def main(): if len(sys.argv) < 3: print_usage() return 2 try: quality_type = sys.argv[1] test_dataset_filepath = sys.argv[2] except ValueError: print_usage() return 2 vmaf_model_path = get_cmd_option(sys.argv, 3, len(sys.argv), '--vmaf-model') cache_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--cache-result') parallelize = cmd_option_exists(sys.argv, 3, len(sys.argv), '--parallelize') print_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--print-result') suppress_plot = cmd_option_exists(sys.argv, 3, len(sys.argv), '--suppress-plot') pool_method = get_cmd_option(sys.argv, 3, len(sys.argv), '--pool') if not (pool_method is None or pool_method in POOL_METHODS): print '--pool can only have option among {}'.format(', '.join(POOL_METHODS)) return 2 subj_model = get_cmd_option(sys.argv, 3, len(sys.argv), '--subj-model') try: if subj_model is not None: subj_model_class = SubjectiveModel.find_subclass(subj_model) else: subj_model_class = None except Exception as e: print "Error: " + str(e) return 1 if vmaf_model_path is not None and quality_type != VmafQualityRunner.TYPE: print "Input error: only quality_type of VMAF accepts --vmaf-model." print_usage() return 2 try: test_dataset = import_python_file(test_dataset_filepath) except Exception as e: print "Error: " + str(e) return 1 try: runner_class = QualityRunner.find_subclass(quality_type) except Exception as e: print "Error: " + str(e) return 1 if cache_result: result_store = FileSystemResultStore() else: result_store = None # pooling if pool_method == 'harmonic_mean': aggregate_method = ListStats.harmonic_mean elif pool_method == 'min': aggregate_method = np.min elif pool_method == 'median': aggregate_method = np.median elif pool_method == 'perc5': aggregate_method = ListStats.perc5 elif pool_method == 'perc10': aggregate_method = ListStats.perc10 elif pool_method == 'perc20': aggregate_method = ListStats.perc20 else: # None or 'mean' aggregate_method = np.mean try: if suppress_plot: raise AssertionError import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1) assets, results = test_on_dataset(test_dataset, runner_class, ax, result_store, vmaf_model_path, parallelize=parallelize, aggregate_method=aggregate_method, subj_model_class=subj_model_class, ) bbox = {'facecolor':'white', 'alpha':0.5, 'pad':20} ax.annotate('Testing Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox) # ax.set_xlim([-10, 110]) # ax.set_ylim([-10, 110]) plt.tight_layout() plt.show() except ImportError: print_matplotlib_warning() assets, results = test_on_dataset(test_dataset, runner_class, None, result_store, vmaf_model_path, parallelize=parallelize, aggregate_method=aggregate_method, subj_model_class=subj_model_class, ) except AssertionError: assets, results = test_on_dataset(test_dataset, runner_class, None, result_store, vmaf_model_path, parallelize=parallelize, aggregate_method=aggregate_method, subj_model_class=subj_model_class, ) if print_result: for result in results: print result print '' return 0
def main(): if len(sys.argv) < 5: print_usage() return 2 try: train_dataset_filepath = sys.argv[1] feature_param_filepath = sys.argv[2] model_param_filepath = sys.argv[3] output_model_filepath = sys.argv[4] except ValueError: print_usage() return 2 try: train_dataset = import_python_file(train_dataset_filepath) feature_param = import_python_file(feature_param_filepath) model_param = import_python_file(model_param_filepath) except Exception as e: print "Error: " + str(e) return 1 cache_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--cache-result') parallelize = cmd_option_exists(sys.argv, 3, len(sys.argv), '--parallelize') pool_method = get_cmd_option(sys.argv, 3, len(sys.argv), '--pool') if not (pool_method is None or pool_method in POOL_METHODS): print '--pool can only have option among {}'.format(', '.join(POOL_METHODS)) return 2 if cache_result: result_store = FileSystemResultStore() else: result_store = None # pooling if pool_method == 'harmonic_mean': aggregate_method = ListStats.harmonic_mean elif pool_method == 'min': aggregate_method = np.min elif pool_method == 'median': aggregate_method = np.median elif pool_method == 'perc5': aggregate_method = ListStats.perc5 elif pool_method == 'perc10': aggregate_method = ListStats.perc10 elif pool_method == 'perc20': aggregate_method = ListStats.perc20 else: # None or 'mean' aggregate_method = np.mean logger = None try: import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1) train_test_vmaf_on_dataset(train_dataset=train_dataset, test_dataset=None, feature_param=feature_param, model_param=model_param, train_ax=ax, test_ax=None, result_store=result_store, parallelize=parallelize, logger=logger, output_model_filepath=output_model_filepath, aggregate_method=aggregate_method ) bbox = {'facecolor':'white', 'alpha':0.5, 'pad':20} ax.annotate('Training Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox) # ax.set_xlim([-10, 110]) # ax.set_ylim([-10, 110]) plt.tight_layout() plt.show() except ImportError: print_matplotlib_warning() train_test_vmaf_on_dataset(train_dataset=train_dataset, test_dataset=None, feature_param=feature_param, model_param=model_param, train_ax=None, test_ax=None, result_store=result_store, parallelize=parallelize, logger=logger, output_model_filepath=output_model_filepath, aggregate_method=aggregate_method ) return 0
try: import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1) train_test_on_dataset(train_dataset=train_dataset, test_dataset=None, feature_param=feature_param, model_param=model_param, train_ax=ax, test_ax=None, result_store=result_store, parallelize=parallelize, output_model_filepath=output_model_filepath ) bbox = {'facecolor':'white', 'alpha':1, 'pad':20} ax.annotate('Training Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox) plt.tight_layout() plt.show() except ImportError: print_matplotlib_warning() train_test_on_dataset(train_dataset=train_dataset, test_dataset=None, feature_param=feature_param, model_param=model_param, train_ax=None, test_ax=None, result_store=result_store, parallelize=parallelize, output_model_filepath=output_model_filepath ) print 'Done.' exit(0)
def main(): if len(sys.argv) < 5: print_usage() return 2 try: train_dataset_filepath = sys.argv[1] feature_param_filepath = sys.argv[2] model_param_filepath = sys.argv[3] output_model_filepath = sys.argv[4] except ValueError: print_usage() return 2 try: train_dataset = import_python_file(train_dataset_filepath) feature_param = import_python_file(feature_param_filepath) model_param = import_python_file(model_param_filepath) except Exception as e: print "Error: " + str(e) return 1 cache_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--cache-result') parallelize = cmd_option_exists(sys.argv, 3, len(sys.argv), '--parallelize') pool_method = get_cmd_option(sys.argv, 3, len(sys.argv), '--pool') if not (pool_method is None or pool_method in POOL_METHODS): print '--pool can only have option among {}'.format(', '.join(POOL_METHODS)) return 2 subj_model = get_cmd_option(sys.argv, 3, len(sys.argv), '--subj-model') try: if subj_model is not None: subj_model_class = SubjectiveModel.find_subclass(subj_model) else: subj_model_class = None except Exception as e: print "Error: " + str(e) return 1 if cache_result: result_store = FileSystemResultStore() else: result_store = None # pooling if pool_method == 'harmonic_mean': aggregate_method = ListStats.harmonic_mean elif pool_method == 'min': aggregate_method = np.min elif pool_method == 'median': aggregate_method = np.median elif pool_method == 'perc5': aggregate_method = ListStats.perc5 elif pool_method == 'perc10': aggregate_method = ListStats.perc10 elif pool_method == 'perc20': aggregate_method = ListStats.perc20 else: # None or 'mean' aggregate_method = np.mean logger = None try: import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1) train_test_vmaf_on_dataset(train_dataset=train_dataset, test_dataset=None, feature_param=feature_param, model_param=model_param, train_ax=ax, test_ax=None, result_store=result_store, parallelize=parallelize, logger=logger, output_model_filepath=output_model_filepath, aggregate_method=aggregate_method, subj_model_class=subj_model_class, ) bbox = {'facecolor':'white', 'alpha':0.5, 'pad':20} ax.annotate('Training Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox) # ax.set_xlim([-10, 110]) # ax.set_ylim([-10, 110]) plt.tight_layout() plt.show() except ImportError: print_matplotlib_warning() train_test_vmaf_on_dataset(train_dataset=train_dataset, test_dataset=None, feature_param=feature_param, model_param=model_param, train_ax=None, test_ax=None, result_store=result_store, parallelize=parallelize, logger=logger, output_model_filepath=output_model_filepath, aggregate_method=aggregate_method, subj_model_class=subj_model_class, ) return 0
def main(): if len(sys.argv) < 3: print_usage() return 2 try: quality_type = sys.argv[1] test_dataset_filepath = sys.argv[2] except ValueError: print_usage() return 2 vmaf_model_path = get_cmd_option(sys.argv, 3, len(sys.argv), "--vmaf-model") cache_result = cmd_option_exists(sys.argv, 3, len(sys.argv), "--cache-result") parallelize = cmd_option_exists(sys.argv, 3, len(sys.argv), "--parallelize") print_result = cmd_option_exists(sys.argv, 3, len(sys.argv), "--print-result") pool_method = get_cmd_option(sys.argv, 3, len(sys.argv), "--pool") if not (pool_method is None or pool_method in POOL_METHODS): print "--pool can only have option among {}".format(", ".join(POOL_METHODS)) return 2 subj_model = get_cmd_option(sys.argv, 3, len(sys.argv), "--subj-model") try: if subj_model is not None: subj_model_class = SubjectiveModel.find_subclass(subj_model) else: subj_model_class = None except Exception as e: print "Error: " + str(e) return 1 if vmaf_model_path is not None and quality_type != VmafQualityRunner.TYPE: print "Input error: only quality_type of VMAF accepts --vmaf-model." print_usage() return 2 try: test_dataset = import_python_file(test_dataset_filepath) except Exception as e: print "Error: " + str(e) return 1 try: runner_class = QualityRunner.find_subclass(quality_type) except Exception as e: print "Error: " + str(e) return 1 if cache_result: result_store = FileSystemResultStore() else: result_store = None # pooling if pool_method == "harmonic_mean": aggregate_method = ListStats.harmonic_mean elif pool_method == "min": aggregate_method = np.min elif pool_method == "median": aggregate_method = np.median elif pool_method == "perc5": aggregate_method = ListStats.perc5 elif pool_method == "perc10": aggregate_method = ListStats.perc10 elif pool_method == "perc20": aggregate_method = ListStats.perc20 else: # None or 'mean' aggregate_method = np.mean try: import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1) assets, results = test_on_dataset( test_dataset, runner_class, ax, result_store, vmaf_model_path, parallelize=parallelize, aggregate_method=aggregate_method, subj_model_class=subj_model_class, ) bbox = {"facecolor": "white", "alpha": 0.5, "pad": 20} ax.annotate("Testing Set", xy=(0.1, 0.85), xycoords="axes fraction", bbox=bbox) # ax.set_xlim([-10, 110]) # ax.set_ylim([-10, 110]) plt.tight_layout() plt.show() except ImportError: print_matplotlib_warning() assets, results = test_on_dataset( test_dataset, runner_class, None, result_store, vmaf_model_path, parallelize=parallelize, aggregate_method=aggregate_method, subj_model_class=subj_model_class, ) if print_result: for result in results: print result print "" return 0