예제 #1
0
def taut_rays(tri, angle):
    # get the extreme rays of the taut cone - note that the returned
    # vectors are non-negative because they "point up"
    N = edge_equation_matrix_taut(tri, angle)
    N = Matrix(N)
    dim = N.dimensions()[1]
    elem_ieqs = [[0] + list(elem_vector(i, dim)) for i in range(dim)]
    N_rows = [v.list() for v in N.rows()]
    N_eqns = [[0] + v for v in N_rows]
    P = Polyhedron(ieqs = elem_ieqs, eqns = N_eqns)

    rays = [ray.vector() for ray in P.rays()]
    for ray in rays:
        assert all(a.is_integer() for a in ray)
    # all of the entries are integers, represented in QQ, so we clean them.
    return [vector(ZZ(a) for a in ray) for ray in rays]
예제 #2
0
def hecke_matrix_on_ord(ll, ord_basis, weight=2, level=1, eps=None):
    R = ord_basis.parent().base_ring()
    ncols = ZZ(floor((ord_basis.ncols() - 1) / ll)) + 1
    M = Matrix(R, ord_basis.nrows(), ncols, 0)
    if eps is None:
        if level % ll == 0:
            llpow_eps = ZZ(0)
        else:
            llpow_eps = ll**(weight - 1)
    else:
        llpow_eps = ll**(weight - 1) * eps(ll)

    for i, b in enumerate(ord_basis):
        for j in range(ncols):
            M[i, j] = b[j * ll]
            if j % ll == 0:
                M[i, j] += llpow_eps * b[j // ll]
    small_mat = ord_basis.submatrix(0, 0, ncols=M.ncols())
    return Matrix([solve_xAb_echelon(small_mat, rw) for rw in M.rows()])
def product_space(chi, k, weights=False, base_ring=None, verbose=False):
    r"""
    Computes all eisenstein series, and products of pairs of eisenstein series
    of lower weight, lying in the space of modular forms of weight $k$ and
    nebentypus $\chi$.
    INPUT:
     - chi - Dirichlet character, the nebentypus of the target space
     - k - an integer, the weight of the target space
    OUTPUT:
     - a matrix of coefficients of q-expansions, which are the products of
     Eisenstein series in M_k(chi).

    WARNING: It is only for principal chi that we know that the resulting
    space is the whole space of modular forms.
    """

    if weights == False:
        weights = srange(1, k / 2 + 1)
    weight_dict = {}
    weight_dict[-1] = [w for w in weights if w % 2]  # Odd weights
    weight_dict[1] = [w for w in weights if not w % 2]  # Even weights

    try:
        N = chi.modulus()
    except AttributeError:
        if chi.parent() == ZZ:
            N = chi
            chi = DirichletGroup(N)[0]

    Id = DirichletGroup(1)[0]
    if chi(-1) != (-1)**k:
        raise ValueError('chi(-1)!=(-1)^k')
    sturm = ModularForms(N, k).sturm_bound() + 1
    if N > 1:
        target_dim = dimension_modular_forms(chi, k)
    else:
        target_dim = dimension_modular_forms(1, k)
    D = DirichletGroup(N)
    # product_space should ideally be called over number fields. Over complex
    # numbers the exact linear algebra solutions might not exist.
    if base_ring == None:
        base_ring = CyclotomicField(euler_phi(N))

    Q = PowerSeriesRing(base_ring, 'q')
    q = Q.gen()

    d = len(D)
    prim_chars = [phi.primitive_character() for phi in D]
    divs = divisors(N)

    products = Matrix(base_ring, [])
    indexlist = []
    rank = 0
    if verbose:
        print(D)
        print('Sturm bound', sturm)
        #TODO: target_dim needs refinment in the case of weight 2.
        print('Target dimension', target_dim)
    for i in srange(0, d):  # First character
        phi = prim_chars[i]
        M1 = phi.conductor()
        for j in srange(0, d):  # Second character
            psi = prim_chars[j]
            M2 = psi.conductor()
            if not M1 * M2 in divs:
                continue
            parity = psi(-1) * phi(-1)
            for t1 in divs:
                if not M1 * M2 * t1 in divs:
                    continue
                #TODO: THE NEXT CONDITION NEEDS TO BE CORRECTED. THIS IS JUST A TEST
                if phi.bar() == psi and not (
                        k == 2):  #and i==0 and j==0 and t1==1):
                    E = eisenstein_series_at_inf(phi, psi, k, sturm, t1,
                                                 base_ring).padded_list()
                    try:
                        products.T.solve_right(vector(base_ring, E))
                    except ValueError:
                        products = Matrix(products.rows() + [E])
                        indexlist.append([k, i, j, t1])
                        rank += 1
                        if verbose:
                            print('Added ', [k, i, j, t1])
                            print('Rank is now', rank)
                        if rank == target_dim:
                            return products, indexlist
                for t in divs:
                    if not M1 * M2 * t1 * t in divs:
                        continue
                    for t2 in divs:
                        if not M1 * M2 * t1 * t2 * t in divs:
                            continue
                        for l in weight_dict[parity]:
                            if l == 1 and phi.is_odd():
                                continue
                            if i == 0 and j == 0 and (l == 2 or l == k - 2):
                                continue
                            #TODO: THE NEXT CONDITION NEEDS TO BE REMOVED. THIS IS JUST A TEST
                            if l == 2 or l == k - 2:
                                continue
                            E1 = eisenstein_series_at_inf(
                                phi, psi, l, sturm, t1 * t, base_ring)
                            E2 = eisenstein_series_at_inf(
                                phi**(-1), psi**(-1), k - l, sturm, t2 * t,
                                base_ring)
                            #If chi is non-principal this needs to be changed to be something like chi*phi^(-1) instead of phi^(-1)
                            E = (E1 * E2 + O(q**sturm)).padded_list()
                            try:
                                products.T.solve_right(vector(base_ring, E))
                            except ValueError:
                                products = Matrix(products.rows() + [E])
                                indexlist.append([l, k - l, i, j, t1, t2, t])
                                rank += 1
                                if verbose:
                                    print('Added ',
                                          [l, k - l, i, j, t1, t2, t])
                                    print('Rank', rank)
                                if rank == target_dim:
                                    return products, indexlist
    return products, indexlist