예제 #1
0
def Matroid(groundset=None, data=None, **kwds):
    r"""
    Construct a matroid.

    Matroids are combinatorial structures that capture the abstract properties
    of (linear/algebraic/...) dependence. Formally, a matroid is a pair
    `M = (E, I)` of a finite set `E`, the *groundset*, and a collection of
    subsets `I`, the independent sets, subject to the following axioms:

    * `I` contains the empty set
    * If `X` is a set in `I`, then each subset of `X` is in `I`
    * If two subsets `X`, `Y` are in `I`, and `|X| > |Y|`, then there exists
      `x \in X - Y` such that `Y + \{x\}` is in `I`.

    See the :wikipedia:`Wikipedia article on matroids <Matroid>` for more
    theory and examples. Matroids can be obtained from many types of
    mathematical structures, and Sage supports a number of them.

    There are two main entry points to Sage's matroid functionality. For
    built-in matroids, do the following:

    * Within a Sage session, type "matroids." (Do not press "Enter", and do
      not forget the final period ".")
    * Hit "tab".

    You will see a list of methods which will construct matroids. For
    example::

        sage: F7 = matroids.named_matroids.Fano()
        sage: len(F7.nonspanning_circuits())
        7

    or::

        sage: U36 = matroids.Uniform(3, 6)
        sage: U36.equals(U36.dual())
        True

    To define your own matroid, use the function ``Matroid()``.
    This function attempts to interpret its arguments to create an appropriate
    matroid. The following named arguments are supported:

    INPUT:

    - ``groundset`` -- (optional) If provided, the groundset of the
      matroid. Otherwise, the function attempts to determine a groundset
      from the data.

    Exactly one of the following inputs must be given (where ``data``
    must be a positional argument and anything else must be a keyword
    argument):

    - ``data`` -- a graph or a matrix or a RevLex-Index string or a list
      of independent sets containing all bases or a matroid.
    - ``bases`` -- The list of bases (maximal independent sets) of the
      matroid.
    - ``independent_sets`` -- The list of independent sets of the matroid.
    - ``circuits`` -- The list of circuits of the matroid.
    - ``graph`` -- A graph, whose edges form the elements of the matroid.
    - ``matrix`` -- A matrix representation of the matroid.
    - ``reduced_matrix`` -- A reduced representation of the matroid: if
      ``reduced_matrix = A``
      then the matroid is represented by `[I\ \ A]` where `I` is an
      appropriately sized identity matrix.
    - ``rank_function`` -- A function that computes the rank of each subset.
      Can only be provided together with a groundset.
    - ``circuit_closures`` -- Either a list of tuples ``(k, C)`` with ``C``
      the closure of a circuit, and ``k`` the rank of ``C``, or a dictionary
      ``D`` with ``D[k]`` the set of closures of rank-``k`` circuits.
    - ``revlex`` -- the encoding as a string of ``0`` and ``*`` symbols.
      Used by [MatroidDatabase]_ and explained in [MMIB2012]_.
    - ``matroid`` -- An object that is already a matroid. Useful only with the
      ``regular`` option.

    Further options:

    - ``regular`` -- (default: ``False``) boolean. If ``True``,
      output a
      :class:`RegularMatroid <sage.matroids.linear_matroid.RegularMatroid>`
      instance such that, *if* the input defines a valid regular matroid, then
      the output represents this matroid. Note that this option can be
      combined with any type of input.
    - ``ring`` -- any ring. If provided, and the input is a ``matrix`` or
      ``reduced_matrix``, output will be a linear matroid over the ring or
      field ``ring``.
    - ``field`` -- any field. Same as ``ring``, but only fields are allowed.
    - ``check`` -- (default: ``True``) boolean. If ``True`` and
      ``regular`` is true, the output is checked to make sure it is a valid
      regular matroid.

    .. WARNING::

        Except for regular matroids, the input is not checked for validity. If
        your data does not correspond to an actual matroid, the behavior of
        the methods is undefined and may cause strange errors. To ensure you
        have a matroid, run
        :meth:`M.is_valid() <sage.matroids.matroid.Matroid.is_valid>`.

    .. NOTE::

        The ``Matroid()`` method will return instances of type
        :class:`BasisMatroid <sage.matroids.basis_matroid.BasisMatroid>`,
        :class:`CircuitClosuresMatroid <sage.matroids.circuit_closures_matroid.CircuitClosuresMatroid>`,
        :class:`LinearMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`BinaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`TernaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`QuaternaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`RegularMatroid <sage.matroids.linear_matroid.LinearMatroid>`, or
        :class:`RankMatroid <sage.matroids.rank_matroid.RankMatroid>`. To
        import these classes (and other useful functions) directly into Sage's
        main namespace, type::

            sage: from sage.matroids.advanced import *

        See :mod:`sage.matroids.advanced <sage.matroids.advanced>`.

    EXAMPLES:

    Note that in these examples we will often use the fact that strings are
    iterable in these examples. So we type ``'abcd'`` to denote the list
    ``['a', 'b', 'c', 'd']``.

    #.  List of bases:

        All of the following inputs are allowed, and equivalent::

            sage: M1 = Matroid(groundset='abcd', bases=['ab', 'ac', 'ad',
            ....:                                       'bc', 'bd', 'cd'])
            sage: M2 = Matroid(bases=['ab', 'ac', 'ad', 'bc', 'bd', 'cd'])
            sage: M3 = Matroid(['ab', 'ac', 'ad', 'bc', 'bd', 'cd'])
            sage: M4 = Matroid('abcd', ['ab', 'ac', 'ad', 'bc', 'bd', 'cd'])
            sage: M5 = Matroid('abcd', bases=[['a', 'b'], ['a', 'c'],
            ....:                             ['a', 'd'], ['b', 'c'],
            ....:                             ['b', 'd'], ['c', 'd']])
            sage: M1 == M2
            True
            sage: M1 == M3
            True
            sage: M1 == M4
            True
            sage: M1 == M5
            True

        We do not check if the provided input forms an actual matroid::

            sage: M1 = Matroid(groundset='abcd', bases=['ab', 'cd'])
            sage: M1.full_rank()
            2
            sage: M1.is_valid()
            False

        Bases may be repeated::

            sage: M1 = Matroid(['ab', 'ac'])
            sage: M2 = Matroid(['ab', 'ac', 'ab'])
            sage: M1 == M2
            True

    #.  List of independent sets:

        ::

            sage: M1 = Matroid(groundset='abcd',
            ....:              independent_sets=['', 'a', 'b', 'c', 'd', 'ab',
            ....:                               'ac', 'ad', 'bc', 'bd', 'cd'])

        We only require that the list of independent sets contains each basis
        of the matroid; omissions of smaller independent sets and
        repetitions are allowed::

            sage: M1 = Matroid(bases=['ab', 'ac'])
            sage: M2 = Matroid(independent_sets=['a', 'ab', 'b', 'ab', 'a',
            ....:                                'b', 'ac'])
            sage: M1 == M2
            True

    #.  List of circuits:

        ::

            sage: M1 = Matroid(groundset='abc', circuits=['bc'])
            sage: M2 = Matroid(bases=['ab', 'ac'])
            sage: M1 == M2
            True

        A matroid specified by a list of circuits gets converted to a
        :class:`BasisMatroid <sage.matroids.basis_matroid.BasisMatroid>`
        internally::

            sage: M = Matroid(groundset='abcd', circuits=['abc', 'abd', 'acd',
            ....:                                         'bcd'])
            sage: type(M)
            <... 'sage.matroids.basis_matroid.BasisMatroid'>

        Strange things can happen if the input does not satisfy the circuit
        axioms, and these are not always caught by the
        :meth:`is_valid() <sage.matroids.matroid.Matroid.is_valid>` method. So
        always check whether your input makes sense!

        ::

            sage: M = Matroid('abcd', circuits=['ab', 'acd'])
            sage: M.is_valid()
            True
            sage: [sorted(C) for C in M.circuits()]
            [['a']]



    #.  Graph:

        Sage has great support for graphs, see :mod:`sage.graphs.graph`.

        ::

            sage: G = graphs.PetersenGraph()
            sage: Matroid(G)
            Graphic matroid of rank 9 on 15 elements

        If each edge has a unique label, then those are used as the ground set
        labels::

            sage: G = Graph([(0, 1, 'a'), (0, 2, 'b'), (1, 2, 'c')])
            sage: M = Matroid(G)
            sage: sorted(M.groundset())
            ['a', 'b', 'c']

        If there are parallel edges, then integers are used for the ground set.
        If there are no edges in parallel, and is not a complete list of labels,
        or the labels are not unique, then vertex tuples are used::

            sage: G = Graph([(0, 1, 'a'), (0, 2, 'b'), (1, 2, 'b')])
            sage: M = Matroid(G)
            sage: sorted(M.groundset())
            [(0, 1), (0, 2), (1, 2)]
            sage: H = Graph([(0, 1, 'a'), (0, 2, 'b'), (1, 2, 'b'), (1, 2, 'c')], multiedges=True)
            sage: N = Matroid(H)
            sage: sorted(N.groundset())
            [0, 1, 2, 3]

        The GraphicMatroid object forces its graph to be connected. If a
        disconnected graph is used as input, it will connect the components.

            sage: G1 = graphs.CycleGraph(3); G2 = graphs.DiamondGraph()
            sage: G = G1.disjoint_union(G2)
            sage: M = Matroid(G)
            sage: M
            Graphic matroid of rank 5 on 8 elements
            sage: M.graph()
            Looped multi-graph on 6 vertices
            sage: M.graph().is_connected()
            True
            sage: M.is_connected()
            False


        If the keyword ``regular`` is set to ``True``, the output will instead
        be an instance of ``RegularMatroid``.

        ::

            sage: G = Graph([(0, 1), (0, 2), (1, 2)])
            sage: M = Matroid(G, regular=True); M
            Regular matroid of rank 2 on 3 elements with 3 bases

        Note: if a groundset is specified, we assume it is in the same order
        as
        :meth:`G.edge_iterator() <sage.graphs.generic_graph.GenericGraph.edge_iterator>`
        provides::

            sage: G = Graph([(0, 1), (0, 2), (0, 2), (1, 2)], multiedges=True)
            sage: M = Matroid('abcd', G)
            sage: M.rank(['b', 'c'])
            1

        As before,
        if no edge labels are present and the graph is simple, we use the
        tuples ``(i, j)`` of endpoints. If that fails, we simply use a list
        ``[0..m-1]`` ::

            sage: G = Graph([(0, 1), (0, 2), (1, 2)])
            sage: M = Matroid(G, regular=True)
            sage: sorted(M.groundset())
            [(0, 1), (0, 2), (1, 2)]

            sage: G = Graph([(0, 1), (0, 2), (0, 2), (1, 2)], multiedges=True)
            sage: M = Matroid(G, regular=True)
            sage: sorted(M.groundset())
            [0, 1, 2, 3]

        When the ``graph`` keyword is used, a variety of inputs can be
        converted to a graph automatically. The following uses a graph6 string
        (see the :class:`Graph <sage.graphs.graph.Graph>` method's
        documentation)::

            sage: Matroid(graph=':I`AKGsaOs`cI]Gb~')
            Graphic matroid of rank 9 on 17 elements

        However, this method is no more clever than ``Graph()``::

            sage: Matroid(graph=41/2)
            Traceback (most recent call last):
            ...
            ValueError: This input cannot be turned into a graph

    #.  Matrix:

        The basic input is a
        :mod:`Sage matrix <sage.matrix.constructor>`::

            sage: A = Matrix(GF(2), [[1, 0, 0, 1, 1, 0],
            ....:                    [0, 1, 0, 1, 0, 1],
            ....:                    [0, 0, 1, 0, 1, 1]])
            sage: M = Matroid(matrix=A)
            sage: M.is_isomorphic(matroids.CompleteGraphic(4))
            True

        Various shortcuts are possible::

            sage: M1 = Matroid(matrix=[[1, 0, 0, 1, 1, 0],
            ....:                      [0, 1, 0, 1, 0, 1],
            ....:                      [0, 0, 1, 0, 1, 1]], ring=GF(2))
            sage: M2 = Matroid(reduced_matrix=[[1, 1, 0],
            ....:                              [1, 0, 1],
            ....:                              [0, 1, 1]], ring=GF(2))
            sage: M3 = Matroid(groundset=[0, 1, 2, 3, 4, 5],
            ....:              matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:              ring=GF(2))
            sage: A = Matrix(GF(2), [[1, 1, 0], [1, 0, 1], [0, 1, 1]])
            sage: M4 = Matroid([0, 1, 2, 3, 4, 5], A)
            sage: M1 == M2
            True
            sage: M1 == M3
            True
            sage: M1 == M4
            True

        However, with unnamed arguments the input has to be a ``Matrix``
        instance, or the function will try to interpret it as a set of bases::

            sage: Matroid([0, 1, 2], [[1, 0, 1], [0, 1, 1]])
            Traceback (most recent call last):
            ...
            ValueError: basis has wrong cardinality.

        If the groundset size equals number of rows plus number of columns, an
        identity matrix is prepended. Otherwise the groundset size must equal
        the number of columns::

            sage: A = Matrix(GF(2), [[1, 1, 0], [1, 0, 1], [0, 1, 1]])
            sage: M = Matroid([0, 1, 2], A)
            sage: N = Matroid([0, 1, 2, 3, 4, 5], A)
            sage: M.rank()
            2
            sage: N.rank()
            3

        We automatically create an optimized subclass, if available::

            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(2))
            Binary matroid of rank 3 on 6 elements, type (2, 7)
            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(3))
            Ternary matroid of rank 3 on 6 elements, type 0-
            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(4, 'x'))
            Quaternary matroid of rank 3 on 6 elements
            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(2), regular=True)
            Regular matroid of rank 3 on 6 elements with 16 bases

        Otherwise the generic LinearMatroid class is used::

            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(83))
            Linear matroid of rank 3 on 6 elements represented over the Finite
            Field of size 83

        An integer matrix is automatically converted to a matrix over `\QQ`.
        If you really want integers, you can specify the ring explicitly::

            sage: A = Matrix([[1, 1, 0], [1, 0, 1], [0, 1, -1]])
            sage: A.base_ring()
            Integer Ring
            sage: M = Matroid([0, 1, 2, 3, 4, 5], A)
            sage: M.base_ring()
            Rational Field
            sage: M = Matroid([0, 1, 2, 3, 4, 5], A, ring=ZZ)
            sage: M.base_ring()
            Integer Ring

    #.  Rank function:

        Any function mapping subsets to integers can be used as input::

            sage: def f(X):
            ....:     return min(len(X), 2)
            sage: M = Matroid('abcd', rank_function=f)
            sage: M
            Matroid of rank 2 on 4 elements
            sage: M.is_isomorphic(matroids.Uniform(2, 4))
            True

    #.  Circuit closures:

        This is often a really concise way to specify a matroid. The usual way
        is a dictionary of lists::

            sage: M = Matroid(circuit_closures={3: ['edfg', 'acdg', 'bcfg',
            ....:     'cefh', 'afgh', 'abce', 'abdf', 'begh', 'bcdh', 'adeh'],
            ....:     4: ['abcdefgh']})
            sage: M.equals(matroids.named_matroids.P8())
            True

        You can also input tuples `(k, X)` where `X` is the closure of a
        circuit, and `k` the rank of `X`::

            sage: M = Matroid(circuit_closures=[(2, 'abd'), (3, 'abcdef'),
            ....:                               (2, 'bce')])
            sage: M.equals(matroids.named_matroids.Q6())
            True

    #.  RevLex-Index:

        This requires the ``groundset`` to be given and also needs a
        additional keyword argument ``rank`` to specify the rank of the
        matroid::

            sage: M = Matroid("abcdef", "000000******0**", rank=4); M
            Matroid of rank 4 on 6 elements with 8 bases
            sage: list(M.bases())
            [frozenset({'a', 'b', 'd', 'f'}),
             frozenset({'a', 'c', 'd', 'f'}),
             frozenset({'b', 'c', 'd', 'f'}),
             frozenset({'a', 'b', 'e', 'f'}),
             frozenset({'a', 'c', 'e', 'f'}),
             frozenset({'b', 'c', 'e', 'f'}),
             frozenset({'b', 'd', 'e', 'f'}),
             frozenset({'c', 'd', 'e', 'f'})]

        Only the ``0`` symbols really matter, any symbol can be used
        instead of ``*``:

            sage: Matroid("abcdefg", revlex="0++++++++0++++0+++++0+--++----+--++", rank=4)
            Matroid of rank 4 on 7 elements with 31 bases

        It is checked that the input makes sense (but not that it
        defines a matroid)::

            sage: Matroid("abcdef", "000000******0**")
            Traceback (most recent call last):
            ...
            TypeError: for RevLex-Index, the rank needs to be specified
            sage: Matroid("abcdef", "000000******0**", rank=3)
            Traceback (most recent call last):
            ...
            ValueError: expected string of length 20 (6 choose 3), got 15
            sage: M = Matroid("abcdef", "*0000000000000*", rank=4); M
            Matroid of rank 4 on 6 elements with 2 bases
            sage: M.is_valid()
            False

    #.  Matroid:

        Most of the time, the matroid itself is returned::

            sage: M = matroids.named_matroids.Fano()
            sage: N = Matroid(M)
            sage: N is M
            True

        But it can be useful with the ``regular`` option::

            sage: M = Matroid(circuit_closures={2:['adb', 'bec', 'cfa',
            ....:                                  'def'], 3:['abcdef']})
            sage: N = Matroid(M, regular=True)
            sage: N
            Regular matroid of rank 3 on 6 elements with 16 bases
            sage: Matrix(N)
            [1 0 0 1 1 0]
            [0 1 0 1 1 1]
            [0 0 1 0 1 1]

    The ``regular`` option::

        sage: M = Matroid(reduced_matrix=[[1, 1, 0],
        ....:                             [1, 0, 1],
        ....:                             [0, 1, 1]], regular=True)
        sage: M
        Regular matroid of rank 3 on 6 elements with 16 bases

        sage: M.is_isomorphic(matroids.CompleteGraphic(4))
        True

    By default we check if the resulting matroid is actually regular. To
    increase speed, this check can be skipped::

        sage: M = matroids.named_matroids.Fano()
        sage: N = Matroid(M, regular=True)
        Traceback (most recent call last):
        ...
        ValueError: input is not a valid regular matroid
        sage: N = Matroid(M, regular=True, check=False)
        sage: N
        Regular matroid of rank 3 on 7 elements with 32 bases

        sage: N.is_valid()
        False

    Sometimes the output is regular, but represents a different matroid
    from the one you intended::

        sage: M = Matroid(Matrix(GF(3), [[1, 0, 1, 1], [0, 1, 1, 2]]))
        sage: N = Matroid(Matrix(GF(3), [[1, 0, 1, 1], [0, 1, 1, 2]]),
        ....:             regular=True)
        sage: N.is_valid()
        True
        sage: N.is_isomorphic(M)
        False

    TESTS::

        sage: Matroid()
        Traceback (most recent call last):
        ...
        TypeError: no input data given for Matroid()
        sage: Matroid("abc", bases=["abc"], foo="bar")
        Traceback (most recent call last):
        ...
        TypeError: Matroid() got an unexpected keyword argument 'foo'
        sage: Matroid(data=["x"], matrix=Matrix(1,1))
        Traceback (most recent call last):
        ...
        TypeError: Matroid() got an unexpected keyword argument 'matrix'
        sage: Matroid(bases=["x"], matrix=Matrix(1,1))
        Traceback (most recent call last):
        ...
        TypeError: Matroid() got an unexpected keyword argument 'matrix'
        sage: Matroid(Matrix(1,1), ring=ZZ, field=QQ)
        Traceback (most recent call last):
        ...
        TypeError: Matroid() got an unexpected keyword argument 'ring'
        sage: Matroid(rank_function=lambda X: len(X))
        Traceback (most recent call last):
        ...
        TypeError: for rank functions, the groundset needs to be specified
        sage: Matroid(matroid="rubbish")
        Traceback (most recent call last):
        ...
        TypeError: input 'rubbish' is not a matroid
    """
    # process options
    want_regular = kwds.pop('regular', False)
    check = kwds.pop('check', True)

    base_ring = None
    if 'field' in kwds:
        base_ring = kwds.pop('field')
        if check and not base_ring.is_field():
            raise TypeError("{} is not a field".format(base_ring))
    elif 'ring' in kwds:
        base_ring = kwds.pop('ring')
        if check and not base_ring.is_ring():
            raise TypeError("{} is not a ring".format(base_ring))

    # "key" is the kind of data we got
    key = None
    if data is None:
        for k in ['bases', 'independent_sets', 'circuits', 'graph',
                'matrix', 'reduced_matrix', 'rank_function', 'revlex',
                'circuit_closures', 'matroid']:
            if k in kwds:
                data = kwds.pop(k)
                key = k
                break
        else:
            # Assume that the single positional argument was actually
            # the data (instead of the groundset)
            data = groundset
            groundset = None

    if key is None:
        if isinstance(data, sage.graphs.graph.Graph):
            key = 'graph'
        elif is_Matrix(data):
            key = 'matrix'
        elif isinstance(data, sage.matroids.matroid.Matroid):
            key = 'matroid'
        elif isinstance(data, str):
            key = 'revlex'
        elif data is None:
            raise TypeError("no input data given for Matroid()")
        else:
            key = 'independent_sets'

    # Bases:
    if key == 'bases':
        if groundset is None:
            groundset = set()
            for B in data:
                groundset.update(B)
        M = BasisMatroid(groundset=groundset, bases=data)

    # Independent sets:
    elif key == 'independent_sets':
        # Convert to list of bases first
        rk = -1
        bases = []
        for I in data:
            if len(I) == rk:
                bases.append(I)
            elif len(I) > rk:
                bases = [I]
                rk = len(I)
        if groundset is None:
            groundset = set()
            for B in bases:
                groundset.update(B)
        M = BasisMatroid(groundset=groundset, bases=bases)

    # Circuits:
    elif key == 'circuits':
        # Convert to list of bases first
        # Determine groundset (note that this cannot detect coloops)
        if groundset is None:
            groundset = set()
            for C in data:
                groundset.update(C)
        # determine the rank by computing a basis element
        b = set(groundset)
        for C in data:
            I = b.intersection(C)
            if len(I) >= len(C):
                b.discard(I.pop())
        rk = len(b)
        # Construct the basis matroid of appropriate rank. Note: slow!
        BB = [frozenset(B) for B in combinations(groundset, rk) if not any([frozenset(C).issubset(B) for C in data])]
        M = BasisMatroid(groundset=groundset, bases=BB)

    # Graphs:

    elif key == 'graph':
        if isinstance(data, sage.graphs.generic_graph.GenericGraph):
            G = data
        else:
            G = Graph(data)
        # Decide on the groundset
        m = G.num_edges()
        if groundset is None:
            # 1. Attempt to use edge labels.
            sl = G.edge_labels()
            if len(sl) == len(set(sl)):
                groundset = sl
                # 2. If simple, use vertex tuples
            elif not G.has_multiple_edges():
                groundset = [(i, j) for i, j, k in G.edge_iterator()]
            else:
                # 3. Use numbers
                groundset = list(range(m))
        if want_regular:
        # Construct the incidence matrix
        # NOTE: we are not using Sage's built-in method because
        # 1) we would need to fix the loops anyway
        # 2) Sage will sort the columns, making it impossible to keep labels!
            V = G.vertices()
            n = G.num_verts()
            A = Matrix(ZZ, n, m, 0)
            mm = 0
            for i, j, k in G.edge_iterator():
                A[V.index(i), mm] = -1
                A[V.index(j), mm] += 1  # So loops get 0
                mm += 1
            M = RegularMatroid(matrix=A, groundset=groundset)
            want_regular = False  # Save some time, since result is already regular
        else:
            M = GraphicMatroid(G, groundset=groundset)

    # Matrices:
    elif key in ['matrix', 'reduced_matrix']:
        A = data
        is_reduced = (key == 'reduced_matrix')

        # Fix the representation
        if not is_Matrix(A):
            if base_ring is not None:
                A = Matrix(base_ring, A)
            else:
                A = Matrix(A)

        # Fix the ring
        if base_ring is not None:
            if A.base_ring() is not base_ring:
                A = A.change_ring(base_ring)
        elif A.base_ring() is ZZ and not want_regular:  # Usually a rational matrix is intended, we presume.
            A = A.change_ring(QQ)
            base_ring = QQ
        else:
            base_ring = A.base_ring()

        # Check groundset
        if groundset is not None:
            if not is_reduced:
                if len(groundset) == A.ncols():
                    pass
                elif len(groundset) == A.nrows() + A.ncols():
                    is_reduced = True
                else:
                    raise ValueError("groundset size does not correspond to matrix size")
            elif is_reduced:
                if len(groundset) == A.nrows() + A.ncols():
                    pass
                else:
                    raise ValueError("groundset size does not correspond to matrix size")

        if is_reduced:
            kw = dict(groundset=groundset, reduced_matrix=A)
        else:
            kw = dict(groundset=groundset, matrix=A)

        if isinstance(base_ring, FiniteField):
            q = base_ring.order()
        else:
            q = 0

        if q == 2:
            M = BinaryMatroid(**kw)
        elif q == 3:
            M = TernaryMatroid(**kw)
        elif q == 4:
            M = QuaternaryMatroid(**kw)
        else:
            M = LinearMatroid(ring=base_ring, **kw)

    # Rank functions:
    elif key == 'rank_function':
        if groundset is None:
            raise TypeError('for rank functions, the groundset needs to be specified')
        M = RankMatroid(groundset=groundset, rank_function=data)

    # RevLex-Index:
    elif key == "revlex":
        if groundset is None:
            raise TypeError('for RevLex-Index, the groundset needs to be specified')
        try:
            rk = kwds.pop("rank")
        except KeyError:
            raise TypeError('for RevLex-Index, the rank needs to be specified')

        groundset = tuple(groundset)
        data = tuple(data)
        rk = int(rk)
        N = len(groundset)

        def revlex_sort_key(s):
            return tuple(reversed(s))
        subsets = sorted(combinations(range(N), rk), key=revlex_sort_key)
        if len(data) != len(subsets):
            raise ValueError("expected string of length %s (%s choose %s), got %s" %
                (len(subsets), N, rk, len(data)))
        bases = []
        for i, x in enumerate(data):
            if x != '0':
                bases.append([groundset[c] for c in subsets[i]])
        M = BasisMatroid(groundset=groundset, bases=bases)

    # Circuit closures:
    elif key == 'circuit_closures':
        if isinstance(data, dict):
            CC = data
        else:
            # Convert to dictionary
            CC = {}
            for X in data:
                if X[0] not in CC:
                    CC[X[0]] = []
                CC[X[0]].append(X[1])

        if groundset is None:
            groundset = set()
            for X in itervalues(CC):
                for Y in X:
                    groundset.update(Y)

        M = CircuitClosuresMatroid(groundset=groundset, circuit_closures=CC)

    # Matroids:
    elif key == 'matroid':
        if not isinstance(data, sage.matroids.matroid.Matroid):
            raise TypeError("input {!r} is not a matroid".format(data))
        M = data

    else:
        raise AssertionError("unknown key %r" % key)

    # All keywords should be used
    for k in kwds:
        raise TypeError("Matroid() got an unexpected keyword argument '{}'".format(k))

    if want_regular:
        M = sage.matroids.utilities.make_regular_matroid_from_matroid(M)
        if check and not M.is_valid():
            raise ValueError('input is not a valid regular matroid')

    return M
예제 #2
0
파일: constructor.py 프로젝트: yazici/sage
def Matroid(groundset=None, data=None, **kwds):
    r"""
    Construct a matroid.

    Matroids are combinatorial structures that capture the abstract properties
    of (linear/algebraic/...) dependence. Formally, a matroid is a pair
    `M = (E, I)` of a finite set `E`, the *groundset*, and a collection of
    subsets `I`, the independent sets, subject to the following axioms:

    * `I` contains the empty set
    * If `X` is a set in `I`, then each subset of `X` is in `I`
    * If two subsets `X`, `Y` are in `I`, and `|X| > |Y|`, then there exists
      `x \in X - Y` such that `Y + \{x\}` is in `I`.

    See the :wikipedia:`Wikipedia article on matroids <Matroid>` for more
    theory and examples. Matroids can be obtained from many types of
    mathematical structures, and Sage supports a number of them.

    There are two main entry points to Sage's matroid functionality. For
    built-in matroids, do the following:

    * Within a Sage session, type "matroids." (Do not press "Enter", and do
      not forget the final period ".")
    * Hit "tab".

    You will see a list of methods which will construct matroids. For
    example::

        sage: F7 = matroids.named_matroids.Fano()
        sage: len(F7.nonspanning_circuits())
        7

    or::

        sage: U36 = matroids.Uniform(3, 6)
        sage: U36.equals(U36.dual())
        True

    To define your own matroid, use the function ``Matroid()``.
    This function attempts to interpret its arguments to create an appropriate
    matroid. The following named arguments are supported:

    INPUT:

    - ``groundset`` -- (optional) If provided, the groundset of the
      matroid. Otherwise, the function attempts to determine a groundset
      from the data.

    Exactly one of the following inputs must be given (where ``data``
    must be a positional argument and anything else must be a keyword
    argument):

    - ``data`` -- a graph or a matrix or a RevLex-Index string or a list
      of independent sets containing all bases or a matroid.
    - ``bases`` -- The list of bases (maximal independent sets) of the
      matroid.
    - ``independent_sets`` -- The list of independent sets of the matroid.
    - ``circuits`` -- The list of circuits of the matroid.
    - ``graph`` -- A graph, whose edges form the elements of the matroid.
    - ``matrix`` -- A matrix representation of the matroid.
    - ``reduced_matrix`` -- A reduced representation of the matroid: if
      ``reduced_matrix = A``
      then the matroid is represented by `[I\ \ A]` where `I` is an
      appropriately sized identity matrix.
    - ``rank_function`` -- A function that computes the rank of each subset.
      Can only be provided together with a groundset.
    - ``circuit_closures`` -- Either a list of tuples ``(k, C)`` with ``C``
      the closure of a circuit, and ``k`` the rank of ``C``, or a dictionary
      ``D`` with ``D[k]`` the set of closures of rank-``k`` circuits.
    - ``revlex`` -- the encoding as a string of ``0`` and ``*`` symbols.
      Used by [MatroidDatabase]_ and explained in [MMIB2012]_.
    - ``matroid`` -- An object that is already a matroid. Useful only with the
      ``regular`` option.

    Further options:

    - ``regular`` -- (default: ``False``) boolean. If ``True``,
      output a
      :class:`RegularMatroid <sage.matroids.linear_matroid.RegularMatroid>`
      instance such that, *if* the input defines a valid regular matroid, then
      the output represents this matroid. Note that this option can be
      combined with any type of input.
    - ``ring`` -- any ring. If provided, and the input is a ``matrix`` or
      ``reduced_matrix``, output will be a linear matroid over the ring or
      field ``ring``.
    - ``field`` -- any field. Same as ``ring``, but only fields are allowed.
    - ``check`` -- (default: ``True``) boolean. If ``True`` and
      ``regular`` is true, the output is checked to make sure it is a valid
      regular matroid.

    .. WARNING::

        Except for regular matroids, the input is not checked for validity. If
        your data does not correspond to an actual matroid, the behavior of
        the methods is undefined and may cause strange errors. To ensure you
        have a matroid, run
        :meth:`M.is_valid() <sage.matroids.matroid.Matroid.is_valid>`.

    .. NOTE::

        The ``Matroid()`` method will return instances of type
        :class:`BasisMatroid <sage.matroids.basis_matroid.BasisMatroid>`,
        :class:`CircuitClosuresMatroid <sage.matroids.circuit_closures_matroid.CircuitClosuresMatroid>`,
        :class:`LinearMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`BinaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`TernaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`QuaternaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`RegularMatroid <sage.matroids.linear_matroid.LinearMatroid>`, or
        :class:`RankMatroid <sage.matroids.rank_matroid.RankMatroid>`. To
        import these classes (and other useful functions) directly into Sage's
        main namespace, type::

            sage: from sage.matroids.advanced import *

        See :mod:`sage.matroids.advanced <sage.matroids.advanced>`.

    EXAMPLES:

    Note that in these examples we will often use the fact that strings are
    iterable in these examples. So we type ``'abcd'`` to denote the list
    ``['a', 'b', 'c', 'd']``.

    #.  List of bases:

        All of the following inputs are allowed, and equivalent::

            sage: M1 = Matroid(groundset='abcd', bases=['ab', 'ac', 'ad',
            ....:                                       'bc', 'bd', 'cd'])
            sage: M2 = Matroid(bases=['ab', 'ac', 'ad', 'bc', 'bd', 'cd'])
            sage: M3 = Matroid(['ab', 'ac', 'ad', 'bc', 'bd', 'cd'])
            sage: M4 = Matroid('abcd', ['ab', 'ac', 'ad', 'bc', 'bd', 'cd'])
            sage: M5 = Matroid('abcd', bases=[['a', 'b'], ['a', 'c'],
            ....:                             ['a', 'd'], ['b', 'c'],
            ....:                             ['b', 'd'], ['c', 'd']])
            sage: M1 == M2
            True
            sage: M1 == M3
            True
            sage: M1 == M4
            True
            sage: M1 == M5
            True

        We do not check if the provided input forms an actual matroid::

            sage: M1 = Matroid(groundset='abcd', bases=['ab', 'cd'])
            sage: M1.full_rank()
            2
            sage: M1.is_valid()
            False

        Bases may be repeated::

            sage: M1 = Matroid(['ab', 'ac'])
            sage: M2 = Matroid(['ab', 'ac', 'ab'])
            sage: M1 == M2
            True

    #.  List of independent sets:

        ::

            sage: M1 = Matroid(groundset='abcd',
            ....:              independent_sets=['', 'a', 'b', 'c', 'd', 'ab',
            ....:                               'ac', 'ad', 'bc', 'bd', 'cd'])

        We only require that the list of independent sets contains each basis
        of the matroid; omissions of smaller independent sets and
        repetitions are allowed::

            sage: M1 = Matroid(bases=['ab', 'ac'])
            sage: M2 = Matroid(independent_sets=['a', 'ab', 'b', 'ab', 'a',
            ....:                                'b', 'ac'])
            sage: M1 == M2
            True

    #.  List of circuits:

        ::

            sage: M1 = Matroid(groundset='abc', circuits=['bc'])
            sage: M2 = Matroid(bases=['ab', 'ac'])
            sage: M1 == M2
            True

        A matroid specified by a list of circuits gets converted to a
        :class:`BasisMatroid <sage.matroids.basis_matroid.BasisMatroid>`
        internally::

            sage: M = Matroid(groundset='abcd', circuits=['abc', 'abd', 'acd',
            ....:                                         'bcd'])
            sage: type(M)
            <... 'sage.matroids.basis_matroid.BasisMatroid'>

        Strange things can happen if the input does not satisfy the circuit
        axioms, and these are not always caught by the
        :meth:`is_valid() <sage.matroids.matroid.Matroid.is_valid>` method. So
        always check whether your input makes sense!

        ::

            sage: M = Matroid('abcd', circuits=['ab', 'acd'])
            sage: M.is_valid()
            True
            sage: [sorted(C) for C in M.circuits()] # py2
            [['a']]
            sage: [sorted(C) for C in M.circuits()] # py3 random
            [['a']]



    #.  Graph:

        Sage has great support for graphs, see :mod:`sage.graphs.graph`.

        ::

            sage: G = graphs.PetersenGraph()
            sage: Matroid(G)
            Graphic matroid of rank 9 on 15 elements

        If each edge has a unique label, then those are used as the ground set
        labels::

            sage: G = Graph([(0, 1, 'a'), (0, 2, 'b'), (1, 2, 'c')])
            sage: M = Matroid(G)
            sage: sorted(M.groundset())
            ['a', 'b', 'c']

        If there are parallel edges, then integers are used for the ground set.
        If there are no edges in parallel, and is not a complete list of labels,
        or the labels are not unique, then vertex tuples are used::

            sage: G = Graph([(0, 1, 'a'), (0, 2, 'b'), (1, 2, 'b')])
            sage: M = Matroid(G)
            sage: sorted(M.groundset())
            [(0, 1), (0, 2), (1, 2)]
            sage: H = Graph([(0, 1, 'a'), (0, 2, 'b'), (1, 2, 'b'), (1, 2, 'c')], multiedges=True)
            sage: N = Matroid(H)
            sage: sorted(N.groundset())
            [0, 1, 2, 3]

        The GraphicMatroid object forces its graph to be connected. If a
        disconnected graph is used as input, it will connect the components.

            sage: G1 = graphs.CycleGraph(3); G2 = graphs.DiamondGraph()
            sage: G = G1.disjoint_union(G2)
            sage: M = Matroid(G)
            sage: M
            Graphic matroid of rank 5 on 8 elements
            sage: M.graph()
            Looped multi-graph on 6 vertices
            sage: M.graph().is_connected()
            True
            sage: M.is_connected()
            False


        If the keyword ``regular`` is set to ``True``, the output will instead
        be an instance of ``RegularMatroid``.

        ::

            sage: G = Graph([(0, 1), (0, 2), (1, 2)])
            sage: M = Matroid(G, regular=True); M
            Regular matroid of rank 2 on 3 elements with 3 bases

        Note: if a groundset is specified, we assume it is in the same order
        as
        :meth:`G.edge_iterator() <sage.graphs.generic_graph.GenericGraph.edge_iterator>`
        provides::

            sage: G = Graph([(0, 1), (0, 2), (0, 2), (1, 2)], multiedges=True)
            sage: M = Matroid('abcd', G)
            sage: M.rank(['b', 'c'])
            1

        As before,
        if no edge labels are present and the graph is simple, we use the
        tuples ``(i, j)`` of endpoints. If that fails, we simply use a list
        ``[0..m-1]`` ::

            sage: G = Graph([(0, 1), (0, 2), (1, 2)])
            sage: M = Matroid(G, regular=True)
            sage: sorted(M.groundset())
            [(0, 1), (0, 2), (1, 2)]

            sage: G = Graph([(0, 1), (0, 2), (0, 2), (1, 2)], multiedges=True)
            sage: M = Matroid(G, regular=True)
            sage: sorted(M.groundset())
            [0, 1, 2, 3]

        When the ``graph`` keyword is used, a variety of inputs can be
        converted to a graph automatically. The following uses a graph6 string
        (see the :class:`Graph <sage.graphs.graph.Graph>` method's
        documentation)::

            sage: Matroid(graph=':I`AKGsaOs`cI]Gb~')
            Graphic matroid of rank 9 on 17 elements

        However, this method is no more clever than ``Graph()``::

            sage: Matroid(graph=41/2)
            Traceback (most recent call last):
            ...
            ValueError: This input cannot be turned into a graph

    #.  Matrix:

        The basic input is a
        :mod:`Sage matrix <sage.matrix.constructor>`::

            sage: A = Matrix(GF(2), [[1, 0, 0, 1, 1, 0],
            ....:                    [0, 1, 0, 1, 0, 1],
            ....:                    [0, 0, 1, 0, 1, 1]])
            sage: M = Matroid(matrix=A)
            sage: M.is_isomorphic(matroids.CompleteGraphic(4))
            True

        Various shortcuts are possible::

            sage: M1 = Matroid(matrix=[[1, 0, 0, 1, 1, 0],
            ....:                      [0, 1, 0, 1, 0, 1],
            ....:                      [0, 0, 1, 0, 1, 1]], ring=GF(2))
            sage: M2 = Matroid(reduced_matrix=[[1, 1, 0],
            ....:                              [1, 0, 1],
            ....:                              [0, 1, 1]], ring=GF(2))
            sage: M3 = Matroid(groundset=[0, 1, 2, 3, 4, 5],
            ....:              matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:              ring=GF(2))
            sage: A = Matrix(GF(2), [[1, 1, 0], [1, 0, 1], [0, 1, 1]])
            sage: M4 = Matroid([0, 1, 2, 3, 4, 5], A)
            sage: M1 == M2
            True
            sage: M1 == M3
            True
            sage: M1 == M4
            True

        However, with unnamed arguments the input has to be a ``Matrix``
        instance, or the function will try to interpret it as a set of bases::

            sage: Matroid([0, 1, 2], [[1, 0, 1], [0, 1, 1]])
            Traceback (most recent call last):
            ...
            ValueError: basis has wrong cardinality.

        If the groundset size equals number of rows plus number of columns, an
        identity matrix is prepended. Otherwise the groundset size must equal
        the number of columns::

            sage: A = Matrix(GF(2), [[1, 1, 0], [1, 0, 1], [0, 1, 1]])
            sage: M = Matroid([0, 1, 2], A)
            sage: N = Matroid([0, 1, 2, 3, 4, 5], A)
            sage: M.rank()
            2
            sage: N.rank()
            3

        We automatically create an optimized subclass, if available::

            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(2))
            Binary matroid of rank 3 on 6 elements, type (2, 7)
            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(3))
            Ternary matroid of rank 3 on 6 elements, type 0-
            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(4, 'x'))
            Quaternary matroid of rank 3 on 6 elements
            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(2), regular=True)
            Regular matroid of rank 3 on 6 elements with 16 bases

        Otherwise the generic LinearMatroid class is used::

            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(83))
            Linear matroid of rank 3 on 6 elements represented over the Finite
            Field of size 83

        An integer matrix is automatically converted to a matrix over `\QQ`.
        If you really want integers, you can specify the ring explicitly::

            sage: A = Matrix([[1, 1, 0], [1, 0, 1], [0, 1, -1]])
            sage: A.base_ring()
            Integer Ring
            sage: M = Matroid([0, 1, 2, 3, 4, 5], A)
            sage: M.base_ring()
            Rational Field
            sage: M = Matroid([0, 1, 2, 3, 4, 5], A, ring=ZZ)
            sage: M.base_ring()
            Integer Ring

    #.  Rank function:

        Any function mapping subsets to integers can be used as input::

            sage: def f(X):
            ....:     return min(len(X), 2)
            sage: M = Matroid('abcd', rank_function=f)
            sage: M
            Matroid of rank 2 on 4 elements
            sage: M.is_isomorphic(matroids.Uniform(2, 4))
            True

    #.  Circuit closures:

        This is often a really concise way to specify a matroid. The usual way
        is a dictionary of lists::

            sage: M = Matroid(circuit_closures={3: ['edfg', 'acdg', 'bcfg',
            ....:     'cefh', 'afgh', 'abce', 'abdf', 'begh', 'bcdh', 'adeh'],
            ....:     4: ['abcdefgh']})
            sage: M.equals(matroids.named_matroids.P8())
            True

        You can also input tuples `(k, X)` where `X` is the closure of a
        circuit, and `k` the rank of `X`::

            sage: M = Matroid(circuit_closures=[(2, 'abd'), (3, 'abcdef'),
            ....:                               (2, 'bce')])
            sage: M.equals(matroids.named_matroids.Q6())
            True

    #.  RevLex-Index:

        This requires the ``groundset`` to be given and also needs a
        additional keyword argument ``rank`` to specify the rank of the
        matroid::

            sage: M = Matroid("abcdef", "000000******0**", rank=4); M
            Matroid of rank 4 on 6 elements with 8 bases
            sage: list(M.bases())
            [frozenset({'a', 'b', 'd', 'f'}),
             frozenset({'a', 'c', 'd', 'f'}),
             frozenset({'b', 'c', 'd', 'f'}),
             frozenset({'a', 'b', 'e', 'f'}),
             frozenset({'a', 'c', 'e', 'f'}),
             frozenset({'b', 'c', 'e', 'f'}),
             frozenset({'b', 'd', 'e', 'f'}),
             frozenset({'c', 'd', 'e', 'f'})]

        Only the ``0`` symbols really matter, any symbol can be used
        instead of ``*``:

            sage: Matroid("abcdefg", revlex="0++++++++0++++0+++++0+--++----+--++", rank=4)
            Matroid of rank 4 on 7 elements with 31 bases

        It is checked that the input makes sense (but not that it
        defines a matroid)::

            sage: Matroid("abcdef", "000000******0**")
            Traceback (most recent call last):
            ...
            TypeError: for RevLex-Index, the rank needs to be specified
            sage: Matroid("abcdef", "000000******0**", rank=3)
            Traceback (most recent call last):
            ...
            ValueError: expected string of length 20 (6 choose 3), got 15
            sage: M = Matroid("abcdef", "*0000000000000*", rank=4); M
            Matroid of rank 4 on 6 elements with 2 bases
            sage: M.is_valid()
            False

    #.  Matroid:

        Most of the time, the matroid itself is returned::

            sage: M = matroids.named_matroids.Fano()
            sage: N = Matroid(M)
            sage: N is M
            True

        But it can be useful with the ``regular`` option::

            sage: M = Matroid(circuit_closures={2:['adb', 'bec', 'cfa',
            ....:                                  'def'], 3:['abcdef']})
            sage: N = Matroid(M, regular=True)
            sage: N
            Regular matroid of rank 3 on 6 elements with 16 bases
            sage: M == N
            False
            sage: M.is_isomorphic(N)
            True
            sage: Matrix(N) # py2
            [1 0 0 1 1 0]
            [0 1 0 1 1 1]
            [0 0 1 0 1 1]
            sage: Matrix(N) # py3 random
            [1 0 0 1 1 0]
            [0 1 0 1 1 1]
            [0 0 1 0 1 1]

    The ``regular`` option::

        sage: M = Matroid(reduced_matrix=[[1, 1, 0],
        ....:                             [1, 0, 1],
        ....:                             [0, 1, 1]], regular=True)
        sage: M
        Regular matroid of rank 3 on 6 elements with 16 bases

        sage: M.is_isomorphic(matroids.CompleteGraphic(4))
        True

    By default we check if the resulting matroid is actually regular. To
    increase speed, this check can be skipped::

        sage: M = matroids.named_matroids.Fano()
        sage: N = Matroid(M, regular=True)
        Traceback (most recent call last):
        ...
        ValueError: input is not a valid regular matroid
        sage: N = Matroid(M, regular=True, check=False)
        sage: N
        Regular matroid of rank 3 on 7 elements with 32 bases

        sage: N.is_valid()
        False

    Sometimes the output is regular, but represents a different matroid
    from the one you intended::

        sage: M = Matroid(Matrix(GF(3), [[1, 0, 1, 1], [0, 1, 1, 2]]))
        sage: N = Matroid(Matrix(GF(3), [[1, 0, 1, 1], [0, 1, 1, 2]]),
        ....:             regular=True)
        sage: N.is_valid()
        True
        sage: N.is_isomorphic(M)
        False

    TESTS::

        sage: Matroid()
        Traceback (most recent call last):
        ...
        TypeError: no input data given for Matroid()
        sage: Matroid("abc", bases=["abc"], foo="bar")
        Traceback (most recent call last):
        ...
        TypeError: Matroid() got an unexpected keyword argument 'foo'
        sage: Matroid(data=["x"], matrix=Matrix(1,1))
        Traceback (most recent call last):
        ...
        TypeError: Matroid() got an unexpected keyword argument 'matrix'
        sage: Matroid(bases=["x"], matrix=Matrix(1,1))
        Traceback (most recent call last):
        ...
        TypeError: Matroid() got an unexpected keyword argument 'matrix'
        sage: Matroid(Matrix(1,1), ring=ZZ, field=QQ)
        Traceback (most recent call last):
        ...
        TypeError: Matroid() got an unexpected keyword argument 'ring'
        sage: Matroid(rank_function=lambda X: len(X))
        Traceback (most recent call last):
        ...
        TypeError: for rank functions, the groundset needs to be specified
        sage: Matroid(matroid="rubbish")
        Traceback (most recent call last):
        ...
        TypeError: input 'rubbish' is not a matroid
    """
    # process options
    want_regular = kwds.pop('regular', False)
    check = kwds.pop('check', True)

    base_ring = None
    if 'field' in kwds:
        base_ring = kwds.pop('field')
        if check and not base_ring.is_field():
            raise TypeError("{} is not a field".format(base_ring))
    elif 'ring' in kwds:
        base_ring = kwds.pop('ring')
        if check and not base_ring.is_ring():
            raise TypeError("{} is not a ring".format(base_ring))

    # "key" is the kind of data we got
    key = None
    if data is None:
        for k in [
                'bases', 'independent_sets', 'circuits', 'graph', 'matrix',
                'reduced_matrix', 'rank_function', 'revlex',
                'circuit_closures', 'matroid'
        ]:
            if k in kwds:
                data = kwds.pop(k)
                key = k
                break
        else:
            # Assume that the single positional argument was actually
            # the data (instead of the groundset)
            data = groundset
            groundset = None

    if key is None:
        if isinstance(data, sage.graphs.graph.Graph):
            key = 'graph'
        elif is_Matrix(data):
            key = 'matrix'
        elif isinstance(data, sage.matroids.matroid.Matroid):
            key = 'matroid'
        elif isinstance(data, str):
            key = 'revlex'
        elif data is None:
            raise TypeError("no input data given for Matroid()")
        else:
            key = 'independent_sets'

    # Bases:
    if key == 'bases':
        if groundset is None:
            groundset = set()
            for B in data:
                groundset.update(B)
        M = BasisMatroid(groundset=groundset, bases=data)

    # Independent sets:
    elif key == 'independent_sets':
        # Convert to list of bases first
        rk = -1
        bases = []
        for I in data:
            if len(I) == rk:
                bases.append(I)
            elif len(I) > rk:
                bases = [I]
                rk = len(I)
        if groundset is None:
            groundset = set()
            for B in bases:
                groundset.update(B)
        M = BasisMatroid(groundset=groundset, bases=bases)

    # Circuits:
    elif key == 'circuits':
        # Convert to list of bases first
        # Determine groundset (note that this cannot detect coloops)
        if groundset is None:
            groundset = set()
            for C in data:
                groundset.update(C)
        # determine the rank by computing a basis element
        b = set(groundset)
        for C in data:
            I = b.intersection(C)
            if len(I) >= len(C):
                b.discard(I.pop())
        rk = len(b)
        # Construct the basis matroid of appropriate rank. Note: slow!
        BB = [
            frozenset(B) for B in combinations(groundset, rk)
            if not any(frozenset(C).issubset(B) for C in data)
        ]
        M = BasisMatroid(groundset=groundset, bases=BB)

    # Graphs:

    elif key == 'graph':
        if isinstance(data, sage.graphs.generic_graph.GenericGraph):
            G = data
        else:
            G = Graph(data)
        # Decide on the groundset
        m = G.num_edges()
        if groundset is None:
            # 1. Attempt to use edge labels.
            sl = G.edge_labels()
            if len(sl) == len(set(sl)):
                groundset = sl
                # 2. If simple, use vertex tuples
            elif not G.has_multiple_edges():
                groundset = [(i, j) for i, j, k in G.edge_iterator()]
            else:
                # 3. Use numbers
                groundset = list(range(m))
        if want_regular:
            # Construct the incidence matrix
            # NOTE: we are not using Sage's built-in method because
            # 1) we would need to fix the loops anyway
            # 2) Sage will sort the columns, making it impossible to keep labels!
            V = G.vertices()
            n = G.num_verts()
            A = Matrix(ZZ, n, m, 0)
            mm = 0
            for i, j, k in G.edge_iterator():
                A[V.index(i), mm] = -1
                A[V.index(j), mm] += 1  # So loops get 0
                mm += 1
            M = RegularMatroid(matrix=A, groundset=groundset)
            want_regular = False  # Save some time, since result is already regular
        else:
            M = GraphicMatroid(G, groundset=groundset)

    # Matrices:
    elif key in ['matrix', 'reduced_matrix']:
        A = data
        is_reduced = (key == 'reduced_matrix')

        # Fix the representation
        if not is_Matrix(A):
            if base_ring is not None:
                A = Matrix(base_ring, A)
            else:
                A = Matrix(A)

        # Fix the ring
        if base_ring is not None:
            if A.base_ring() is not base_ring:
                A = A.change_ring(base_ring)
        elif A.base_ring(
        ) is ZZ and not want_regular:  # Usually a rational matrix is intended, we presume.
            A = A.change_ring(QQ)
            base_ring = QQ
        else:
            base_ring = A.base_ring()

        # Check groundset
        if groundset is not None:
            if not is_reduced:
                if len(groundset) == A.ncols():
                    pass
                elif len(groundset) == A.nrows() + A.ncols():
                    is_reduced = True
                else:
                    raise ValueError(
                        "groundset size does not correspond to matrix size")
            elif is_reduced:
                if len(groundset) == A.nrows() + A.ncols():
                    pass
                else:
                    raise ValueError(
                        "groundset size does not correspond to matrix size")

        if is_reduced:
            kw = dict(groundset=groundset, reduced_matrix=A)
        else:
            kw = dict(groundset=groundset, matrix=A)

        if isinstance(base_ring, FiniteField):
            q = base_ring.order()
        else:
            q = 0

        if q == 2:
            M = BinaryMatroid(**kw)
        elif q == 3:
            M = TernaryMatroid(**kw)
        elif q == 4:
            M = QuaternaryMatroid(**kw)
        else:
            M = LinearMatroid(ring=base_ring, **kw)

    # Rank functions:
    elif key == 'rank_function':
        if groundset is None:
            raise TypeError(
                'for rank functions, the groundset needs to be specified')
        M = RankMatroid(groundset=groundset, rank_function=data)

    # RevLex-Index:
    elif key == "revlex":
        if groundset is None:
            raise TypeError(
                'for RevLex-Index, the groundset needs to be specified')
        try:
            rk = kwds.pop("rank")
        except KeyError:
            raise TypeError('for RevLex-Index, the rank needs to be specified')

        groundset = tuple(groundset)
        data = tuple(data)
        rk = int(rk)
        N = len(groundset)

        def revlex_sort_key(s):
            return tuple(reversed(s))

        subsets = sorted(combinations(range(N), rk), key=revlex_sort_key)
        if len(data) != len(subsets):
            raise ValueError(
                "expected string of length %s (%s choose %s), got %s" %
                (len(subsets), N, rk, len(data)))
        bases = []
        for i, x in enumerate(data):
            if x != '0':
                bases.append([groundset[c] for c in subsets[i]])
        M = BasisMatroid(groundset=groundset, bases=bases)

    # Circuit closures:
    elif key == 'circuit_closures':
        if isinstance(data, dict):
            CC = data
        else:
            # Convert to dictionary
            CC = {}
            for X in data:
                if X[0] not in CC:
                    CC[X[0]] = []
                CC[X[0]].append(X[1])

        if groundset is None:
            groundset = set()
            for X in itervalues(CC):
                for Y in X:
                    groundset.update(Y)

        M = CircuitClosuresMatroid(groundset=groundset, circuit_closures=CC)

    # Matroids:
    elif key == 'matroid':
        if not isinstance(data, sage.matroids.matroid.Matroid):
            raise TypeError("input {!r} is not a matroid".format(data))
        M = data

    else:
        raise AssertionError("unknown key %r" % key)

    # All keywords should be used
    for k in kwds:
        raise TypeError(
            "Matroid() got an unexpected keyword argument '{}'".format(k))

    if want_regular:
        M = sage.matroids.utilities.make_regular_matroid_from_matroid(M)
        if check and not M.is_valid():
            raise ValueError('input is not a valid regular matroid')

    return M
예제 #3
0
def Matroid(*args, **kwds):
    r"""
    Construct a matroid.

    Matroids are combinatorial structures that capture the abstract properties
    of (linear/algebraic/...) dependence. Formally, a matroid is a pair
    `M = (E, I)` of a finite set `E`, the *groundset*, and a collection of
    subsets `I`, the independent sets, subject to the following axioms:

    * `I` contains the empty set
    * If `X` is a set in `I`, then each subset of `X` is in `I`
    * If two subsets `X`, `Y` are in `I`, and `|X| > |Y|`, then there exists
      `x \in X - Y` such that `Y + \{x\}` is in `I`.

    See the :wikipedia:`Wikipedia article on matroids <Matroid>` for more
    theory and examples. Matroids can be obtained from many types of
    mathematical structures, and Sage supports a number of them.

    There are two main entry points to Sage's matroid functionality. For
    built-in matroids, do the following:

    * Within a Sage session, type "matroids." (Do not press "Enter", and do
      not forget the final period ".")
    * Hit "tab".

    You will see a list of methods which will construct matroids. For
    example::

        sage: F7 = matroids.named_matroids.Fano()
        sage: len(F7.nonspanning_circuits())
        7

    or::

        sage: U36 = matroids.Uniform(3, 6)
        sage: U36.equals(U36.dual())
        True

    To define your own matroid, use the function ``Matroid()``.
    This function attempts to interpret its arguments to create an appropriate
    matroid. The following named arguments are supported:

    INPUT:

    - ``groundset`` -- If provided, the groundset of the matroid.
      If not provided, the function attempts to determine a groundset from the
      data.
    - ``bases`` -- The list of bases (maximal independent sets) of the
      matroid.
    - ``independent_sets`` -- The list of independent sets of the matroid.
    - ``circuits`` -- The list of circuits of the matroid.
    - ``graph`` -- A graph, whose edges form the elements of the matroid.
    - ``matrix`` -- A matrix representation of the matroid.
    - ``reduced_matrix`` -- A reduced representation of the matroid: if
      ``reduced_matrix = A``
      then the matroid is represented by `[I\ \ A]` where `I` is an
      appropriately sized identity matrix.
    - ``rank_function`` -- A function that computes the rank of each subset.
      Can only be provided together with a groundset.
    - ``circuit_closures`` -- Either a list of tuples ``(k, C)`` with ``C``
      the closure of a circuit, and ``k`` the rank of ``C``, or a dictionary
      ``D`` with ``D[k]`` the set of closures of rank-``k`` circuits.
    - ``matroid`` -- An object that is already a matroid. Useful only with the
      ``regular`` option.

    Up to two unnamed arguments are allowed.

    - One unnamed argument, no named arguments other than ``regular`` -- the
      input should be either a graph, or a matrix, or a list of independent
      sets containing all bases, or a matroid.
    - Two unnamed arguments: the first is the groundset, the second a graph,
      or a matrix, or a list of independent sets containing all bases, or a
      matroid.
    - One unnamed argument, at least one named argument: the unnamed argument
      is the groundset, the named argument is as above (but must be different
      from ``groundset``).

    The examples section details how each of the input types deals with
    explicit or implicit groundset arguments.

    OPTIONS:

    - ``regular`` -- (default: ``False``) boolean. If ``True``,
      output a
      :class:`RegularMatroid <sage.matroids.linear_matroid.RegularMatroid>`
      instance such that, *if* the input defines a valid regular matroid, then
      the output represents this matroid. Note that this option can be
      combined with any type of input.
    - ``ring`` -- any ring. If provided, and the input is a ``matrix`` or
      ``reduced_matrix``, output will be a linear matroid over the ring or
      field ``ring``.
    - ``field`` -- any field. Same as ``ring``, but only fields are allowed.
    - ``check`` -- (default: ``True``) boolean. If ``True`` and
      ``regular`` is true, the output is checked to make sure it is a valid
      regular matroid.

    .. WARNING::

        Except for regular matroids, the input is not checked for validity. If
        your data does not correspond to an actual matroid, the behavior of
        the methods is undefined and may cause strange errors. To ensure you
        have a matroid, run
        :meth:`M.is_valid() <sage.matroids.matroid.Matroid.is_valid>`.

    .. NOTE::

        The ``Matroid()`` method will return instances of type
        :class:`BasisMatroid <sage.matroids.basis_matroid.BasisMatroid>`,
        :class:`CircuitClosuresMatroid <sage.matroids.circuit_closures_matroid.CircuitClosuresMatroid>`,
        :class:`LinearMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`BinaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`TernaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`QuaternaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`RegularMatroid <sage.matroids.linear_matroid.LinearMatroid>`, or
        :class:`RankMatroid <sage.matroids.rank_matroid.RankMatroid>`. To
        import these classes (and other useful functions) directly into Sage's
        main namespace, type::

            sage: from sage.matroids.advanced import *

        See :mod:`sage.matroids.advanced <sage.matroids.advanced>`.

    EXAMPLES:

    Note that in these examples we will often use the fact that strings are
    iterable in these examples. So we type ``'abcd'`` to denote the list
    ``['a', 'b', 'c', 'd']``.

    #. List of bases:

        All of the following inputs are allowed, and equivalent::

            sage: M1 = Matroid(groundset='abcd', bases=['ab', 'ac', 'ad',
            ....:                                       'bc', 'bd', 'cd'])
            sage: M2 = Matroid(bases=['ab', 'ac', 'ad', 'bc', 'bd', 'cd'])
            sage: M3 = Matroid(['ab', 'ac', 'ad', 'bc', 'bd', 'cd'])
            sage: M4 = Matroid('abcd', ['ab', 'ac', 'ad', 'bc', 'bd', 'cd'])
            sage: M5 = Matroid('abcd', bases=[['a', 'b'], ['a', 'c'],
            ....:                             ['a', 'd'], ['b', 'c'],
            ....:                             ['b', 'd'], ['c', 'd']])
            sage: M1 == M2
            True
            sage: M1 == M3
            True
            sage: M1 == M4
            True
            sage: M1 == M5
            True

        We do not check if the provided input forms an actual matroid::

            sage: M1 = Matroid(groundset='abcd', bases=['ab', 'cd'])
            sage: M1.full_rank()
            2
            sage: M1.is_valid()
            False

        Bases may be repeated::

            sage: M1 = Matroid(['ab', 'ac'])
            sage: M2 = Matroid(['ab', 'ac', 'ab'])
            sage: M1 == M2
            True

    #. List of independent sets:

        ::

            sage: M1 = Matroid(groundset='abcd',
            ....:              independent_sets=['', 'a', 'b', 'c', 'd', 'ab',
            ....:                               'ac', 'ad', 'bc', 'bd', 'cd'])

        We only require that the list of independent sets contains each basis
        of the matroid; omissions of smaller independent sets and
        repetitions are allowed::

            sage: M1 = Matroid(bases=['ab', 'ac'])
            sage: M2 = Matroid(independent_sets=['a', 'ab', 'b', 'ab', 'a',
            ....:                                'b', 'ac'])
            sage: M1 == M2
            True

    #. List of circuits:

        ::

            sage: M1 = Matroid(groundset='abc', circuits=['bc'])
            sage: M2 = Matroid(bases=['ab', 'ac'])
            sage: M1 == M2
            True

        A matroid specified by a list of circuits gets converted to a
        :class:`BasisMatroid <sage.matroids.basis_matroid.BasisMatroid>`
        internally::

            sage: M = Matroid(groundset='abcd', circuits=['abc', 'abd', 'acd',
            ....:                                         'bcd'])
            sage: type(M)
            <type 'sage.matroids.basis_matroid.BasisMatroid'>

        Strange things can happen if the input does not satisfy the circuit
        axioms, and these are not always caught by the
        :meth:`is_valid() <sage.matroids.matroid.Matroid.is_valid>` method. So
        always check whether your input makes sense!

        ::

            sage: M = Matroid('abcd', circuits=['ab', 'acd'])
            sage: M.is_valid()
            True
            sage: [sorted(C) for C in M.circuits()]
            [['a']]



    #. Graph:

        Sage has great support for graphs, see :mod:`sage.graphs.graph`.

        ::

            sage: G = graphs.PetersenGraph()
            sage: Matroid(G)
            Regular matroid of rank 9 on 15 elements with 2000 bases


        Note: if a groundset is specified, we assume it is in the same order
        as
        :meth:`G.edge_iterator() <sage.graphs.generic_graph.GenericGraph.edge_iterator>`
        provides::

            sage: G = Graph([(0, 1), (0, 2), (0, 2), (1, 2)])
            sage: M = Matroid('abcd', G)
            sage: M.rank(['b', 'c'])
            1

        If no groundset is provided, we attempt to use the edge labels::

            sage: G = Graph([(0, 1, 'a'), (0, 2, 'b'), (1, 2, 'c')])
            sage: M = Matroid(G)
            sage: sorted(M.groundset())
            ['a', 'b', 'c']

        If no edge labels are present and the graph is simple, we use the
        tuples ``(i, j)`` of endpoints. If that fails, we simply use a list
        ``[0..m-1]`` ::

            sage: G = Graph([(0, 1), (0, 2), (1, 2)])
            sage: M = Matroid(G)
            sage: sorted(M.groundset())
            [(0, 1), (0, 2), (1, 2)]

            sage: G = Graph([(0, 1), (0, 2), (0, 2), (1, 2)])
            sage: M = Matroid(G)
            sage: sorted(M.groundset())
            [0, 1, 2, 3]

        When the ``graph`` keyword is used, a variety of inputs can be
        converted to a graph automatically. The following uses a graph6 string
        (see the :class:`Graph <sage.graphs.graph.Graph>` method's
        documentation)::

            sage: Matroid(graph=':I`AKGsaOs`cI]Gb~')
            Regular matroid of rank 9 on 17 elements with 4004 bases

        However, this method is no more clever than ``Graph()``::

            sage: Matroid(graph=41/2)
            Traceback (most recent call last):
            ...
            ValueError: input does not seem to represent a graph.


    #. Matrix:

        The basic input is a
        :mod:`Sage matrix <sage.matrix.constructor>`::

            sage: A = Matrix(GF(2), [[1, 0, 0, 1, 1, 0],
            ....:                    [0, 1, 0, 1, 0, 1],
            ....:                    [0, 0, 1, 0, 1, 1]])
            sage: M = Matroid(matrix=A)
            sage: M.is_isomorphic(matroids.CompleteGraphic(4))
            True

        Various shortcuts are possible::

            sage: M1 = Matroid(matrix=[[1, 0, 0, 1, 1, 0],
            ....:                      [0, 1, 0, 1, 0, 1],
            ....:                      [0, 0, 1, 0, 1, 1]], ring=GF(2))
            sage: M2 = Matroid(reduced_matrix=[[1, 1, 0],
            ....:                              [1, 0, 1],
            ....:                              [0, 1, 1]], ring=GF(2))
            sage: M3 = Matroid(groundset=[0, 1, 2, 3, 4, 5],
            ....:              matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:              ring=GF(2))
            sage: A = Matrix(GF(2), [[1, 1, 0], [1, 0, 1], [0, 1, 1]])
            sage: M4 = Matroid([0, 1, 2, 3, 4, 5], A)
            sage: M1 == M2
            True
            sage: M1 == M3
            True
            sage: M1 == M4
            True

        However, with unnamed arguments the input has to be a ``Matrix``
        instance, or the function will try to interpret it as a set of bases::

            sage: Matroid([0, 1, 2], [[1, 0, 1], [0, 1, 1]])
            Traceback (most recent call last):
            ...
            ValueError: basis has wrong cardinality.


        If the groundset size equals number of rows plus number of columns, an
        identity matrix is prepended. Otherwise the groundset size must equal
        the number of columns::

            sage: A = Matrix(GF(2), [[1, 1, 0], [1, 0, 1], [0, 1, 1]])
            sage: M = Matroid([0, 1, 2], A)
            sage: N = Matroid([0, 1, 2, 3, 4, 5], A)
            sage: M.rank()
            2
            sage: N.rank()
            3

        We automatically create an optimized subclass, if available::

            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(2))
            Binary matroid of rank 3 on 6 elements, type (2, 7)
            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(3))
            Ternary matroid of rank 3 on 6 elements, type 0-
            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(4, 'x'))
            Quaternary matroid of rank 3 on 6 elements
            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(2), regular=True)
            Regular matroid of rank 3 on 6 elements with 16 bases

        Otherwise the generic LinearMatroid class is used::

            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(83))
            Linear matroid of rank 3 on 6 elements represented over the Finite
            Field of size 83

        An integer matrix is automatically converted to a matrix over `\QQ`.
        If you really want integers, you can specify the ring explicitly::

            sage: A = Matrix([[1, 1, 0], [1, 0, 1], [0, 1, -1]])
            sage: A.base_ring()
            Integer Ring
            sage: M = Matroid([0, 1, 2, 3, 4, 5], A)
            sage: M.base_ring()
            Rational Field
            sage: M = Matroid([0, 1, 2, 3, 4, 5], A, ring=ZZ)
            sage: M.base_ring()
            Integer Ring

    #. Rank function:

        Any function mapping subsets to integers can be used as input::

            sage: def f(X):
            ....:     return min(len(X), 2)
            ....:
            sage: M = Matroid('abcd', rank_function=f)
            sage: M
            Matroid of rank 2 on 4 elements
            sage: M.is_isomorphic(matroids.Uniform(2, 4))
            True

    #. Circuit closures:

        This is often a really concise way to specify a matroid. The usual way
        is a dictionary of lists::

            sage: M = Matroid(circuit_closures={3: ['edfg', 'acdg', 'bcfg',
            ....:     'cefh', 'afgh', 'abce', 'abdf', 'begh', 'bcdh', 'adeh'],
            ....:     4: ['abcdefgh']})
            sage: M.equals(matroids.named_matroids.P8())
            True

        You can also input tuples `(k, X)` where `X` is the closure of a
        circuit, and `k` the rank of `X`::

            sage: M = Matroid(circuit_closures=[(2, 'abd'), (3, 'abcdef'),
            ....:                               (2, 'bce')])
            sage: M.equals(matroids.named_matroids.Q6())
            True

    #. Matroid:

        Most of the time, the matroid itself is returned::

            sage: M = matroids.named_matroids.Fano()
            sage: N = Matroid(M)
            sage: N is M
            True

        But it can be useful with the ``regular`` option::

            sage: M = Matroid(circuit_closures={2:['adb', 'bec', 'cfa',
            ....:                                  'def'], 3:['abcdef']})
            sage: N = Matroid(M, regular=True)
            sage: N
            Regular matroid of rank 3 on 6 elements with 16 bases
            sage: Matrix(N)
            [1 0 0 1 1 0]
            [0 1 0 1 1 1]
            [0 0 1 0 1 1]

    The ``regular`` option:

        ::

            sage: M = Matroid(reduced_matrix=[[1, 1, 0],
            ....:                             [1, 0, 1],
            ....:                             [0, 1, 1]], regular=True)
            sage: M
            Regular matroid of rank 3 on 6 elements with 16 bases

            sage: M.is_isomorphic(matroids.CompleteGraphic(4))
            True

        By default we check if the resulting matroid is actually regular. To
        increase speed, this check can be skipped::

            sage: M = matroids.named_matroids.Fano()
            sage: N = Matroid(M, regular=True)
            Traceback (most recent call last):
            ...
            ValueError: input does not correspond to a valid regular matroid.
            sage: N = Matroid(M, regular=True, check=False)
            sage: N
            Regular matroid of rank 3 on 7 elements with 32 bases

            sage: N.is_valid()
            False

        Sometimes the output is regular, but represents a different matroid
        from the one you intended::

            sage: M = Matroid(Matrix(GF(3), [[1, 0, 1, 1], [0, 1, 1, 2]]))
            sage: N = Matroid(Matrix(GF(3), [[1, 0, 1, 1], [0, 1, 1, 2]]),
            ....:             regular=True)
            sage: N.is_valid()
            True
            sage: N.is_isomorphic(M)
            False

    """
    # These are the valid arguments:
    inputS = set([
        'groundset', 'bases', 'independent_sets', 'circuits', 'graph',
        'matrix', 'reduced_matrix', 'rank_function', 'circuit_closures',
        'matroid'
    ])

    # process options
    if 'regular' in kwds:
        want_regular = kwds['regular']
        kwds.pop('regular')
    else:
        want_regular = False
    if 'check' in kwds:
        want_check = kwds['check']
        kwds.pop('check')
    else:
        want_check = True

    base_ring = None
    have_field = False
    if 'field' in kwds:
        base_ring = kwds['field']
        kwds.pop('field')
        have_field = True
        if 'ring' in kwds:
            raise ValueError("only one of ring and field can be specified.")
        try:
            if not base_ring.is_field():
                raise TypeError("specified ``field`` is not a field.")
        except AttributeError:
            raise TypeError("specified ``field`` is not a field.")
    if 'ring' in kwds:
        base_ring = kwds['ring']
        kwds.pop('ring')
        try:
            if not base_ring.is_ring():
                raise TypeError("specified ``ring`` is not a ring.")
        except AttributeError:
            raise TypeError("specified ``ring`` is not a ring.")

    # Process unnamed arguments
    if len(args) > 0:
        if 'groundset' in kwds:
            raise ValueError(
                'when using unnamed arguments, groundset must be the first unnamed argument or be implicit.'
            )
        if len(args) > 2:
            raise ValueError('at most two unnamed arguments are allowed.')
        if len(args) == 2 or len(kwds) > 0:
            # First argument should be the groundset
            kwds['groundset'] = args[0]
        # Check for unnamed data
        dataindex = -1
        if len(args) == 2:
            dataindex = 1
        if len(args) == 1 and len(kwds) == 0:
            dataindex = 0
        if dataindex > -1:
            # One unnamed argument, no named arguments
            if isinstance(args[dataindex], sage.graphs.graph.Graph):
                kwds['graph'] = args[dataindex]
            elif isinstance(args[dataindex], sage.matrix.matrix.Matrix):
                kwds['matrix'] = args[dataindex]
            elif isinstance(args[dataindex], sage.matroids.matroid.Matroid):
                kwds['matroid'] = args[dataindex]
            else:
                kwds['independent_sets'] = args[dataindex]

    # Check for multiple types of input
    if len(set(kwds).difference(inputS)) > 0:
        raise ValueError("unknown input argument")
    if ('grondset' in kwds and len(kwds) != 2) or ('groundset' not in kwds
                                                   and len(kwds) > 1):
        raise ValueError("only one type of input may be specified.")

    # Bases:
    if 'bases' in kwds:
        if 'groundset' not in kwds:
            gs = set()
            for B in kwds['bases']:
                gs.update(B)
            kwds['groundset'] = gs
        M = BasisMatroid(groundset=kwds['groundset'], bases=kwds['bases'])

    # Independent sets:
    if 'independent_sets' in kwds:
        # Convert to list of bases first
        rk = -1
        bases = []
        for I in kwds['independent_sets']:
            if len(I) == rk:
                bases.append(I)
            elif len(I) > rk:
                bases = [I]
                rk = len(I)
        if 'groundset' not in kwds:
            gs = set()
            for B in bases:
                gs.update(B)
            kwds['groundset'] = gs
        M = BasisMatroid(groundset=kwds['groundset'], bases=bases)

    # Circuits:
    if 'circuits' in kwds:
        # Convert to list of bases first
        # Determine groundset (note that this cannot detect coloops)
        if 'groundset' not in kwds:
            gs = set()
            for C in kwds['circuits']:
                gs.update(C)
            kwds['groundset'] = gs
        # determine the rank by computing a basis
        B = set(kwds['groundset'])
        for C in kwds['circuits']:
            I = B.intersection(C)
            if len(I) >= len(C):
                B.discard(I.pop())
        rk = len(B)
        # Construct the basis matroid of appropriate rank. Note: slow!
        BB = [
            frozenset(B) for B in combinations(kwds['groundset'], rk)
            if not any([frozenset(C).issubset(B) for C in kwds['circuits']])
        ]
        M = BasisMatroid(groundset=kwds['groundset'], bases=BB)

    # Graphs:
    if 'graph' in kwds:
        # Construct the incidence matrix
        # NOTE: we are not using Sage's built-in method because
        # 1) we would need to fix the loops anyway
        # 2) Sage will sort the columns, making it impossible to keep labels!
        G = kwds['graph']
        if not isinstance(G, sage.graphs.generic_graph.GenericGraph):
            try:
                G = Graph(G)
            except (ValueError, TypeError, NetworkXError):
                raise ValueError("input does not seem to represent a graph.")
        V = G.vertices()
        E = G.edges()
        n = G.num_verts()
        m = G.num_edges()
        A = Matrix(ZZ, n, m, 0)
        mm = 0
        for i, j, k in G.edge_iterator():
            A[V.index(i), mm] = -1
            A[V.index(j), mm] += 1  # So loops get 0
            mm += 1
        # Decide on the groundset
        if 'groundset' not in kwds:
            # 1. Attempt to use edge labels.
            sl = G.edge_labels()
            if len(sl) == len(set(sl)):
                kwds['groundset'] = sl
                # 2. If simple, use vertex tuples
            elif not G.has_multiple_edges():
                kwds['groundset'] = [(i, j) for i, j, k in G.edge_iterator()]
            else:
                # 3. Use numbers
                kwds['groundset'] = range(m)
        M = RegularMatroid(matrix=A, groundset=kwds['groundset'])
        want_regular = False  # Save some time, since result is already regular

    # Matrices:
    if 'matrix' in kwds or 'reduced_matrix' in kwds:
        if 'matrix' in kwds:
            A = kwds['matrix']
        if 'reduced_matrix' in kwds:
            A = kwds['reduced_matrix']

        # Fix the representation
        if not isinstance(A, sage.matrix.matrix.Matrix):
            try:
                if base_ring is not None:
                    A = Matrix(base_ring, A)
                else:
                    A = Matrix(A)
            except ValueError:
                raise ValueError("input does not seem to contain a matrix.")

        # Fix the ring
        if base_ring is not None:
            if A.base_ring() != base_ring:
                A = A.change_ring(base_ring)
        elif A.base_ring(
        ) == ZZ and not want_regular:  # Usually a rational matrix is intended, we presume.
            A = A.change_ring(QQ)
            base_ring = QQ
        else:
            base_ring = A.base_ring()

        # Determine groundset:
        if 'matrix' in kwds:
            if 'groundset' in kwds:
                if len(kwds['groundset']) == A.nrows() + A.ncols():
                    kwds['reduced_matrix'] = A
                    kwds.pop('matrix')
                else:
                    if len(kwds['groundset']) != A.ncols():
                        raise ValueError(
                            "groundset size does not correspond to matrix size."
                        )
            else:
                kwds['groundset'] = range(A.ncols())
        if 'reduced_matrix' in kwds:
            if 'groundset' in kwds:
                if len(kwds['groundset']) != A.nrows() + A.ncols():
                    raise ValueError(
                        "groundset size does not correspond to matrix size.")
            else:
                kwds['groundset'] = range(A.nrows() + A.ncols())
        if 'matrix' in kwds:
            if base_ring == GF(2):
                M = BinaryMatroid(groundset=kwds['groundset'], matrix=A)
            elif base_ring == GF(3):
                M = TernaryMatroid(groundset=kwds['groundset'], matrix=A)
            elif base_ring.is_field() and base_ring.order(
            ) == 4:  # GF(4) can have different generators.
                M = QuaternaryMatroid(groundset=kwds['groundset'], matrix=A)
            else:
                M = LinearMatroid(groundset=kwds['groundset'],
                                  matrix=A,
                                  ring=base_ring)

        if 'reduced_matrix' in kwds:
            if A.base_ring() == GF(2):
                M = BinaryMatroid(groundset=kwds['groundset'],
                                  reduced_matrix=A)
            elif A.base_ring() == GF(3):
                M = TernaryMatroid(groundset=kwds['groundset'],
                                   reduced_matrix=A)
            elif A.base_ring().is_field() and A.base_ring().order(
            ) == 4:  # GF(4) can have different generators.
                M = QuaternaryMatroid(groundset=kwds['groundset'],
                                      reduced_matrix=A)
            else:
                M = LinearMatroid(groundset=kwds['groundset'],
                                  reduced_matrix=A,
                                  ring=base_ring)

    # Rank functions:
    if 'rank_function' in kwds:
        if 'groundset' not in kwds:
            raise ValueError(
                'for rank functions, groundset needs to be specified.')
        M = RankMatroid(groundset=kwds['groundset'],
                        rank_function=kwds['rank_function'])

    # Circuit closures:
    if 'circuit_closures' in kwds:
        if 'groundset' not in kwds:
            E = set()
            if isinstance(kwds['circuit_closures'], dict):
                for X in kwds['circuit_closures'].itervalues():
                    for Y in X:
                        E.update(Y)
            else:
                for X in kwds['circuit_closures']:
                    E.update(X[1])
        else:
            E = kwds['groundset']
        if not isinstance(kwds['circuit_closures'], dict):
            # Convert to dictionary
            CC = {}
            for X in kwds['circuit_closures']:
                if X[0] not in CC:
                    CC[X[0]] = []
                CC[X[0]].append(X[1])
        else:
            CC = kwds['circuit_closures']
        M = CircuitClosuresMatroid(groundset=E, circuit_closures=CC)

    # Matroids:
    if 'matroid' in kwds:
        M = kwds['matroid']
        if not isinstance(M, sage.matroids.matroid.Matroid):
            raise ValueError("input does not appear to be of Matroid type.")
    # Regular option:
    if want_regular:
        M = sage.matroids.utilities.make_regular_matroid_from_matroid(M)
        if want_check:
            if not M.is_valid():
                raise ValueError(
                    'input does not correspond to a valid regular matroid.')
    return M
예제 #4
0
class BianchiDistributionElement(ModuleElement):
    r"""
    This class represents elements in an overconvergent Bianchi coefficient module.

    INPUT:

     - ``parent`` - An overconvergent coefficient module.

     - ``val`` - The value that it needs to store (default: 0). It can be another BianchiDistributionElement,
       in which case the values are copied. It can also be a column vector (or something
       coercible to a column vector) which represents the values of the element applied to
       the polynomials `1`, `x`, `y`, `x^2`, `xy`, `y^2`, ... ,`y^n`.

     - ``check`` - boolean (default: True). If set to False, no checks are done and ``val`` is
       assumed to be the a column vector.

    """
    def __init__(self, parent, val=0, check=True, normalize=False):
        """
        Initialisation function. Takes as input a vector val, which should have length equal to the 
        dimension of the space, which is the nth triangle number, where n is the depth. This corresponds
        to the ordered basis for distributions (namely, the dual basis to the basis 1, x, y, x^2, xy, ...).

        Input:
            - parent: BianchiDistributions object of depth n
            - val : vector of length n^2 encoding the moments of the distribution
        """
        ## Parents/precision
        ModuleElement.__init__(self, parent)
        self._parent = parent
        self._depth = self._parent._depth
        self._dimension = self._parent._dimension

        ## check multiple possibilities for input
        if not check:
            self._moments = val
        else:
            ## is input already a distribution?
            if isinstance(val, self.__class__):
                ## if depth is the same, then keep this
                if val._parent._depth == parent._depth:
                    self._moments = val._moments
                else:
                    ## depths are different, take the minimum
                    d = min([val.nrows(), parent.dimension()])
                    self._moments = val._moments.submatrix(0, 0, nrows=d)

            elif isinstance(val, int) or isinstance(val, Integer):
                ## Initialise distribution to be trivial, i.e. constant moment = input and rest = 0
                self._moments = MatrixSpace(self._parent._R, self._dimension,
                                            1)(0)
                self._moments[0, 0] = val

            ## input is a vector storing the moments
            elif isinstance(val, Vector_integer_dense) or isinstance(
                    val, FreeModuleElement_generic_dense):
                self._moments = MatrixSpace(self._parent._R, self._dimension,
                                            1)(0)
                for i, o in enumerate(val.list()):
                    self._moments[i, 0] = o

            ## input is a list storing the moments
            elif isinstance(val, list):
                self._moments = MatrixSpace(self._parent._R, self._dimension,
                                            1)(0)
                for i, o in enumerate(val):
                    self._moments[i, 0] = o
            else:
                try:
                    self._moments = Matrix(self._parent._R, self._depth, 1,
                                           val)
                except (TypeError, ValueError):
                    self._moments = self._parent._R(val) * MatrixSpace(
                        self._parent._R, self._dimension, 1)(1)

    def __hash__(self):
        return hash(self._moments)

    def moment(self, ij):
        """
        Returns the (i,j)th moment mu(x^iy^j).

        EXAMPLES::

            sage: from darmonpoints.ocbianchi import BianchiDistributions
            sage: D = BianchiDistributions(11,4)
            sage: mu = D.basis_vector((2,3))
            sage: mu.moment((2,3))
            1 + O(11^3)
            sage: mu.moment((2,1))
            O(11^3)

        """
        if isinstance(ij, tuple):
            idx = self._parent.index(ij)
        else:
            idx = ij
        return self._parent._Rmod(self._moments[idx, 0])

    def moments(self):
        """
        Returns the moments (as a column vector).

        EXAMPLES::

            sage: from darmonpoints.ocbianchi import BianchiDistributions
            sage: D = BianchiDistributions(11,2)
            sage: mu = D.basis_vector((1,1))
            sage: mu.moments()
            [0]
            [0]
            [0]
            [1]
        """
        return self._moments

    def __getitem__(self, ij):
        r"""

        """
        return self.moment(ij)

    def __setitem__(self, ij, val):
        r"""
        Sets the value of ``self`` on the polynomial `x^iy^j` to ``val``.

        INPUT:
        - ``r`` - an integer. The power of `x`.
        - ``val`` - a value.

        """
        if isinstance(ij, tuple):
            idx = self._parent.index(ij[0], ij[1])
        else:
            idx = ij
        self._moments[idx, 0] = val

    def element(self):
        r"""
        The element ``self`` represents.
        """
        tmp = self.matrix_rep()
        return [tmp[ii, 0] for ii in range(tmp.nrows())]

    def list(self):
        r"""
        The element ``self`` represents.
        """
        return self.element()

    def matrix_rep(self, B=None):
        r"""
        Returns a matrix representation of ``self``.
        """
        #Express the element in terms of the basis B
        if B is None:
            B = self._parent.basis()

        A = Matrix(self._parent._R, self._parent.dimension(),
                   self._parent.dimension(),
                   [[b._moments[ii, 0] for b in B]
                    for ii in range(self._dimension)])
        tmp = A.solve_right(self._moments)
        return tmp

    def _add_(self, y):
        r"""
        Add two elements.

        EXAMPLES::

            sage: from darmonpoints.ocbianchi import BianchiDistributions
            sage: D = BianchiDistributions(11,4)
            sage: mu1 = D.basis_vector((2,3))
            sage: mu2 = D.basis_vector((1,2))
            sage: mu1 + mu2
            X*Y^2 + X^2*Y^3

        """
        val = self._moments + y._moments
        return self.__class__(self._parent, val, check=False)

    def _sub_(self, y):
        r"""
        Subtract two elements.
        """
        val = self._moments - y._moments
        return self.__class__(self._parent, val, check=False)

    def _neg_(self):
        return self.__class__(self._parent, -self._moments, check=False)

    def _rmul_(self, a):
        #assume that a is a scalar
        return self.__class__(self._parent, a * self._moments, check=False)

    def _repr_(self):
        r"""
        Returns the representation of self as a string. The monomial X^iY^j is the dual basis vector
        to the monomial x^iy^j in the ring of analytic functions.

        EXAMPLES::

            sage: from darmonpoints.ocbianchi import BianchiDistributions
            sage: D = BianchiDistributions(11,4)
            sage: mu = D.basis_vector((2,1)) + D.basis_vector((1,0))
            sage: mu
            X + X^2*Y
            sage: D.basis_vector((1,1)) + 2*D.basis_vector((2,1))
            X*Y + 2*X^2*Y

        """
        R = self.parent()._repr_R
        s = str(
            sum([
                ZZ(self._moments[idx, 0]) *
                self._parent.monomial_from_index(idx, R)
                for idx in range(self._moments.nrows())
            ]))
        return s

    def __cmp__(self, other):
        return cmp(self._moments, other._moments)

    def __nonzero__(self):
        return self._moments != 0

    def evaluate_at_poly(self, P, R=None, depth=None):
        r"""
        Evaluate ``self`` at a polynomial. The polynomial can be defined over ZZ or Zp.

        By default, this function picks the ring R to be a ring that coerces to both the 
        base ring of the polynomial and the Bianchi distribution.

        You can specify depth, but this currently does nothing at all.

        EXAMPLES::

            sage: from darmonpoints.ocbianchi import BianchiDistributions
            sage: D = BianchiDistributions(11,4)
            sage: x,y = D.analytic_vars()
            sage: mu = D.basis_vector((2,1)) + D.basis_vector((1,0))
            sage: mu(x^2*y)
            1
            sage: mu(y)
            0
            sage: mu(x^2*y + x)
            2
        """
        p = self._parent._p

        ## Currently empty functionality
        if depth is None:
            depth = self._depth

        # Define the ring R, if not specified
        if R is None:
            try:
                R = pushout(P.parent().base_ring(), self.parent().base_ring())
            except AttributeError:
                R = self.parent().base_ring()

        ## Attempt to coerce the input into a form we can evaluate
        P = self.parent().analytic_functions()(P)

        ## For each monomial x^iy^j in the polynomial, multip] ly the coefficient of X^iY^j (in mu) by the
        ## coefficient of x^iy^j (in f) and take the sum. This is our final value
        ##          --> P.coefficients is a dictionary which has monomials as keys; we generate monomials using exponents.
        ##         --> self._moments takes as input an index and spits out the cofficient. So generate the index from the exponent.

        coefficient_list = []
        for polx in P.padded_list(self._depth):
            coefficient_list.extend(polx.padded_list(self._depth))

        return ZZ((Matrix(coefficient_list) * self.moments())[0, 0])

    def __call__(self, P):
        r"""
        Call function; evaluates the distribution at an analytic function.
        """
        return self.evaluate_at_poly(P)

    def reduce_mod(self, N=None):
        r"""
        Reduces all the moments modulo N.
        """
        if N is None:
            N = self.parent()._pN
        self._moments = self._moments.apply_map(lambda x: x % N)
        return self

    def max_filtration_step(self):
        r"""
        Computes the maximal step of the filtration in which mu lives.
        """

        ## Take min of v_p(mu(x^i*y^j)) + i + j
        p = self._parent._p
        min_modified_moment = min(
            (o[0].valuation(p) + sum(tuple(self.parent().ij_from_pos(n)))
             for n, o in enumerate(self._moments)))

        ## Last filtration step in which this appears is step r, where r is the min such that this min/2 - r >= 0
        ## ..... IN THE SUPERSINGULAR CASE!
        ## In the ordinary case, the min r is sufficient *without* dividing by 2!!!
        return min_modified_moment  ## QQ(min_modified_moment/2).floor()

    def normalize(self, r=None):
        r"""
        Adjust the moments to the precision given by the filtration step where self belongs.
        """
        if r is None:
            r = self.max_filtration_step()
        V = self._moments
        p = self._parent._p
        for n in xrange(self._moments.nrows()):
            k = r - sum(tuple(self.parent().ij_from_pos(n)))
            self._moments[n, 0] = self._moments[n, 0] % p**k
        return self

    def valuation(self):
        r"""
        Returns the same as max_filtration_step, defining an element to have valuation r
        if Filr^(r,r) is the maximal filtration step in which it lives.
        """
        return self.max_filtration_step()
예제 #5
0
파일: constructor.py 프로젝트: CETHop/sage
def Matroid(*args, **kwds):
    r"""
    Construct a matroid.

    Matroids are combinatorial structures that capture the abstract properties
    of (linear/algebraic/...) dependence. Formally, a matroid is a pair
    `M = (E, I)` of a finite set `E`, the *groundset*, and a collection of
    subsets `I`, the independent sets, subject to the following axioms:

    * `I` contains the empty set
    * If `X` is a set in `I`, then each subset of `X` is in `I`
    * If two subsets `X`, `Y` are in `I`, and `|X| > |Y|`, then there exists
      `x \in X - Y` such that `Y + \{x\}` is in `I`.

    See the :wikipedia:`Wikipedia article on matroids <Matroid>` for more
    theory and examples. Matroids can be obtained from many types of
    mathematical structures, and Sage supports a number of them.

    There are two main entry points to Sage's matroid functionality. For
    built-in matroids, do the following:

    * Within a Sage session, type "matroids." (Do not press "Enter", and do
      not forget the final period ".")
    * Hit "tab".

    You will see a list of methods which will construct matroids. For
    example::

        sage: F7 = matroids.named_matroids.Fano()
        sage: len(F7.nonspanning_circuits())
        7

    or::

        sage: U36 = matroids.Uniform(3, 6)
        sage: U36.equals(U36.dual())
        True

    To define your own matroid, use the function ``Matroid()``.
    This function attempts to interpret its arguments to create an appropriate
    matroid. The following named arguments are supported:

    INPUT:

    - ``groundset`` -- If provided, the groundset of the matroid.
      If not provided, the function attempts to determine a groundset from the
      data.
    - ``bases`` -- The list of bases (maximal independent sets) of the
      matroid.
    - ``independent_sets`` -- The list of independent sets of the matroid.
    - ``circuits`` -- The list of circuits of the matroid.
    - ``graph`` -- A graph, whose edges form the elements of the matroid.
    - ``matrix`` -- A matrix representation of the matroid.
    - ``reduced_matrix`` -- A reduced representation of the matroid: if
      ``reduced_matrix = A``
      then the matroid is represented by `[I\ \ A]` where `I` is an
      appropriately sized identity matrix.
    - ``rank_function`` -- A function that computes the rank of each subset.
      Can only be provided together with a groundset.
    - ``circuit_closures`` -- Either a list of tuples ``(k, C)`` with ``C``
      the closure of a circuit, and ``k`` the rank of ``C``, or a dictionary
      ``D`` with ``D[k]`` the set of closures of rank-``k`` circuits.
    - ``matroid`` -- An object that is already a matroid. Useful only with the
      ``regular`` option.

    Up to two unnamed arguments are allowed.

    - One unnamed argument, no named arguments other than ``regular`` -- the
      input should be either a graph, or a matrix, or a list of independent
      sets containing all bases, or a matroid.
    - Two unnamed arguments: the first is the groundset, the second a graph,
      or a matrix, or a list of independent sets containing all bases, or a
      matroid.
    - One unnamed argument, at least one named argument: the unnamed argument
      is the groundset, the named argument is as above (but must be different
      from ``groundset``).

    The examples section details how each of the input types deals with
    explicit or implicit groundset arguments.

    OPTIONS:

    - ``regular`` -- (default: ``False``) boolean. If ``True``,
      output a
      :class:`RegularMatroid <sage.matroids.linear_matroid.RegularMatroid>`
      instance such that, *if* the input defines a valid regular matroid, then
      the output represents this matroid. Note that this option can be
      combined with any type of input.
    - ``ring`` -- any ring. If provided, and the input is a ``matrix`` or
      ``reduced_matrix``, output will be a linear matroid over the ring or
      field ``ring``.
    - ``field`` -- any field. Same as ``ring``, but only fields are allowed.
    - ``check`` -- (default: ``True``) boolean. If ``True`` and
      ``regular`` is true, the output is checked to make sure it is a valid
      regular matroid.

    .. WARNING::

        Except for regular matroids, the input is not checked for validity. If
        your data does not correspond to an actual matroid, the behavior of
        the methods is undefined and may cause strange errors. To ensure you
        have a matroid, run
        :meth:`M.is_valid() <sage.matroids.matroid.Matroid.is_valid>`.

    .. NOTE::

        The ``Matroid()`` method will return instances of type
        :class:`BasisMatroid <sage.matroids.basis_matroid.BasisMatroid>`,
        :class:`CircuitClosuresMatroid <sage.matroids.circuit_closures_matroid.CircuitClosuresMatroid>`,
        :class:`LinearMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`BinaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`TernaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`QuaternaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`,
        :class:`RegularMatroid <sage.matroids.linear_matroid.LinearMatroid>`, or
        :class:`RankMatroid <sage.matroids.rank_matroid.RankMatroid>`. To
        import these classes (and other useful functions) directly into Sage's
        main namespace, type::

            sage: from sage.matroids.advanced import *

        See :mod:`sage.matroids.advanced <sage.matroids.advanced>`.

    EXAMPLES:

    Note that in these examples we will often use the fact that strings are
    iterable in these examples. So we type ``'abcd'`` to denote the list
    ``['a', 'b', 'c', 'd']``.

    #. List of bases:

        All of the following inputs are allowed, and equivalent::

            sage: M1 = Matroid(groundset='abcd', bases=['ab', 'ac', 'ad',
            ....:                                       'bc', 'bd', 'cd'])
            sage: M2 = Matroid(bases=['ab', 'ac', 'ad', 'bc', 'bd', 'cd'])
            sage: M3 = Matroid(['ab', 'ac', 'ad', 'bc', 'bd', 'cd'])
            sage: M4 = Matroid('abcd', ['ab', 'ac', 'ad', 'bc', 'bd', 'cd'])
            sage: M5 = Matroid('abcd', bases=[['a', 'b'], ['a', 'c'],
            ....:                             ['a', 'd'], ['b', 'c'],
            ....:                             ['b', 'd'], ['c', 'd']])
            sage: M1 == M2
            True
            sage: M1 == M3
            True
            sage: M1 == M4
            True
            sage: M1 == M5
            True

        We do not check if the provided input forms an actual matroid::

            sage: M1 = Matroid(groundset='abcd', bases=['ab', 'cd'])
            sage: M1.full_rank()
            2
            sage: M1.is_valid()
            False

        Bases may be repeated::

            sage: M1 = Matroid(['ab', 'ac'])
            sage: M2 = Matroid(['ab', 'ac', 'ab'])
            sage: M1 == M2
            True

    #. List of independent sets:

        ::

            sage: M1 = Matroid(groundset='abcd',
            ....:              independent_sets=['', 'a', 'b', 'c', 'd', 'ab',
            ....:                               'ac', 'ad', 'bc', 'bd', 'cd'])

        We only require that the list of independent sets contains each basis
        of the matroid; omissions of smaller independent sets and
        repetitions are allowed::

            sage: M1 = Matroid(bases=['ab', 'ac'])
            sage: M2 = Matroid(independent_sets=['a', 'ab', 'b', 'ab', 'a',
            ....:                                'b', 'ac'])
            sage: M1 == M2
            True

    #. List of circuits:

        ::

            sage: M1 = Matroid(groundset='abc', circuits=['bc'])
            sage: M2 = Matroid(bases=['ab', 'ac'])
            sage: M1 == M2
            True

        A matroid specified by a list of circuits gets converted to a
        :class:`BasisMatroid <sage.matroids.basis_matroid.BasisMatroid>`
        internally::

            sage: M = Matroid(groundset='abcd', circuits=['abc', 'abd', 'acd',
            ....:                                         'bcd'])
            sage: type(M)
            <type 'sage.matroids.basis_matroid.BasisMatroid'>

        Strange things can happen if the input does not satisfy the circuit
        axioms, and these are not always caught by the
        :meth:`is_valid() <sage.matroids.matroid.Matroid.is_valid>` method. So
        always check whether your input makes sense!

        ::

            sage: M = Matroid('abcd', circuits=['ab', 'acd'])
            sage: M.is_valid()
            True
            sage: [sorted(C) for C in M.circuits()]
            [['a']]



    #. Graph:

        Sage has great support for graphs, see :mod:`sage.graphs.graph`.

        ::

            sage: G = graphs.PetersenGraph()
            sage: Matroid(G)
            Regular matroid of rank 9 on 15 elements with 2000 bases


        Note: if a groundset is specified, we assume it is in the same order
        as
        :meth:`G.edge_iterator() <sage.graphs.generic_graph.GenericGraph.edge_iterator>`
        provides::

            sage: G = Graph([(0, 1), (0, 2), (0, 2), (1, 2)])
            sage: M = Matroid('abcd', G)
            sage: M.rank(['b', 'c'])
            1

        If no groundset is provided, we attempt to use the edge labels::

            sage: G = Graph([(0, 1, 'a'), (0, 2, 'b'), (1, 2, 'c')])
            sage: M = Matroid(G)
            sage: sorted(M.groundset())
            ['a', 'b', 'c']

        If no edge labels are present and the graph is simple, we use the
        tuples ``(i, j)`` of endpoints. If that fails, we simply use a list
        ``[0..m-1]`` ::

            sage: G = Graph([(0, 1), (0, 2), (1, 2)])
            sage: M = Matroid(G)
            sage: sorted(M.groundset())
            [(0, 1), (0, 2), (1, 2)]

            sage: G = Graph([(0, 1), (0, 2), (0, 2), (1, 2)])
            sage: M = Matroid(G)
            sage: sorted(M.groundset())
            [0, 1, 2, 3]

        When the ``graph`` keyword is used, a variety of inputs can be
        converted to a graph automatically. The following uses a graph6 string
        (see the :class:`Graph <sage.graphs.graph.Graph>` method's
        documentation)::

            sage: Matroid(graph=':I`AKGsaOs`cI]Gb~')
            Regular matroid of rank 9 on 17 elements with 4004 bases

        However, this method is no more clever than ``Graph()``::

            sage: Matroid(graph=41/2)
            Traceback (most recent call last):
            ...
            ValueError: input does not seem to represent a graph.


    #. Matrix:

        The basic input is a
        :mod:`Sage matrix <sage.matrix.constructor>`::

            sage: A = Matrix(GF(2), [[1, 0, 0, 1, 1, 0],
            ....:                    [0, 1, 0, 1, 0, 1],
            ....:                    [0, 0, 1, 0, 1, 1]])
            sage: M = Matroid(matrix=A)
            sage: M.is_isomorphic(matroids.CompleteGraphic(4))
            True

        Various shortcuts are possible::

            sage: M1 = Matroid(matrix=[[1, 0, 0, 1, 1, 0],
            ....:                      [0, 1, 0, 1, 0, 1],
            ....:                      [0, 0, 1, 0, 1, 1]], ring=GF(2))
            sage: M2 = Matroid(reduced_matrix=[[1, 1, 0],
            ....:                              [1, 0, 1],
            ....:                              [0, 1, 1]], ring=GF(2))
            sage: M3 = Matroid(groundset=[0, 1, 2, 3, 4, 5],
            ....:              matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:              ring=GF(2))
            sage: A = Matrix(GF(2), [[1, 1, 0], [1, 0, 1], [0, 1, 1]])
            sage: M4 = Matroid([0, 1, 2, 3, 4, 5], A)
            sage: M1 == M2
            True
            sage: M1 == M3
            True
            sage: M1 == M4
            True

        However, with unnamed arguments the input has to be a ``Matrix``
        instance, or the function will try to interpret it as a set of bases::

            sage: Matroid([0, 1, 2], [[1, 0, 1], [0, 1, 1]])
            Traceback (most recent call last):
            ...
            ValueError: basis has wrong cardinality.


        If the groundset size equals number of rows plus number of columns, an
        identity matrix is prepended. Otherwise the groundset size must equal
        the number of columns::

            sage: A = Matrix(GF(2), [[1, 1, 0], [1, 0, 1], [0, 1, 1]])
            sage: M = Matroid([0, 1, 2], A)
            sage: N = Matroid([0, 1, 2, 3, 4, 5], A)
            sage: M.rank()
            2
            sage: N.rank()
            3

        We automatically create an optimized subclass, if available::

            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(2))
            Binary matroid of rank 3 on 6 elements, type (2, 7)
            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(3))
            Ternary matroid of rank 3 on 6 elements, type 0-
            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(4, 'x'))
            Quaternary matroid of rank 3 on 6 elements
            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(2), regular=True)
            Regular matroid of rank 3 on 6 elements with 16 bases

        Otherwise the generic LinearMatroid class is used::

            sage: Matroid([0, 1, 2, 3, 4, 5],
            ....:         matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
            ....:         field=GF(83))
            Linear matroid of rank 3 on 6 elements represented over the Finite
            Field of size 83

        An integer matrix is automatically converted to a matrix over `\QQ`.
        If you really want integers, you can specify the ring explicitly::

            sage: A = Matrix([[1, 1, 0], [1, 0, 1], [0, 1, -1]])
            sage: A.base_ring()
            Integer Ring
            sage: M = Matroid([0, 1, 2, 3, 4, 5], A)
            sage: M.base_ring()
            Rational Field
            sage: M = Matroid([0, 1, 2, 3, 4, 5], A, ring=ZZ)
            sage: M.base_ring()
            Integer Ring

    #. Rank function:

        Any function mapping subsets to integers can be used as input::

            sage: def f(X):
            ....:     return min(len(X), 2)
            ....:
            sage: M = Matroid('abcd', rank_function=f)
            sage: M
            Matroid of rank 2 on 4 elements
            sage: M.is_isomorphic(matroids.Uniform(2, 4))
            True

    #. Circuit closures:

        This is often a really concise way to specify a matroid. The usual way
        is a dictionary of lists::

            sage: M = Matroid(circuit_closures={3: ['edfg', 'acdg', 'bcfg',
            ....:     'cefh', 'afgh', 'abce', 'abdf', 'begh', 'bcdh', 'adeh'],
            ....:     4: ['abcdefgh']})
            sage: M.equals(matroids.named_matroids.P8())
            True

        You can also input tuples `(k, X)` where `X` is the closure of a
        circuit, and `k` the rank of `X`::

            sage: M = Matroid(circuit_closures=[(2, 'abd'), (3, 'abcdef'),
            ....:                               (2, 'bce')])
            sage: M.equals(matroids.named_matroids.Q6())
            True

    #. Matroid:

        Most of the time, the matroid itself is returned::

            sage: M = matroids.named_matroids.Fano()
            sage: N = Matroid(M)
            sage: N is M
            True

        But it can be useful with the ``regular`` option::

            sage: M = Matroid(circuit_closures={2:['adb', 'bec', 'cfa',
            ....:                                  'def'], 3:['abcdef']})
            sage: N = Matroid(M, regular=True)
            sage: N
            Regular matroid of rank 3 on 6 elements with 16 bases
            sage: Matrix(N)
            [1 0 0 1 1 0]
            [0 1 0 1 1 1]
            [0 0 1 0 1 1]

    The ``regular`` option:

        ::

            sage: M = Matroid(reduced_matrix=[[1, 1, 0],
            ....:                             [1, 0, 1],
            ....:                             [0, 1, 1]], regular=True)
            sage: M
            Regular matroid of rank 3 on 6 elements with 16 bases

            sage: M.is_isomorphic(matroids.CompleteGraphic(4))
            True

        By default we check if the resulting matroid is actually regular. To
        increase speed, this check can be skipped::

            sage: M = matroids.named_matroids.Fano()
            sage: N = Matroid(M, regular=True)
            Traceback (most recent call last):
            ...
            ValueError: input does not correspond to a valid regular matroid.
            sage: N = Matroid(M, regular=True, check=False)
            sage: N
            Regular matroid of rank 3 on 7 elements with 32 bases

            sage: N.is_valid()
            False

        Sometimes the output is regular, but represents a different matroid
        from the one you intended::

            sage: M = Matroid(Matrix(GF(3), [[1, 0, 1, 1], [0, 1, 1, 2]]))
            sage: N = Matroid(Matrix(GF(3), [[1, 0, 1, 1], [0, 1, 1, 2]]),
            ....:             regular=True)
            sage: N.is_valid()
            True
            sage: N.is_isomorphic(M)
            False

    """
    # These are the valid arguments:
    inputS = set(['groundset', 'bases', 'independent_sets', 'circuits', 'graph', 'matrix', 'reduced_matrix', 'rank_function', 'circuit_closures', 'matroid'])

    # process options
    if 'regular' in kwds:
        want_regular = kwds['regular']
        kwds.pop('regular')
    else:
        want_regular = False
    if 'check' in kwds:
        want_check = kwds['check']
        kwds.pop('check')
    else:
        want_check = True

    base_ring = None
    have_field = False
    if 'field' in kwds:
        base_ring = kwds['field']
        kwds.pop('field')
        have_field = True
        if 'ring' in kwds:
            raise ValueError("only one of ring and field can be specified.")
        try:
            if not base_ring.is_field():
                raise TypeError("specified ``field`` is not a field.")
        except AttributeError:
            raise TypeError("specified ``field`` is not a field.")
    if 'ring' in kwds:
        base_ring = kwds['ring']
        kwds.pop('ring')
        try:
            if not base_ring.is_ring():
                raise TypeError("specified ``ring`` is not a ring.")
        except AttributeError:
            raise TypeError("specified ``ring`` is not a ring.")

    # Process unnamed arguments
    if len(args) > 0:
        if 'groundset' in kwds:
            raise ValueError('when using unnamed arguments, groundset must be the first unnamed argument or be implicit.')
        if len(args) > 2:
            raise ValueError('at most two unnamed arguments are allowed.')
        if len(args) == 2 or len(kwds) > 0:
            # First argument should be the groundset
            kwds['groundset'] = args[0]
        # Check for unnamed data
        dataindex = -1
        if len(args) == 2:
            dataindex = 1
        if len(args) == 1 and len(kwds) == 0:
            dataindex = 0
        if dataindex > -1:
            # One unnamed argument, no named arguments
            if isinstance(args[dataindex], sage.graphs.graph.Graph):
                kwds['graph'] = args[dataindex]
            elif isinstance(args[dataindex], sage.matrix.matrix.Matrix):
                kwds['matrix'] = args[dataindex]
            elif isinstance(args[dataindex], sage.matroids.matroid.Matroid):
                kwds['matroid'] = args[dataindex]
            else:
                kwds['independent_sets'] = args[dataindex]

    # Check for multiple types of input
    if len(set(kwds).difference(inputS)) > 0:
        raise ValueError("unknown input argument")
    if ('grondset' in kwds and len(kwds) != 2) or ('groundset' not in kwds and len(kwds) > 1):
        raise ValueError("only one type of input may be specified.")

    # Bases:
    if 'bases' in kwds:
        if 'groundset' not in kwds:
            gs = set()
            for B in kwds['bases']:
                gs.update(B)
            kwds['groundset'] = gs
        M = BasisMatroid(groundset=kwds['groundset'], bases=kwds['bases'])

    # Independent sets:
    if 'independent_sets' in kwds:
        # Convert to list of bases first
        rk = -1
        bases = []
        for I in kwds['independent_sets']:
            if len(I) == rk:
                bases.append(I)
            elif len(I) > rk:
                bases = [I]
                rk = len(I)
        if 'groundset' not in kwds:
            gs = set()
            for B in bases:
                gs.update(B)
            kwds['groundset'] = gs
        M = BasisMatroid(groundset=kwds['groundset'], bases=bases)

    # Circuits:
    if 'circuits' in kwds:
        # Convert to list of bases first
        # Determine groundset (note that this cannot detect coloops)
        if 'groundset' not in kwds:
            gs = set()
            for C in kwds['circuits']:
                gs.update(C)
            kwds['groundset'] = gs
        # determine the rank by computing a basis
        B = set(kwds['groundset'])
        for C in kwds['circuits']:
            I = B.intersection(C)
            if len(I) >= len(C):
                B.discard(I.pop())
        rk = len(B)
        # Construct the basis matroid of appropriate rank. Note: slow!
        BB = [frozenset(B) for B in combinations(kwds['groundset'], rk) if not any([frozenset(C).issubset(B) for C in kwds['circuits']])]
        M = BasisMatroid(groundset=kwds['groundset'], bases=BB)

    # Graphs:
    if 'graph' in kwds:
        # Construct the incidence matrix
        # NOTE: we are not using Sage's built-in method because
        # 1) we would need to fix the loops anyway
        # 2) Sage will sort the columns, making it impossible to keep labels!
        G = kwds['graph']
        if not isinstance(G, sage.graphs.generic_graph.GenericGraph):
            try:
                G = Graph(G)
            except (ValueError, TypeError, NetworkXError):
                raise ValueError("input does not seem to represent a graph.")
        V = G.vertices()
        E = G.edges()
        n = G.num_verts()
        m = G.num_edges()
        A = Matrix(ZZ, n, m, 0)
        mm = 0
        for i, j, k in G.edge_iterator():
            A[V.index(i), mm] = -1
            A[V.index(j), mm] += 1  # So loops get 0
            mm += 1
        # Decide on the groundset
        if 'groundset' not in kwds:
            # 1. Attempt to use edge labels.
            sl = G.edge_labels()
            if len(sl) == len(set(sl)):
                kwds['groundset'] = sl
                # 2. If simple, use vertex tuples
            elif not G.has_multiple_edges():
                kwds['groundset'] = [(i, j) for i, j, k in G.edge_iterator()]
            else:
                # 3. Use numbers
                kwds['groundset'] = range(m)
        M = RegularMatroid(matrix=A, groundset=kwds['groundset'])
        want_regular = False  # Save some time, since result is already regular

    # Matrices:
    if 'matrix' in kwds or 'reduced_matrix' in kwds:
        if 'matrix' in kwds:
            A = kwds['matrix']
        if 'reduced_matrix' in kwds:
            A = kwds['reduced_matrix']

        # Fix the representation
        if not isinstance(A, sage.matrix.matrix.Matrix):
            try:
                if base_ring is not None:
                    A = Matrix(base_ring, A)
                else:
                    A = Matrix(A)
            except ValueError:
                raise ValueError("input does not seem to contain a matrix.")

        # Fix the ring
        if base_ring is not None:
            if A.base_ring() != base_ring:
                A = A.change_ring(base_ring)
        elif A.base_ring() == ZZ and not want_regular:  # Usually a rational matrix is intended, we presume.
            A = A.change_ring(QQ)
            base_ring = QQ
        else:
            base_ring = A.base_ring()

        # Determine groundset:
        if 'matrix' in kwds:
            if 'groundset' in kwds:
                if len(kwds['groundset']) == A.nrows() + A.ncols():
                    kwds['reduced_matrix'] = A
                    kwds.pop('matrix')
                else:
                    if len(kwds['groundset']) != A.ncols():
                        raise ValueError("groundset size does not correspond to matrix size.")
            else:
                kwds['groundset'] = range(A.ncols())
        if 'reduced_matrix' in kwds:
            if 'groundset' in kwds:
                if len(kwds['groundset']) != A.nrows() + A.ncols():
                    raise ValueError("groundset size does not correspond to matrix size.")
            else:
                kwds['groundset'] = range(A.nrows() + A.ncols())
        if 'matrix' in kwds:
            if base_ring == GF(2):
                M = BinaryMatroid(groundset=kwds['groundset'], matrix=A)
            elif base_ring == GF(3):
                M = TernaryMatroid(groundset=kwds['groundset'], matrix=A)
            elif base_ring.is_field() and base_ring.order() == 4:  # GF(4) can have different generators.
                M = QuaternaryMatroid(groundset=kwds['groundset'], matrix=A)
            else:
                M = LinearMatroid(groundset=kwds['groundset'], matrix=A, ring=base_ring)

        if 'reduced_matrix' in kwds:
            if A.base_ring() == GF(2):
                M = BinaryMatroid(groundset=kwds['groundset'], reduced_matrix=A)
            elif A.base_ring() == GF(3):
                M = TernaryMatroid(groundset=kwds['groundset'], reduced_matrix=A)
            elif A.base_ring().is_field() and A.base_ring().order() == 4:  # GF(4) can have different generators.
                M = QuaternaryMatroid(groundset=kwds['groundset'], reduced_matrix=A)
            else:
                M = LinearMatroid(groundset=kwds['groundset'], reduced_matrix=A, ring=base_ring)

    # Rank functions:
    if 'rank_function' in kwds:
        if 'groundset' not in kwds:
            raise ValueError('for rank functions, groundset needs to be specified.')
        M = RankMatroid(groundset=kwds['groundset'], rank_function=kwds['rank_function'])

    # Circuit closures:
    if 'circuit_closures' in kwds:
        if 'groundset' not in kwds:
            E = set()
            if isinstance(kwds['circuit_closures'], dict):
                for X in kwds['circuit_closures'].itervalues():
                    for Y in X:
                        E.update(Y)
            else:
                for X in kwds['circuit_closures']:
                    E.update(X[1])
        else:
            E = kwds['groundset']
        if not isinstance(kwds['circuit_closures'], dict):
            # Convert to dictionary
            CC = {}
            for X in kwds['circuit_closures']:
                if X[0] not in CC:
                    CC[X[0]] = []
                CC[X[0]].append(X[1])
        else:
            CC = kwds['circuit_closures']
        M = CircuitClosuresMatroid(groundset=E, circuit_closures=CC)

    # Matroids:
    if 'matroid' in kwds:
        M = kwds['matroid']
        if not isinstance(M, sage.matroids.matroid.Matroid):
            raise ValueError("input does not appear to be of Matroid type.")
    # Regular option:
    if want_regular:
        M = sage.matroids.utilities.make_regular_matroid_from_matroid(M)
        if want_check:
            if not M.is_valid():
                    raise ValueError('input does not correspond to a valid regular matroid.')
    return M
예제 #6
0
    def apply_Up(self,c,group = None,scale = 1,parallelize = False,times = 0,progress_bar = False,method = 'naive', repslocal = None, Up_reps = None, steps = 1):
        r"""
        Apply the Up Hecke operator operator to ``c``.
        """
        assert steps >= 1

        V = self.coefficient_module()
        R = V.base_ring()
        gammas = self.group().gens()

        if Up_reps is None:
            Up_reps = self.S_arithgroup().get_Up_reps()

        if repslocal is None:
            try:
                prec = V.base_ring().precision_cap()
            except AttributeError:
                prec = None
            repslocal = self.get_Up_reps_local(prec)
        i = 0
        if method == 'naive':
            assert times == 0
            G = self.S_arithgroup()
            Gn = G.large_group()
            if self.use_shapiro():
                if self.coefficient_module().trivial_action():
                    def calculate_Up_contribution(lst, c, i, j):
                        return sum([c.evaluate_and_identity(tt) for sk, tt in lst])
                else:
                    def calculate_Up_contribution(lst, c, i, j):
                        return sum([sk * c.evaluate_and_identity(tt) for sk, tt in lst])

                input_vec = []
                for j, gamma in enumerate(gammas):
                    for i, xi in enumerate(G.coset_reps()):
                        delta = Gn(G.get_coset_ti(set_immutable(xi * gamma.quaternion_rep))[0])
                        input_vec.append(([(sk, Gn.get_hecke_ti(g,delta)) for sk, g in zip(repslocal, Up_reps)], c, i, j))
                vals = [[V.coefficient_module()(0,normalize=False) for xi in G.coset_reps()] for gamma in gammas]
                if parallelize:
                    for inp, outp in parallel(calculate_Up_contribution)(input_vec):
                        vals[inp[0][-1]][inp[0][-2]] += outp
                else:
                    for inp in input_vec:
                        outp = calculate_Up_contribution(*inp)
                        vals[inp[-1]][inp[-2]] += outp
                ans = self([V(o) for o in vals])
            else:
                Gpn = G.small_group()
                if self.trivial_action():
                    def calculate_Up_contribution(lst,c,num_gamma):
                        return sum([c.evaluate(tt) for sk, tt in lst], V(0,normalize=False))
                else:
                    def calculate_Up_contribution(lst,c,num_gamma,pb_fraction=None):
                        i = 0
                        ans = V(0, normalize=False)
                        for sk, tt in lst:
                            ans += sk * c.evaluate(tt)
                            update_progress(i * pb_fraction, 'Up action')
                        return ans
                input_vec = []
                for j,gamma in enumerate(gammas):
                    input_vec.append(([(sk, Gpn.get_hecke_ti(g,gamma)) for sk, g in zip(repslocal, Up_reps)], c, j))
                vals = [V(0,normalize=False) for gamma in gammas]
                if parallelize:
                    for inp,outp in parallel(calculate_Up_contribution)(input_vec):
                        vals[inp[0][-1]] += outp
                else:
                    for counter, inp in enumerate(input_vec):
                        outp = calculate_Up_contribution(*inp, pb_fraction=float(1)/float(len(repslocal) * len(input_vec)))
                        vals[inp[-1]] += outp
                ans = self(vals)
            if scale != 1:
                ans = scale * ans
        else:
            assert method == 'bigmatrix'
            verbose('Getting Up matrices...')
            try:
                N = len(V(0)._moments.list())
            except AttributeError:
                N = 1
            nreps = len(Up_reps)
            ngens = len(self.group().gens())
            NN = ngens * N
            A = Matrix(ZZ,NN,NN,0)
            total_counter = ngens**2
            counter = 0
            iS = 0
            for i,gi in enumerate(self.group().gens()):
                ti = [tuple(self.group().get_hecke_ti(sk,gi).word_rep) for sk in Up_reps]
                jS = 0
                for ans in find_newans(self,repslocal,ti):
                    A.set_block(iS,jS,ans)
                    jS += N
                    if progress_bar:
                        counter +=1
                        update_progress(float(counter)/float(total_counter),'Up matrix')
                iS += N
            verbose('Computing 2^(%s)-th power of a %s x %s matrix'%(times,A.nrows(),A.ncols()))
            for i in range(times):
                A = A**2
                if N != 0:
                    A = A.apply_map(lambda x: x % self._pN)
                update_progress(float(i+1)/float(times),'Exponentiating matrix')
            verbose('Done computing 2^(%s)-th power'%times)
            if times > 0:
                scale_factor = ZZ(scale).powermod(2**times,self._pN)
            else:
                scale_factor = ZZ(scale)
            bvec = Matrix(R,NN,1,[o for b in c._val for o in b._moments.list()])
            if scale_factor != 1:
                bvec = scale_factor * bvec
            valmat = A * bvec
            appr_module = V.approx_module(N)
            ans = self([V(appr_module(valmat.submatrix(row=i,nrows = N).list())) for i in xrange(0,valmat.nrows(),N)])
        if steps <= 1:
            return ans
        else:
            return self.apply_Up(ans, group = group,scale = scale,parallelize = parallelize,times = times,progress_bar = progress_bar,method = method, repslocal = repslocal, steps = steps -1)