示例#1
0
def main():
    if len(sys.argv) < 3:
        print_usage()
        return 2

    try:
        quality_type = sys.argv[1]
        test_dataset_filepath = sys.argv[2]
    except ValueError:
        print_usage()
        return 2

    vmaf_model_path = get_cmd_option(sys.argv, 3, len(sys.argv), '--vmaf-model')
    cache_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--cache-result')
    parallelize = cmd_option_exists(sys.argv, 3, len(sys.argv), '--parallelize')
    print_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--print-result')
    suppress_plot = cmd_option_exists(sys.argv, 3, len(sys.argv), '--suppress-plot')

    pool_method = get_cmd_option(sys.argv, 3, len(sys.argv), '--pool')
    if not (pool_method is None
            or pool_method in POOL_METHODS):
        print '--pool can only have option among {}'.format(', '.join(POOL_METHODS))
        return 2

    subj_model = get_cmd_option(sys.argv, 3, len(sys.argv), '--subj-model')

    try:
        if subj_model is not None:
            subj_model_class = SubjectiveModel.find_subclass(subj_model)
        else:
            subj_model_class = None
    except Exception as e:
        print "Error: " + str(e)
        return 1

    if vmaf_model_path is not None and quality_type != VmafQualityRunner.TYPE:
        print "Input error: only quality_type of VMAF accepts --vmaf-model."
        print_usage()
        return 2

    try:
        test_dataset = import_python_file(test_dataset_filepath)
    except Exception as e:
        print "Error: " + str(e)
        return 1

    try:
        runner_class = QualityRunner.find_subclass(quality_type)
    except Exception as e:
        print "Error: " + str(e)
        return 1

    if cache_result:
        result_store = FileSystemResultStore()
    else:
        result_store = None

    # pooling
    if pool_method == 'harmonic_mean':
        aggregate_method = ListStats.harmonic_mean
    elif pool_method == 'min':
        aggregate_method = np.min
    elif pool_method == 'median':
        aggregate_method = np.median
    elif pool_method == 'perc5':
        aggregate_method = ListStats.perc5
    elif pool_method == 'perc10':
        aggregate_method = ListStats.perc10
    elif pool_method == 'perc20':
        aggregate_method = ListStats.perc20
    else: # None or 'mean'
        aggregate_method = np.mean

    try:
        if suppress_plot:
            raise AssertionError

        import matplotlib.pyplot as plt
        fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1)

        assets, results = test_on_dataset(test_dataset, runner_class, ax,
                        result_store, vmaf_model_path,
                        parallelize=parallelize,
                        aggregate_method=aggregate_method,
                        subj_model_class=subj_model_class,
                        )

        bbox = {'facecolor':'white', 'alpha':0.5, 'pad':20}
        ax.annotate('Testing Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox)

        # ax.set_xlim([-10, 110])
        # ax.set_ylim([-10, 110])

        plt.tight_layout()
        plt.show()
    except ImportError:
        print_matplotlib_warning()
        assets, results = test_on_dataset(test_dataset, runner_class, None,
                        result_store, vmaf_model_path,
                        parallelize=parallelize,
                        aggregate_method=aggregate_method,
                        subj_model_class=subj_model_class,
                        )
    except AssertionError:
        assets, results = test_on_dataset(test_dataset, runner_class, None,
                        result_store, vmaf_model_path,
                        parallelize=parallelize,
                        aggregate_method=aggregate_method,
                        subj_model_class=subj_model_class,
                        )

    if print_result:
        for result in results:
            print result
            print ''

    return 0
示例#2
0
def main():

    if len(sys.argv) < 5:
        print_usage()
        return 2

    try:
        train_dataset_filepath = sys.argv[1]
        feature_param_filepath = sys.argv[2]
        model_param_filepath = sys.argv[3]
        output_model_filepath = sys.argv[4]
    except ValueError:
        print_usage()
        return 2

    try:
        train_dataset = import_python_file(train_dataset_filepath)
        feature_param = import_python_file(feature_param_filepath)
        model_param = import_python_file(model_param_filepath)
    except Exception as e:
        print "Error: " + str(e)
        return 1

    cache_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--cache-result')
    parallelize = cmd_option_exists(sys.argv, 3, len(sys.argv), '--parallelize')

    pool_method = get_cmd_option(sys.argv, 3, len(sys.argv), '--pool')
    if not (pool_method is None
            or pool_method in POOL_METHODS):
        print '--pool can only have option among {}'.format(', '.join(POOL_METHODS))
        return 2

    if cache_result:
        result_store = FileSystemResultStore()
    else:
        result_store = None

    # pooling
    if pool_method == 'harmonic_mean':
        aggregate_method = ListStats.harmonic_mean
    elif pool_method == 'min':
        aggregate_method = np.min
    elif pool_method == 'median':
        aggregate_method = np.median
    elif pool_method == 'perc5':
        aggregate_method = ListStats.perc5
    elif pool_method == 'perc10':
        aggregate_method = ListStats.perc10
    elif pool_method == 'perc20':
        aggregate_method = ListStats.perc20
    else: # None or 'mean'
        aggregate_method = np.mean

    logger = None

    try:
        import matplotlib.pyplot as plt
        fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1)

        train_test_vmaf_on_dataset(train_dataset=train_dataset, test_dataset=None,
                                   feature_param=feature_param, model_param=model_param,
                                   train_ax=ax, test_ax=None,
                                   result_store=result_store,
                                   parallelize=parallelize,
                                   logger=logger,
                                   output_model_filepath=output_model_filepath,
                                   aggregate_method=aggregate_method
                                   )

        bbox = {'facecolor':'white', 'alpha':0.5, 'pad':20}
        ax.annotate('Training Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox)

        # ax.set_xlim([-10, 110])
        # ax.set_ylim([-10, 110])

        plt.tight_layout()
        plt.show()
    except ImportError:
        print_matplotlib_warning()
        train_test_vmaf_on_dataset(train_dataset=train_dataset, test_dataset=None,
                                   feature_param=feature_param, model_param=model_param,
                                   train_ax=None, test_ax=None,
                                   result_store=result_store,
                                   parallelize=parallelize,
                                   logger=logger,
                                   output_model_filepath=output_model_filepath,
                                   aggregate_method=aggregate_method
                                   )

    return 0
示例#3
0
    try:
        import matplotlib.pyplot as plt
        fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1)

        train_test_on_dataset(train_dataset=train_dataset, test_dataset=None,
                              feature_param=feature_param, model_param=model_param,
                              train_ax=ax, test_ax=None,
                              result_store=result_store,
                              parallelize=parallelize,
                              output_model_filepath=output_model_filepath
                              )

        bbox = {'facecolor':'white', 'alpha':1, 'pad':20}
        ax.annotate('Training Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox)

        plt.tight_layout()
        plt.show()
    except ImportError:
        print_matplotlib_warning()
        train_test_on_dataset(train_dataset=train_dataset, test_dataset=None,
                              feature_param=feature_param, model_param=model_param,
                              train_ax=None, test_ax=None,
                              result_store=result_store,
                              parallelize=parallelize,
                              output_model_filepath=output_model_filepath
                              )

    print 'Done.'

    exit(0)
示例#4
0
def main():

    if len(sys.argv) < 5:
        print_usage()
        return 2

    try:
        train_dataset_filepath = sys.argv[1]
        feature_param_filepath = sys.argv[2]
        model_param_filepath = sys.argv[3]
        output_model_filepath = sys.argv[4]
    except ValueError:
        print_usage()
        return 2

    try:
        train_dataset = import_python_file(train_dataset_filepath)
        feature_param = import_python_file(feature_param_filepath)
        model_param = import_python_file(model_param_filepath)
    except Exception as e:
        print "Error: " + str(e)
        return 1

    cache_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--cache-result')
    parallelize = cmd_option_exists(sys.argv, 3, len(sys.argv), '--parallelize')

    pool_method = get_cmd_option(sys.argv, 3, len(sys.argv), '--pool')
    if not (pool_method is None
            or pool_method in POOL_METHODS):
        print '--pool can only have option among {}'.format(', '.join(POOL_METHODS))
        return 2

    subj_model = get_cmd_option(sys.argv, 3, len(sys.argv), '--subj-model')

    try:
        if subj_model is not None:
            subj_model_class = SubjectiveModel.find_subclass(subj_model)
        else:
            subj_model_class = None
    except Exception as e:
        print "Error: " + str(e)
        return 1

    if cache_result:
        result_store = FileSystemResultStore()
    else:
        result_store = None

    # pooling
    if pool_method == 'harmonic_mean':
        aggregate_method = ListStats.harmonic_mean
    elif pool_method == 'min':
        aggregate_method = np.min
    elif pool_method == 'median':
        aggregate_method = np.median
    elif pool_method == 'perc5':
        aggregate_method = ListStats.perc5
    elif pool_method == 'perc10':
        aggregate_method = ListStats.perc10
    elif pool_method == 'perc20':
        aggregate_method = ListStats.perc20
    else: # None or 'mean'
        aggregate_method = np.mean

    logger = None

    try:
        import matplotlib.pyplot as plt
        fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1)

        train_test_vmaf_on_dataset(train_dataset=train_dataset, test_dataset=None,
                                   feature_param=feature_param, model_param=model_param,
                                   train_ax=ax, test_ax=None,
                                   result_store=result_store,
                                   parallelize=parallelize,
                                   logger=logger,
                                   output_model_filepath=output_model_filepath,
                                   aggregate_method=aggregate_method,
                                   subj_model_class=subj_model_class,
                                   )

        bbox = {'facecolor':'white', 'alpha':0.5, 'pad':20}
        ax.annotate('Training Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox)

        # ax.set_xlim([-10, 110])
        # ax.set_ylim([-10, 110])

        plt.tight_layout()
        plt.show()
    except ImportError:
        print_matplotlib_warning()
        train_test_vmaf_on_dataset(train_dataset=train_dataset, test_dataset=None,
                                   feature_param=feature_param, model_param=model_param,
                                   train_ax=None, test_ax=None,
                                   result_store=result_store,
                                   parallelize=parallelize,
                                   logger=logger,
                                   output_model_filepath=output_model_filepath,
                                   aggregate_method=aggregate_method,
                                   subj_model_class=subj_model_class,
                                   )

    return 0
示例#5
0
def main():
    if len(sys.argv) < 3:
        print_usage()
        return 2

    try:
        quality_type = sys.argv[1]
        test_dataset_filepath = sys.argv[2]
    except ValueError:
        print_usage()
        return 2

    vmaf_model_path = get_cmd_option(sys.argv, 3, len(sys.argv), "--vmaf-model")
    cache_result = cmd_option_exists(sys.argv, 3, len(sys.argv), "--cache-result")
    parallelize = cmd_option_exists(sys.argv, 3, len(sys.argv), "--parallelize")
    print_result = cmd_option_exists(sys.argv, 3, len(sys.argv), "--print-result")

    pool_method = get_cmd_option(sys.argv, 3, len(sys.argv), "--pool")
    if not (pool_method is None or pool_method in POOL_METHODS):
        print "--pool can only have option among {}".format(", ".join(POOL_METHODS))
        return 2

    subj_model = get_cmd_option(sys.argv, 3, len(sys.argv), "--subj-model")

    try:
        if subj_model is not None:
            subj_model_class = SubjectiveModel.find_subclass(subj_model)
        else:
            subj_model_class = None
    except Exception as e:
        print "Error: " + str(e)
        return 1

    if vmaf_model_path is not None and quality_type != VmafQualityRunner.TYPE:
        print "Input error: only quality_type of VMAF accepts --vmaf-model."
        print_usage()
        return 2

    try:
        test_dataset = import_python_file(test_dataset_filepath)
    except Exception as e:
        print "Error: " + str(e)
        return 1

    try:
        runner_class = QualityRunner.find_subclass(quality_type)
    except Exception as e:
        print "Error: " + str(e)
        return 1

    if cache_result:
        result_store = FileSystemResultStore()
    else:
        result_store = None

    # pooling
    if pool_method == "harmonic_mean":
        aggregate_method = ListStats.harmonic_mean
    elif pool_method == "min":
        aggregate_method = np.min
    elif pool_method == "median":
        aggregate_method = np.median
    elif pool_method == "perc5":
        aggregate_method = ListStats.perc5
    elif pool_method == "perc10":
        aggregate_method = ListStats.perc10
    elif pool_method == "perc20":
        aggregate_method = ListStats.perc20
    else:  # None or 'mean'
        aggregate_method = np.mean

    try:
        import matplotlib.pyplot as plt

        fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1)
        assets, results = test_on_dataset(
            test_dataset,
            runner_class,
            ax,
            result_store,
            vmaf_model_path,
            parallelize=parallelize,
            aggregate_method=aggregate_method,
            subj_model_class=subj_model_class,
        )

        bbox = {"facecolor": "white", "alpha": 0.5, "pad": 20}
        ax.annotate("Testing Set", xy=(0.1, 0.85), xycoords="axes fraction", bbox=bbox)

        # ax.set_xlim([-10, 110])
        # ax.set_ylim([-10, 110])

        plt.tight_layout()
        plt.show()
    except ImportError:
        print_matplotlib_warning()
        assets, results = test_on_dataset(
            test_dataset,
            runner_class,
            None,
            result_store,
            vmaf_model_path,
            parallelize=parallelize,
            aggregate_method=aggregate_method,
            subj_model_class=subj_model_class,
        )

    if print_result:
        for result in results:
            print result
            print ""

    return 0