins=50, height=6,
                           width=10, ax=None)

    .. image:: images/Histogram.png


    """

    if not isinstance(returns, pd.DataFrame):
        raise ValueError("returns must be a DataFrame")

    if not isinstance(w, pd.DataFrame):
        raise ValueError("w must be a DataFrame")

    if w.shape[1] > 1 and w.shape[0] == 0:
        w = w.T
    elif w.shape[1] > 1 and w.shape[0] > 0:
        raise ValueError("w must be a  DataFrame")

    if returns.shape[1] != w.shape[0]:
        a1 = str(returns.shape)
        a2 = str(w.shape)
        raise ValueError("shapes " + a1 + " and " + a2 + " not aligned")

    if ax is None:
        ax = plt.gca()
        fig = plt.gcf()
        fig.set_figwidth(width)
        fig.set_figheight(height)

    a = np.array(returns, ndmin=2) @ np.array(w, ndmin=2)
    ax.set_title("Portfolio Returns Histogram")
    n, bins1, patches = ax.hist(a,
                                bins,
                                density=1,
                                edgecolor="skyblue",
                                color="skyblue",
                                alpha=0.5)
    mu = np.mean(a)
    sigma = np.std(a, axis=0, ddof=1).item()
    risk = [
        mu,
        mu - sigma,
        mu - rk.MAD(a),
        -rk.VaR_Hist(a, alpha),
        -rk.CVaR_Hist(a, alpha),
        -rk.EVaR_Hist(a, alpha)[0],
        -rk.WR(a),
    ]
    label = [
        "Mean: " + "{0:.2%}".format(risk[0]),
        "Mean - Std. Dev.(" + "{0:.2%}".format(-risk[1] + mu) + "): " +
        "{0:.2%}".format(risk[1]),
        "Mean - MAD(" + "{0:.2%}".format(-risk[2] + mu) + "): " +
        "{0:.2%}".format(risk[2]),
        "{0:.2%}".format(
            (1 - alpha)) + " Confidence VaR: " + "{0:.2%}".format(risk[3]),
        "{0:.2%}".format(
            (1 - alpha)) + " Confidence CVaR: " + "{0:.2%}".format(risk[4]),
        "{0:.2%}".format(
            (1 - alpha)) + " Confidence EVaR: " + "{0:.2%}".format(risk[5]),
        "Worst Realization: " + "{0:.2%}".format(risk[6]),
    ]
    color = [
        "b", "r", "fuchsia", "darkorange", "limegreen", "dodgerblue",
        "darkgrey"
    ]

    for i, j, k in zip(risk, label, color):
        ax.axvline(x=i, color=k, linestyle="-", label=j)

    # add a 'best fit' line
    y = (1 / (np.sqrt(2 * np.pi) * sigma)) * np.exp(-0.5 * (1 / sigma *
                                                            (bins1 - mu))**2)
    ax.plot(
        bins1,
        y,
        "--",
        color="orange",
        label="Normal: $\mu=" + "{0:.2%}".format(mu) + "$%, $\sigma=" +
        "{0:.2%}".format(sigma) + "$%",
    )

    factor = (np.max(a) - np.min(a)) / bins

    ax.xaxis.set_major_locator(plt.AutoLocator())
    ax.set_xticklabels(["{:3.2%}".format(x) for x in ax.get_xticks()])
    ax.set_yticklabels(["{:3.2%}".format(x * factor) for x in ax.get_yticks()])
    ax.legend(loc="upper right")  # , fontsize = 'x-small')
    ax.grid(linestyle=":")
    ax.set_ylabel("Probability Density")

    fig = plt.gcf()
    fig.tight_layout()

    return ax
예제 #3
0
    def efficient_frontier(self, model="Classic", rm="MV", points=20, rf=0, hist=True):
        r"""
        Method that calculates several portfolios in the efficient frontier
        of the selected risk measure, available with current assets and
        constraints.

        Parameters
        ----------
        model : str, optional
            Methodology used to estimate input parameters.
            The default is 'Classic'.
        rm : str, optional
            Risk measure used by the optimization model. The default is 'MV'.
        points : scalar, optional
            Number of point calculated from the efficient frontier.
            The default is 50.
        rf : scalar, optional
            Risk free rate. The default is 0.
        hist : bool, optional
            Indicate if uses historical or factor estimation of returns to 
            calculate risk measures that depends on scenarios (All except
            'MV' risk measure). The default is True.

        Returns
        -------
        frontier : DataFrame
            A dataframe that containts the weights of the portfolios.
            
        Notes
        -----
        It's recommendable that don't use this method when there are too many 
        assets (more than 100) and you are using a scenario based risk measure
        (all except standard deviation). It's preferable to use frontier_limits 
        method (faster) to know the range of expected return and expected risk.
        
        """
        mu = None
        sigma = None
        returns = None
        if model == "Classic":
            mu = np.matrix(self.mu)
            sigma = np.matrix(self.cov)
            returns = np.matrix(self.returns)
            nav = np.matrix(self.nav)
        elif model == "FM":
            mu = np.matrix(self.mu_fm)
            if hist == False:
                sigma = np.matrix(self.cov_fm)
                returns = np.matrix(self.returns_fm)
                nav = np.matrix(self.nav_fm)
            elif hist == True:
                sigma = np.matrix(self.cov)
                returns = np.matrix(self.returns)
                nav = np.matrix(self.nav)
        elif model == "BL":
            mu = np.matrix(self.mu_bl)
            if hist == False:
                sigma = np.matrix(self.cov_bl)
            elif hist == True:
                sigma = np.matrix(self.cov)
            returns = np.matrix(self.returns)
            nav = np.matrix(self.nav)
        elif model == "BL_FM":
            mu = np.matrix(self.mu_bl_fm_2)
            if hist == False:
                sigma = np.matrix(self.cov_bl_fm_2)
                returns = np.matrix(self.returns_fm)
                nav = np.matrix(self.nav_fm)
            elif hist == True:
                sigma = np.matrix(self.cov)
                returns = np.matrix(self.returns)
                nav = np.matrix(self.nav)

        alpha1 = self.alpha

        limits = self.frontier_limits(model="Classic", rm=rm, rf=rf, hist=hist)

        w_min = np.matrix(limits.iloc[:, 0]).T
        w_max = np.matrix(limits.iloc[:, 1]).T

        ret_min = (mu * w_min).item()
        ret_max = (mu * w_max).item()

        if rm == "MV":
            risk_min = np.sqrt(w_min.T * sigma * w_min).item()
            risk_max = np.sqrt(w_max.T * sigma * w_max).item()
        elif rm == "MAD":
            risk_min = rk.MAD(returns * w_min)
            risk_max = rk.MAD(returns * w_max)
        elif rm == "MSV":
            risk_min = rk.SemiDeviation(returns * w_min)
            risk_max = rk.SemiDeviation(returns * w_max)
        elif rm == "CVaR":
            risk_min = rk.CVaR_Hist(returns * w_min, alpha1)
            risk_max = rk.CVaR_Hist(returns * w_max, alpha1)
        elif rm == "WR":
            risk_min = rk.WR(returns * w_min)
            risk_max = rk.WR(returns * w_max)
        elif rm == "FLPM":
            risk_min = rk.LPM(returns * w_min, rf, 1)
            risk_max = rk.LPM(returns * w_max, rf, 1)
        elif rm == "SLPM":
            risk_min = rk.LPM(returns * w_min, rf, 2)
            risk_max = rk.LPM(returns * w_max, rf, 2)
        elif rm == "MDD":
            risk_min = rk.MaxAbsDD(returns * w_min)
            risk_max = rk.MaxAbsDD(returns * w_max)
        elif rm == "ADD":
            risk_min = rk.AvgAbsDD(returns * w_min)
            risk_max = rk.AvgAbsDD(returns * w_max)
        elif rm == "CDaR":
            risk_min = rk.ConAbsDD(returns * w_min, alpha1)
            risk_max = rk.ConAbsDD(returns * w_max, alpha1)

        mus = np.linspace(ret_min, ret_max + (ret_max - ret_min) / (points), points + 1)

        risks = np.linspace(
            risk_min, risk_max + (risk_max - risk_min) / (points), points + 1
        )

        risk_lims = [
            "upperdev",
            "uppermad",
            "uppersdev",
            "upperCVaR",
            "upperwr",
            "upperflpm",
            "upperslpm",
            "uppermdd",
            "upperadd",
            "upperCDaR",
        ]

        risk_names = [
            "MV",
            "MAD",
            "MSV",
            "CVaR",
            "WR",
            "FLPM",
            "SLPM",
            "MDD",
            "ADD",
            "CDaR",
        ]

        item = risk_names.index(rm)

        frontier = []
        n = 0
        for i in range(len(risks)):
            try:
                if n == 0:
                    w = self.optimization(
                        model=model, rm=rm, obj="MinRisk", rf=rf, l=0, hist=hist
                    )
                else:
                    setattr(self, risk_lims[item], risks[i])
                    w = self.optimization(
                        model=model, rm=rm, obj="MaxRet", rf=rf, l=0, hist=hist
                    )
                n += 1
                frontier.append(w)
            except:
                pass

        setattr(self, risk_lims[item], None)
        frontier = pd.concat(frontier, axis=1)
        frontier.columns = list(range(len(risks)))

        return frontier