def test_lstats_gamma(self):
     "Try lstats on the gamma distribution"
     _gam = [1., 0.5, 0.33333334, 0.16666667]
     assert_almost_equal(dist.gamma.lstats(4, 1), np.array(_gam))
     assert_almost_equal(dist.gamma(1., ).lstats(4), np.array(_gam))
     _gam = [10.0, 1.76197052, 0.10350336, 0.12585956]
     assert_almost_equal(dist.gamma.lstats(4, 10.), np.array(_gam))
     assert_almost_equal(dist.gamma(10., ).lstats(4), np.array(_gam))
예제 #2
0
 def test_lstats_gamma(self):
     "Try lstats on the gamma distribution"
     _gam = [ 1.,  0.5, 0.33333334, 0.16666667]
     assert_almost_equal(dist.gamma.lstats(4, 1), np.array(_gam))
     assert_almost_equal(dist.gamma(1.,).lstats(4), np.array(_gam))
     _gam =  [10.0, 1.76197052, 0.10350336, 0.12585956]
     assert_almost_equal(dist.gamma.lstats(4, 10.), np.array(_gam))
     assert_almost_equal(dist.gamma(10.,).lstats(4), np.array(_gam))
예제 #3
0
def get_generalized_distribution(self,
                                 params,
                                 scale=1,
                                 exog=None,
                                 exposure=None,
                                 offset=None):
    """
	Returns a random number generator for the predictive distribution.
	Parameters
	----------
	params : array-like
		The model parameters.
	scale : scalar
		The scale parameter.
	exog : array-like
		The predictor variable matrix.
	Returns a frozen random number generator object.  Use the
	``rvs`` method to generate random values.
	Notes
	-----
	Due to the behavior of ``scipy.stats.distributions objects``,
	the returned random number generator must be called with
	``gen.rvs(n)`` where ``n`` is the number of observations in
	the data set used to fit the model.  If any other value is
	used for ``n``, misleading results will be produced.
	"""

    fit = self.predict(params, exog, exposure, offset, linear=False)

    import scipy.stats.distributions as dist

    if isinstance(self.family, families.Gaussian):
        return dist.norm(loc=fit, scale=np.sqrt(scale))

    elif isinstance(self.family, families.Binomial):
        return dist.binom(n=1, p=fit)

    elif isinstance(self.family, families.Poisson):
        return dist.poisson(mu=fit)

    elif isinstance(self.family, families.Gamma):
        alpha = fit / float(scale)
        return dist.gamma(alpha, scale=scale)

    else:
        raise ValueError(
            "get_generalized_distribution not implemented for %s" %
            self.family.name)
예제 #4
0
파일: theta.py 프로젝트: dunovank/radd_kd
def init_distributions(pkey, kind='dpm', mu = None, sigma = None, nrvs=25, tb=.65):
    """ sample random parameter sets to explore global minima (called by
    Optimizer method __hop_around__())
    """
    if mu is None:
        mu = {'a': .15, 'tr': .02, 'v': 1., 'ssv': -1., 'z': .1, 'xb': 1., 'sso': .15, 'vi': .35, 'vd': .5}
    if sigma is None:
        sigma = {'a': .35, 'tr': .25, 'v': .5, 'ssv': .5, 'z': .05, 'xb': .5, 'sso': .01, 'vi': .4, 'vd': .5}
    normal_params = ['tr', 'v', 'vd', 'ssv', 'z', 'xb', 'sso']
    gamma_params = ['a', 'tr']
    uniform_params = ['vd', 'vi']
    if 'race' in kind:
        sigma['ssv'] = abs(mu['ssv'])
    bounds = get_bounds(kind=kind)[pkey]
    loc = mu[pkey]
    scale = sigma[pkey]
    # init and freeze dist shape
    if pkey in normal_params:
        dist = norm(loc, scale)
    elif pkey in gamma_params:
        dist = gamma(1.0, loc, scale)
    elif pkey in uniform_params:
        dist = uniform(loc, scale)
    # generate random variates
    rvinits = dist.rvs(nrvs)
    while rvinits.min() < bounds[0]:
        # apply lower limit
        ix = rvinits.argmin()
        rvinits[ix] = dist.rvs()
    while rvinits.max() > bounds[1]:
        # apply upper limit
        ix = rvinits.argmax()
        rvinits[ix] = dist.rvs()
    if pkey =='tr':
        rvinits = np.abs(rvinits)
    return rvinits
예제 #5
0
파일: imseg.py 프로젝트: abefrandsen/imseg
def segment(image, n_segments=2, burn_in=1000, samples=1000, lag=5):
    """
    Return image segment samples.

    Parameters
    ----------
    image : (N,M) ndarray
        Pixel array with single-dimension values (e.g. hue)

    Returns
    -------
    labels : (samples,N,M) ndarray
        The image segment label array
    emission_params: (samples,K,2) ndarray
        The Gaussian emission distribution parameters (mean, precision)
    log_probs : (samples,) ndarray
    """

    # allocate arrays
    res_labels = zeros((samples, image.shape[0], image.shape[1]), dtype=int)
    res_emission_params = zeros((samples, n_segments, 6))
    res_log_prob = zeros((samples,))

    padded_labels = ones((image.shape[0] + 2, image.shape[1] + 2), dtype=int)*-1
    labels = padded_labels[1:-1, 1:-1]
    emission_params = zeros((n_segments, 6))
    log_prob = None

    conditional = zeros((n_segments,))


    # init emission_params
    sample_mean_r = image[:,:,0].mean()
    sample_mean_g = image[:,:,1].mean()
    sample_mean_b = image[:,:,2].mean()
    sample_var_r = image[:,:,0].var()
    sample_var_g = image[:,:,1].var()
    sample_var_b = image[:,:,2].var()
    sample_prec_r = 1./sample_var_r
    sample_prec_g = 1./sample_var_g
    sample_prec_b = 1./sample_var_b
    for k in xrange(n_segments):
        """
        emission_params[k,0] = norm.rvs(sample_mean_r,
                sqrt(sample_var_r/n_segments))
        emission_params[k,1] = sample_prec_r
        emission_params[k,2] = norm.rvs(sample_mean_g,
                sqrt(sample_var_g/n_segments))
        emission_params[k,3] = sample_prec_g
        emission_params[k,4] = norm.rvs(sample_mean_b,
                sqrt(sample_var_b/n_segments))
        emission_params[k,5] = sample_prec_b
        """
        emission_params[k,0] = norm.rvs(0.5, 0.1)
        emission_params[k,1] = 1/(0.25**2)
        emission_params[k,2] = norm.rvs(0.5, 0.1)
        emission_params[k,3] = 1/(0.25**2)
        emission_params[k,4] = norm.rvs(0.5, 0.1)
        emission_params[k,5] = 1/(0.25**2)

    # init labels
    for n in xrange(image.shape[0]):
        for m in xrange(image.shape[1]):
            labels[n,m] = randint(0, n_segments)

    try:
        # gibbs
        for i in xrange(burn_in + samples*lag - (lag - 1)):

            for n in xrange(image.shape[0]):
                for m in xrange(image.shape[1]):
                    # resample label
                    for k in xrange(n_segments):
                        labels[n,m] = k
                        conditional[k] = 0.
                        conditional[k] += phi_blanket(
                                memoryview(padded_labels), n, m,
                                memoryview(FS))
                        """
                        for x in xrange(max(n-2,0), min(n+3,image.shape[0])):
                            for y in xrange(max(m-2,0), min(m+3,
                                    image.shape[1])):
                                clique = padded_labels[x:x+3,y:y+3]
                                conditional[k] += phi(clique)
                        """
                        mean_r = emission_params[k, 0]
                        var_r = 1./emission_params[k, 1]
                        mean_g = emission_params[k, 2]
                        var_g = 1./emission_params[k, 3]
                        mean_b = emission_params[k, 4]
                        var_b = 1./emission_params[k, 5]
                        conditional[k] += log(norm.pdf(image[n,m,0], mean_r,
                            sqrt(var_r)))
                        conditional[k] += log(norm.pdf(image[n,m,1], mean_g,
                            sqrt(var_g)))
                        conditional[k] += log(norm.pdf(image[n,m,2], mean_b,
                            sqrt(var_b)))

                    labels[n,m] = sample_categorical(conditional)

            for k in xrange(n_segments):
                mask = (labels == k)

                # resample label mean red
                mean_r = emission_params[k, 0]
                prec_r = emission_params[k, 1]
                numer_r = TAU_0*MU_0 + prec_r*sum(image[mask][:, 0])
                denom_r = TAU_0 + prec_r*sum(mask)
                post_mean_r = numer_r/denom_r
                post_var_r = 1./(denom_r)
                emission_params[k, 0] = norm.rvs(post_mean_r, sqrt(post_var_r))

                # resample label var red
                post_alpha_r = ALPHA_0 + sum(mask)/2.
                post_beta_r = BETA_0 + sum((image[mask][:, 0] - emission_params[k,0])**2)/2.
                post_r = gamma(post_alpha_r, scale=1./post_beta_r)
                emission_params[k, 1] = post_r.rvs()

                # resample label mean green
                mean_g = emission_params[k, 2]
                prec_g = emission_params[k, 3]
                numer_g = TAU_0*MU_0 + prec_g*sum(image[mask][:, 1])
                denom_g = TAU_0 + prec_g*sum(mask)
                post_mean_g = numer_g/denom_g
                post_var_g = 1./(denom_g)
                emission_params[k, 2] = norm.rvs(post_mean_g, sqrt(post_var_g))

                # resample label var green
                post_alpha_g = ALPHA_0 + sum(mask)/2.
                post_beta_g = BETA_0 + sum((image[mask][:, 1] - emission_params[k,2])**2)/2.
                post_g = gamma(post_alpha_g, scale=1./post_beta_g)
                emission_params[k, 3] = post_g.rvs()

                # resample label mean blue
                mean_b = emission_params[k, 4]
                prec_b = emission_params[k, 5]
                numer_b = TAU_0*MU_0 + prec_b*sum(image[mask][:, 2])
                denom_b = TAU_0 + prec_b*sum(mask)
                post_mean_b = numer_b/denom_b
                post_var_b = 1./(denom_b)
                emission_params[k, 4] = norm.rvs(post_mean_b, sqrt(post_var_b))

                # resample label var blue
                post_alpha_b = ALPHA_0 + sum(mask)/2.
                post_beta_b = BETA_0 + sum((image[mask][:, 2] - emission_params[k,4])**2)/2.
                post_b = gamma(post_alpha_b, scale=1./post_beta_b)
                emission_params[k, 5] = post_b.rvs()
                
            log_prob = 0.
            for n in xrange(image.shape[0]):
                for m in xrange(image.shape[1]):
                    #clique = padded_labels[n:n+3,m:m+3]
                    label = labels[n,m]
                    mean_r = emission_params[label, 0]
                    var_r = 1./emission_params[label, 1]
                    mean_g = emission_params[label, 2]
                    var_g = 1./emission_params[label, 3]
                    mean_b = emission_params[label, 4]
                    var_b = 1./emission_params[label, 5]
                    #log_prob += phi(clique)
                    log_prob += log(norm.pdf(image[n,m,0], mean_r, sqrt(var_r)))
                    log_prob += log(norm.pdf(image[n,m,1], mean_g, sqrt(var_g)))
                    log_prob += log(norm.pdf(image[n,m,2], mean_b, sqrt(var_b)))
                    # prior on theta?
            log_prob += phi_all(memoryview(padded_labels), memoryview(FS))

            sys.stdout.write('\riter {} log_prob {}'.format(i, log_prob))
            sys.stdout.flush()

            if i < burn_in:
                pass
            elif not (i - burn_in)%lag:
                res_i = i/lag
                res_emission_params[res_i] = emission_params[:]
                res_labels[res_i] = labels
                res_log_prob[i] = log_prob

        sys.stdout.write('\n')
        return res_labels, res_emission_params, res_log_prob
    except KeyboardInterrupt:
        return res_labels, res_emission_params, res_log_prob
예제 #6
0
    boots = 1000
    real_data = data[state].values
    df = pd.DataFrame()
    df['active'] = real_data
    df.to_csv('temp_files/dataset.csv', index=False)
    try:
        means = np.load("Output/Rt/States/Rt_" + state + "_means.npy")
        sds = np.load("Output/Rt/States/Rt_" + state + "_sds.npy")
        dat_means = np.load("Output/Rt/States/" + state + "_means.npy")
        dat_sds = np.load("Output/Rt/States/" + state + "_sds.npy")
    except:
        rt = []
        dats = []
        for n in range(boots):
            print("Iteration: ", n + 1, end='\r')
            G = gamma(3.325 + 0.616 * np.random.normal(),
                      0.979 + 0.195 * np.random.normal())
            dataset = np.copy(real_data)
            for i in range(len(dataset)):
                send_back = np.clip(np.round(G.rvs(int(dataset[i]))), 0, 10)
                send_back = send_back[i - send_back >= 0]
                dataset[i] = 0
                for j in np.unique(np.int32(send_back)):
                    dataset[i - j] += np.sum(send_back == j)
            df = pd.DataFrame()
            df['active'] = dataset[:-10]
            dats.append(dataset[:-10])
            df.to_csv('temp_files/dataset.csv', index=False)
            call(['RScript.exe', 'Rscripts/Rt-bootstrap (Uncorrected).R'])
            rt.append(pd.read_csv('temp_files/rtoutput.csv'))

        means = np.array([x["Mean(R)"].values for x in rt])
예제 #7
0
def between(*quantiles):
    parameters = distributions.gamma.fit(polygon(*quantiles))
    distribution = distributions.gamma(*parameters)
    return RandomVariable(distribution)
예제 #8
0
def gamma(alpha=1.0, beta=1.0):
    """
    alpha = k
    beta = 1/theta
    """
    return dists.gamma(alpha, scale=1. / beta)
예제 #9
0
def particle_filter_detector(ser1, taps, models):
  # particle : (id, rate, censor, last_censor prev_particle)
  
  # Model paramaters
  normal_std_factor = 4
  censorship_std_factor = 7
  censorship_prior_model = 0.01
  change_tap_prior_model = 0.1

  # Sampling parameters
  change_tap_sample = 0.2
  censorship_prior_sample = 0.3
  particle_number = 1000
  mult_particles = 1
  
  # Check consistancy once
  for t in models:    
    assert len(ser1) == len(models[t]) 

  # Clean up a bit the data
  series2 = []
  last = None
  first = None
  # Process series
  for s in ser1:
    if s == None:
      series2 += [last]
    else:
      if first == None:
        first = s
      series2 += [s]
      last = s

  series2 = [s if s != None else first for s in series2]
  series = series2

  # Data structures to keep logs
  particles = {}
  outputlog = [(series[0],series[0])]

  # Initial particles:
  particles[0] = []
  G = gamma(max(1,series[0]), 1)
  for pi, r in enumerate(G.rvs(particle_number)):
    particles[0] += [(pi, r, False, None, 0, random.choice(taps), False)]

  # Now run the sampler for all times
  for pi in range(1, len(series)):
    assert models != None
    assert taps != None

    # Normal distributions from taps and the model standard deviation for normality and censorship
    round_models = {}
    for ti in taps:
      NoCensor = norm(models[ti][pi][0], (models[ti][pi][1] * normal_std_factor)**2)
      Censor = norm(models[ti][pi][0], (models[ti][pi][1] * censorship_std_factor)**2)
      round_models[ti] = (NoCensor, Censor)

    # Store for expanded pool of particles
    temporary_particles = []

    # Expand the distribution
    for p in particles[pi-1]:
      p_old, C_old, j = tracebackp(particles, p, pi-1, p[5] - 1) # taps[0] - 1)

      # Serial number of old particle
      p_old_num = None
      if p_old != None:
        p_old_num = p_old[0]

      # Create a number of candidate particles from each previous particle
      for _ in range(mult_particles):

        # Sample a new tap for the candidate particle
        new_tap = p[5]
        if random.random() < change_tap_sample:
          new_tap = random.choice(taps)
        
        # Update this censorship flag
        C = False  
        if random.random() < censorship_prior_sample:
          C = True

        # Determine new rate
        new_p = None
        if p_old == None:          
          new_p = p[1] # continue as before
        if C | C_old:
          while new_p == None or new_p < 0:
            new_p = p_old[1] * (1 + round_models[new_tap][1].rvs(1)[0]) ## censor models
        else:
          while new_p == None or new_p < 0:
            new_p = p_old[1] * (1 + round_models[new_tap][0].rvs(1)[0]) ## no censor models
        
        # Build and register new particle
        newpi = (None, new_p, C, p[0], pi, new_tap, C | C_old)
        temporary_particles += [newpi]


    # Assign a weight to each sampled candidtae particle
    weights = []
    for px in temporary_particles:
      wx = 1.0

      # Adjust weight to observation
      if not series[pi] == None:
        poisson_prob = poisson.pmf(series[pi], px[1])
        #print poisson_prob, px
        wx *= poisson_prob

      # Adjust the probability of censorship
      if px[2]:
        wx *= censorship_prior_model / censorship_prior_sample
      else:
        wx *= (1 - censorship_prior_model) / (1 - censorship_prior_sample)

      # Adjust the probability of changing the tap
      if px[5] == particles[pi-1][px[3]][5]:
        wx *= (1 - change_tap_prior_model) / (((1-change_tap_sample) + change_tap_sample*(1.0 / len(taps))))
      else:
        wx *= (change_tap_prior_model) / (1 - (((1-change_tap_sample) + change_tap_sample*(1.0 / len(taps)))))
          
      weights += [wx]

    weights_sum = sum(weights)
    
    ## Resample according to weight
    particles[pi] = []
    for pid in range(particle_number):
      px = samplep(weights, weights_sum, temporary_particles)
      px = (pid, px[1], px[2], px[3], px[4], px[5], px[6])
      particles[pi] += [px]

    ## Collect some statistics

    ## stats
    Ci = 0
    mean = 0
    for px in particles[pi]:
      if px[2]:
        Ci += 1
      mean += px[1]
    mean = mean / len(particles[pi])

    # Diversity
    Div = len(set([pv[3] for pv in particles[pi]]))

    # Range of values
    range_normal = sorted([pn[1] for pn in temporary_particles if not pn[2]])    
    Base = range_normal[len(range_normal)/2]
    Mn = range_normal[len(range_normal)*1/100]
    Mx = range_normal[len(range_normal)*99/100]
    outputlog += [(Mn, Mx)]

    # How many are using the censorship model at any time?
    censor_model_stat = len([1 for pn in particles[pi] if pn[6]])* 100 / len(particles[pi])

    # Build histogram of taps
    tap_hist = {}
    for px in particles[pi]:
      tap_hist[px[5]] = tap_hist.get(px[5], 0) + 1
          
    print "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" % (pi, Ci, mean, series[pi], tap_hist, Base, Mn, Mx, Div, censor_model_stat)
    # print "      [%s - %s]" % (key_series_point*(1+NoCensor.ppf(0.00001)), key_series_point*(1+NoCensor.ppf(0.99999)))

  return particles, outputlog
예제 #10
0
import pandas as pd
import numpy as np
from scipy.stats.distributions import expon, gamma, rayleigh, norm, t, uniform

from posteriori import between


def RMSE(predicted, expected):
    return np.linalg.norm(predicted - expected) / np.sqrt(len(predicted))

distributions = [
    norm(),
    t(df=5),
    gamma(a=2),
    gamma(a=4),
    gamma(a=8),
    expon(scale=1/0.5),
    expon(scale=1/1),
    expon(scale=1/2),
    rayleigh(),
    uniform(),
]

errors = []

for distribution in distributions:
    parameters = [k + '=' + str(v) for k, v in distribution.kwds.items()]
    name = "{name}({parameters})".format(
        name=distribution.dist.name,
        parameters=', '.join(parameters)
        )
예제 #11
0
import pandas as pd
import numpy as np
from scipy.stats.distributions import gamma

ICL_STD = gamma(1 / 0.45**2, 0, 18.8 * 0.45**2)
ICL_ITS = gamma(1 / 0.86**2, 0, 5.1 * 0.86**2)

DEATHS_DAYS_S = np.array(
    [ICL_STD.cdf(a + 1) - ICL_STD.cdf(a) for a in range(100)])
S_DAYS = np.array([ICL_ITS.cdf(a + 1) - ICL_ITS.cdf(a) for a in range(60)])

DEATHS_DAYS = np.convolve(DEATHS_DAYS_S, S_DAYS)


def normalize_jh_data(jh, name):
    jh['Country/Region'] = jh[['Country/Region', 'Province/State'
                               ]].replace(np.nan, ''
                                          ""
                                          '').agg(' - '.join,
                                                  axis=1).str.strip('- ')
    jh = jh.drop(columns=['Province/State', 'Lat', 'Long'])
    jh = jh.melt(id_vars=['Country/Region'], value_name=name)
    jh['variable'] = pd.to_datetime(jh['variable'])
    return jh


def get_jh_data():

    jhcc = pd.read_csv(
        'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv'
    )
예제 #12
0
파일: glm.py 프로젝트: NICTA/revrand
from .utils import atleast_list, issequence
from .mathfun.special import logsumexp
from .basis_functions import LinearBasis, apply_grad
from .likelihoods import Gaussian
from .optimize import sgd, structured_sgd, logtrick_sgd, Adam
from .btypes import Bound, Positive, Parameter


# Set up logging
log = logging.getLogger(__name__)


# Module settings
WGTRND = norm()  # Sampling distribution over mixture weights
COVRND = gamma(a=2, scale=0.5)  # Sampling distribution over mixture covariance
LOGITER = 500  # Number of SGD iterations between logging ELBO and hypers


class GeneralizedLinearModel(BaseEstimator, RegressorMixin):
    r"""
    Bayesian Generalized linear model (GLM).

    This provides a scikit learn compatible interface for the glm module.

    Parameters
    ----------
    likelihood : Object
        A likelihood object, see the likelihoods module.
    basis : Basis
        A basis object, see the basis_functions module.
예제 #13
0
import numpy as np
import random
import matplotlib.pyplot as plt
import copy
import os
import os.path
import optparse
import scipy
from optparse import OptionParser
from scipy.stats import distributions

normal1 = distributions.norm(3, 1.1)
normal2 = distributions.norm(7, 1)
uniform = distributions.uniform(0, 10)

gamma = distributions.gamma(6, 0.01)
x = np.linspace(0, 10, 100)
y1 = normal1.pdf(x) + normal2.pdf(x)
y2 = uniform.pdf(x)

plt.plot(x, y2)
plt.fill_between(x, 0, y2)
plt.title('Prior Distribution')
plt.ylim([0, 0.5])
plt.show()

plt.plot(x, y1 * y2)
#plt.plot(x,gamma.pdf(x))
plt.fill_between(x, 0, y1 * y2)
plt.title('Posterior Distribution')
plt.show()
예제 #14
0
파일: glm.py 프로젝트: yohanJung/revrand
from sklearn.utils.validation import check_is_fitted, check_X_y, check_array
from sklearn.utils import check_random_state

from .utils import atleast_list, issequence
from .mathfun.special import logsumexp
from .basis_functions import LinearBasis, apply_grad
from .likelihoods import Gaussian
from .optimize import sgd, structured_sgd, logtrick_sgd, Adam
from .btypes import Bound, Positive, Parameter

# Set up logging
log = logging.getLogger(__name__)

# Module settings
WGTRND = norm()  # Sampling distribution over mixture weights
COVRND = gamma(a=2, scale=0.5)  # Sampling distribution over mixture covariance
LOGITER = 500  # Number of SGD iterations between logging ELBO and hypers


class GeneralizedLinearModel(BaseEstimator, RegressorMixin):
    r"""
    Bayesian Generalized linear model (GLM).

    This provides a scikit learn compatible interface for the glm module.

    Parameters
    ----------
    likelihood : Object
        A likelihood object, see the likelihoods module.
    basis : Basis
        A basis object, see the basis_functions module.
예제 #15
0
파일: dists.py 프로젝트: compmem/RunDEMC
def gamma(alpha=1.0, beta=1.0):
    """
    alpha = k
    beta = 1/theta
    """
    return dists.gamma(alpha, scale=1./beta)
예제 #16
0
# The number of allowable model runs
n_samples = 500

# scipy.stats.distributions objects for each distribution, per Table 1 in the paper.  Note that for truncated normal, the bounds are relative to the mean in units of scale, so if we want a positive distribution for a normal with mean 8 and sigma 4, then the lower bound is -8/4=-2
distributions = {
    "GCM": randint(0, 4),
    "FICE": truncnorm(-4 / 4.0, 4.0 / 4, loc=8, scale=4),
    "FSNOW": truncnorm(-4.1 / 3, 4.1 / 3, loc=4.1, scale=1.5),
    "PRS": uniform(loc=5, scale=2),
    "RFR": truncnorm(-0.4 / 0.3, 0.4 / 0.3, loc=0.5, scale=0.2),
    "OCM": randint(-1, 2),
    "OCS": randint(-1, 2),
    "TCT": randint(-1, 2),
    "VCM": truncnorm(-0.35 / 0.2, 0.35 / 0.2, loc=1, scale=0.2),
    "PPQ": truncnorm(-0.35 / 0.2, 0.35 / 0.2, loc=0.6, scale=0.2),
    "SIAE": gamma(1.5, scale=0.8, loc=1),
}

# Names of all the variables
keys = ["GCM", "FICE", "FSNOW", "PRS", "RFR", "OCM", "OCS", "TCT", "VCM", "PPQ", "SIAE"]

# Generate the latin hypercube samples with uniform distributions
unif_sample = lhs(len(keys), n_samples)

# To hold the transformed variables
dist_sample = np.zeros_like(unif_sample)

# For each variable, transform with the inverse of the CDF (inv(CDF)=ppf)
for i, key in enumerate(keys):
    dist_sample[:, i] = distributions[key].ppf(unif_sample[:, i])
예제 #17
0
파일: gammas.py 프로젝트: rosoba/rosoba
'''
Created on Jun 17, 2014

@author: rch
'''

from scipy.stats.distributions import gamma
import numpy as np

x = np.linspace(0, 0.5, 4000)

shapes = np.array([0.18, 0.15, 0.23, 0.15, 0.20, 0.18], dtype='f')
scales = np.array([0.8, 0.7, 0.6, 1.0, 0.7, 0.8], dtype='f')
locs = np.array([0.0055, 0.0080, 0.0010, 0.0050, 0.0090, 0.0057], dtype='f')

import pylab as p
for i in range(0, len(shapes)):
    g = gamma(shapes[i], scale=scales[i], loc=locs[i])
    pdf = g.pdf(x)
    p.plot(x, pdf)

p.show()