예제 #1
0
def refine_mesh(filename, level):
    """
    Uniformly refine `level`-times a mesh given by `filename`.

    The refined mesh is saved to a file with name constructed from base
    name of `filename` and `level`-times appended `'_r'` suffix.

    Parameters
    ----------
    filename : str
        The mesh file name.
    level : int
        The refinement level.
    """
    import os
    from sfepy.base.base import output
    from sfepy.fem import Mesh, Domain

    if level > 0:
        mesh = Mesh.from_file(filename)
        domain = Domain(mesh.name, mesh)
        for ii in range(level):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements'
                   % (domain.shape.n_nod, domain.shape.n_el))

        suffix = os.path.splitext(filename)[1]
        filename = domain.name + suffix

        domain.mesh.write(filename, io='auto')

    return filename
예제 #2
0
    def from_conf(conf, options):
        import sfepy
        from sfepy.fem import Mesh, Domain, H1NodalVolumeField
        mesh = Mesh.from_file('meshes/2d/rectangle_tri.mesh',
                              prefix_dir=sfepy.data_dir)
        domain = Domain('domain', mesh)
        dim = domain.shape.dim

        min_x, max_x = domain.get_mesh_bounding_box()[:,0]
        eps = 1e-8 * (max_x - min_x)

        omega = domain.create_region('Omega', 'all')
        gamma1 = domain.create_region('Gamma1',
                                      'vertices in x < %.10f' % (min_x + eps),
                                      'facet')
        gamma2 = domain.create_region('Gamma2',
                                      'vertices in x > %.10f' % (max_x - eps),
                                      'facet')

        field = H1NodalVolumeField('fu', nm.float64, 'vector', omega,
                                   approx_order=2)

        test = Test(conf=conf, options=options, dim=dim,
                    omega=omega, gamma1=gamma1, gamma2=gamma2,
                    field=field)
        return test
예제 #3
0
def main():
    parser = OptionParser(usage=usage, version="%prog")

    options, args = parser.parse_args()

    if (len(args) == 1):
        mesh_filename = args[0];
    else:
        parser.print_help(),
        return

    mesh = Mesh('mesh', mesh_filename)
    print mesh

    domain = Domain('domain', mesh)
    print domain

    reg = domain.create_region('Surface',
                               'nodes of surface',
                               {'can_cells' : True})

    dual_mesh = DualMesh(reg)
    dual_mesh.save('dual_mesh.mesh',)
    dual_mesh.save_axes('axes.vtk',)

    print dual_mesh
예제 #4
0
def main():
    parser = OptionParser(usage=usage, version="%prog")

    options, args = parser.parse_args()

    if (len(args) == 1):
        mesh_filename = args[0];
    else:
        parser.print_help(),
        return

    mesh = Mesh('mesh', mesh_filename)
    print mesh

    domain = Domain('domain', mesh)
    print domain

    reg = domain.create_region('Surface',
                               'nodes of surface',
                               {'can_cells' : True})

    dual_mesh = DualMesh(reg)
    dual_mesh.save('dual_mesh.mesh',)
    dual_mesh.save_axes('axes.vtk',)

    print dual_mesh
예제 #5
0
def refine_mesh(filename, level):
    """
    Uniformly refine `level`-times a mesh given by `filename`.

    The refined mesh is saved to a file with name constructed from base
    name of `filename` and `level`-times appended `'_r'` suffix.

    Parameters
    ----------
    filename : str
        The mesh file name.
    level : int
        The refinement level.
    """
    import os
    from sfepy.base.base import output
    from sfepy.fem import Mesh, Domain

    if level > 0:
        mesh = Mesh.from_file(filename)
        domain = Domain(mesh.name, mesh)
        for ii in range(level):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements'
                   % (domain.shape.n_nod, domain.shape.n_el))

        suffix = os.path.splitext(filename)[1]
        filename = domain.name + suffix

        domain.mesh.write(filename, io='auto')

    return filename
예제 #6
0
    def from_conf(conf, options):
        mesh = Mesh.from_file("meshes/2d/square_unit_tri.mesh", prefix_dir=sfepy.data_dir)
        domain = Domain("domain", mesh)

        omega = domain.create_region("Omega", "all")

        field = H1NodalVolumeField("linear", nm.float64, "scalar", omega, approx_order=1)

        test = Test(conf=conf, options=options, omega=omega, field=field)
        return test
예제 #7
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version="%prog")
    parser.add_option("-s", "--show", action="store_true", dest="show", default=False, help=help["show"])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + "/meshes/2d/rectangle_tri.mesh")
    domain = Domain("domain", mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region("Omega", "all")
    gamma1 = domain.create_region("Gamma1", "nodes in x < %.10f" % (min_x + eps))
    gamma2 = domain.create_region("Gamma2", "nodes in x > %.10f" % (max_x - eps))

    field = Field("fu", nm.float64, "vector", omega, space="H1", poly_space_base="lagrange", approx_order=2)

    u = FieldVariable("u", "unknown", field, mesh.dim)
    v = FieldVariable("v", "test", field, mesh.dim, primary_var_name="u")

    m = Material("m", lam=1.0, mu=1.0)
    f = Material("f", val=[[0.02], [0.01]])

    integral = Integral("i", order=3)

    t1 = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u)
    t2 = Term.new("dw_volume_lvf(f.val, v)", integral, omega, f=f, v=v)
    eq = Equation("balance", t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC("fix_u", gamma1, {"u.all": 0.0})

    bc_fun = Function("shift_u_fun", shift_u_fun, extra_args={"shift": 0.01})
    shift_u = EssentialBC("shift_u", gamma2, {"u.0": bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition("elasticity", equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups("regions")

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print nls_status

    pb.save_state("linear_elasticity.vtk", vec)

    if options.show:
        view = Viewer("linear_elasticity.vtk")
        view(vector_mode="warp_norm", rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
예제 #8
0
    def from_conf(conf, options):
        mesh = Mesh.from_file('meshes/2d/square_unit_tri.mesh',
                              prefix_dir=sfepy.data_dir)
        domain = Domain('domain', mesh)

        omega = domain.create_region('Omega', 'all')

        field = Field('linear', nm.float64, 'scalar', omega,
                      space='H1', poly_space_base='lagrange', approx_order=1)

        test = Test(conf=conf, options=options, omega=omega, field=field)
        return test
예제 #9
0
    def from_conf(conf, options):
        mesh = Mesh.from_file('meshes/2d/square_unit_tri.mesh',
                              prefix_dir=sfepy.data_dir)
        domain = Domain('domain', mesh)

        omega = domain.create_region('Omega', 'all')

        field = H1NodalVolumeField('linear', nm.float64, 'scalar', omega,
                                   approx_order=1)

        test = Test(conf=conf, options=options, omega=omega, field=field)
        return test
예제 #10
0
    def test_interpolation_two_meshes(self):
        from sfepy import data_dir
        from sfepy.fem import Mesh, Domain, H1NodalVolumeField, Variables

        m1 = Mesh('source mesh', data_dir + '/meshes/3d/block.mesh')

        m2 = Mesh('target mesh', data_dir + '/meshes/3d/cube_medium_tetra.mesh')
        m2.coors *= 2.0

        bbox = m1.get_bounding_box()
        dd = bbox[1,:] - bbox[0,:]
        data = nm.sin(4.0 * nm.pi * m1.coors[:,0:1] / dd[0]) \
               * nm.cos(4.0 * nm.pi * m1.coors[:,1:2] / dd[1])

        variables1 = {
            'u'       : ('unknown field', 'scalar_tp', 0),
            'v'       : ('test field',    'scalar_tp', 'u'),
        }

        variables2 = {
            'u'       : ('unknown field', 'scalar_si', 0),
            'v'       : ('test field',    'scalar_si', 'u'),
        }

        d1 = Domain('d1', m1)
        omega1 = d1.create_region('Omega', 'all')
        field1 = H1NodalVolumeField('scalar_tp', nm.float64, (1,1), omega1,
                                    approx_order=1)
        ff1 = {field1.name : field1}

        d2 = Domain('d2', m2)
        omega2 = d2.create_region('Omega', 'all')
        field2 = H1NodalVolumeField('scalar_si', nm.float64, (1,1), omega2,
                                    approx_order=0)
        ff2 = {field2.name : field2}

        vv1 = Variables.from_conf(transform_variables(variables1), ff1)
        u1 = vv1['u']
        u1.set_from_mesh_vertices(data)

        vv2 = Variables.from_conf(transform_variables(variables2), ff2)
        u2 = vv2['u']

        # Performs interpolation, if other field differs from self.field
        # or, in particular, is defined on a different mesh.
        u2.set_from_other(u1, strategy='interpolation', close_limit=0.1)

        fname = in_dir(self.options.out_dir)
        u1.save_as_mesh(fname('test_mesh_interp_block_scalar.vtk'))
        u2.save_as_mesh(fname('test_mesh_interp_cube_scalar.vtk'))

        return True
예제 #11
0
    def test_normals(self):
        """
        Check orientations of surface normals on the reference elements.
        """
        import sfepy
        from sfepy.fem import Mesh, Domain, Integral
        from sfepy.fem.poly_spaces import PolySpace
        from sfepy.fem.mappings import SurfaceMapping
        from sfepy.linalg import normalize_vectors

        ok = True

        for geom in ['2_3', '2_4', '3_4', '3_8']:
            mesh = Mesh.from_file('meshes/elements/%s_1.mesh' % geom,
                                  prefix_dir=sfepy.data_dir)
            domain = Domain('domain', mesh)
            surface = domain.create_region('Surface', 'nodes of surface')
            domain.create_surface_group(surface)

            sd = domain.surface_groups[0][surface.name]

            coors = domain.get_mesh_coors()
            gel = domain.geom_els[geom].surface_facet
            ps = PolySpace.any_from_args('aux', gel, 1)

            mapping = SurfaceMapping(coors, sd.get_connectivity(), ps)

            integral = Integral('i', order=1)
            vals, weights = integral.get_qp(gel.name)

            # Evaluate just in the first quadrature point...
            geo = mapping.get_mapping(vals[:1], weights[:1])

            expected = expected_normals[geom].copy()
            normalize_vectors(expected)

            _ok = nm.allclose(expected, geo.normal[:, 0, :, 0],
                              rtol=0.0, atol=1e-14)
            self.report('%s: %s' % (geom, _ok))

            if not _ok:
                self.report('expected:')
                self.report(expected)
                self.report('actual:')
                self.report(geo.normal[:, 0, :, 0])

            ok = ok and _ok

        return ok
예제 #12
0
    def test_invariance_qp(self):
        from sfepy import data_dir
        from sfepy.fem import (Mesh, Domain, H1NodalVolumeField, Variables,
                               Integral)
        from sfepy.terms import Term
        from sfepy.fem.mappings import get_physical_qps

        mesh = Mesh('source mesh', data_dir + '/meshes/3d/block.mesh')

        bbox = mesh.get_bounding_box()
        dd = bbox[1, :] - bbox[0, :]
        data = nm.sin(4.0 * nm.pi * mesh.coors[:,0:1] / dd[0]) \
               * nm.cos(4.0 * nm.pi * mesh.coors[:,1:2] / dd[1])

        variables = {
            'u': ('unknown field', 'scalar_tp', 0),
            'v': ('test field', 'scalar_tp', 'u'),
        }

        domain = Domain('domain', mesh)
        omega = domain.create_region('Omega', 'all')
        field = H1NodalVolumeField('scalar_tp',
                                   nm.float64,
                                   1,
                                   omega,
                                   approx_order=1)
        ff = {field.name: field}

        vv = Variables.from_conf(transform_variables(variables), ff)
        u = vv['u']
        u.set_from_mesh_vertices(data)

        integral = Integral('i', order=2)
        term = Term.new('ev_volume_integrate(u)', integral, omega, u=u)
        term.setup()
        val1, _ = term.evaluate(mode='qp')
        val1 = val1.ravel()

        qps = get_physical_qps(omega, integral)
        coors = qps.get_merged_values()

        val2 = u.evaluate_at(coors).ravel()

        self.report('max. difference:', nm.abs(val1 - val2).max())
        ok = nm.allclose(val1, val2, rtol=0.0, atol=1e-12)
        self.report('invariance in qp: %s' % ok)

        return ok
예제 #13
0
    def test_refine_3_8(self):
        mesh = Mesh('3_8', data_dir + '/meshes/elements/3_8_1.mesh')
        domain = refine(Domain('domain', mesh), self.options.out_dir, 1)

        ok = compare_mesh('3_8', domain.mesh.coors, domain.mesh.conns[0])

        return ok
예제 #14
0
    def test_projection_tri_quad(self):
        from sfepy.fem.projections import make_l2_projection

        source = FieldVariable('us', 'unknown', self.field, 1)

        coors = self.field.get_coor()
        vals = nm.sin(2.0 * nm.pi * coors[:, 0] * coors[:, 1])
        source.data_from_any(vals)

        name = op.join(self.options.out_dir,
                       'test_projection_tri_quad_source.vtk')
        source.save_as_mesh(name)

        mesh = Mesh.from_file('meshes/2d/square_quad.mesh',
                              prefix_dir=sfepy.data_dir)
        domain = Domain('domain', mesh)

        omega = domain.create_region('Omega', 'all')

        field = H1NodalVolumeField('bilinear',
                                   nm.float64,
                                   'scalar',
                                   omega,
                                   approx_order=1)

        target = FieldVariable('ut', 'unknown', field, 1)

        make_l2_projection(target, source)

        name = op.join(self.options.out_dir,
                       'test_projection_tri_quad_target.vtk')
        target.save_as_mesh(name)

        bbox = self.field.domain.get_mesh_bounding_box()
        x = nm.linspace(bbox[0, 0] + 0.001, bbox[1, 0] - 0.001, 20)
        y = nm.linspace(bbox[0, 1] + 0.001, bbox[1, 1] - 0.001, 20)

        xx, yy = nm.meshgrid(x, y)
        test_coors = nm.c_[xx.ravel(), yy.ravel()].copy()

        vec1 = source.evaluate_at(test_coors)
        vec2 = target.evaluate_at(test_coors)

        ok = (nm.abs(vec1 - vec2) < 0.01).all()

        return ok
예제 #15
0
def do_interpolation(m2, m1, data, field_name, force=False):
    """Interpolate data from m1 to m2. """
    from sfepy.fem import Domain, H1NodalVolumeField, Variables

    fields = {
        'scalar_si' : ((1,1), 'Omega', 2),
        'vector_si' : ((3,1), 'Omega', 2),
        'scalar_tp' : ((1,1), 'Omega', 1),
        'vector_tp' : ((3,1), 'Omega', 1),
    }

    d1 = Domain('d1', m1)

    omega1 = d1.create_region('Omega', 'all')

    f = fields[field_name]

    field1 = H1NodalVolumeField('f', nm.float64, f[0], d1.regions[f[1]],
                                approx_order=f[2])
    ff = {field1.name : field1}

    vv = Variables.from_conf(transform_variables(variables), ff)
    u1 = vv['u']
    u1.set_from_mesh_vertices(data)

    d2 = Domain('d2', m2)
    omega2 = d2.create_region('Omega', 'all')

    field2 = H1NodalVolumeField('f', nm.float64, f[0], d2.regions[f[1]],
                                approx_order=f[2])
    ff2 = {field2.name : field2}

    vv2 = Variables.from_conf(transform_variables(variables), ff2)
    u2 = vv2['u']

    if not force:
        # Performs interpolation, if other field differs from self.field
        # or, in particular, is defined on a different mesh.
        u2.set_from_other(u1, strategy='interpolation', close_limit=0.5)

    else:
        coors = u2.field.get_coor()
        vals = u1.evaluate_at(coors, close_limit=0.5)
        u2.set_data(vals)

    return u1, u2
예제 #16
0
    def test_refine_hexa(self):
        mesh = Mesh('mesh_hexa',
                    data_dir + '/meshes/various_formats/abaqus_hex.inp')
        domain = Domain('domain', mesh)

        refine(domain, self.options.out_dir)

        return True
예제 #17
0
    def test_invariance_qp(self):
        from sfepy import data_dir
        from sfepy.fem import (Mesh, Domain, H1NodalVolumeField,
                               Variables, Integral)
        from sfepy.terms import Term
        from sfepy.fem.mappings import get_physical_qps

        mesh = Mesh('source mesh', data_dir + '/meshes/3d/block.mesh')

        bbox = mesh.get_bounding_box()
        dd = bbox[1,:] - bbox[0,:]
        data = nm.sin(4.0 * nm.pi * mesh.coors[:,0:1] / dd[0]) \
               * nm.cos(4.0 * nm.pi * mesh.coors[:,1:2] / dd[1])

        variables = {
            'u'       : ('unknown field', 'scalar_tp', 0),
            'v'       : ('test field',    'scalar_tp', 'u'),
        }

        domain = Domain('domain', mesh)
        omega = domain.create_region('Omega', 'all')
        field = H1NodalVolumeField('scalar_tp', nm.float64, 1, omega,
                                   approx_order=1)
        ff = {field.name : field}

        vv = Variables.from_conf(transform_variables(variables), ff)
        u = vv['u']
        u.set_from_mesh_vertices(data)

        integral = Integral('i', order=2)
        term = Term.new('ev_volume_integrate(u)', integral, omega, u=u)
        term.setup()
        val1, _ = term.evaluate(mode='qp')
        val1 = val1.ravel()

        qps = get_physical_qps(omega, integral)
        coors = qps.get_merged_values()

        val2 = u.evaluate_at(coors).ravel()

        self.report('max. difference:', nm.abs(val1 - val2).max())
        ok = nm.allclose(val1, val2, rtol=0.0, atol=1e-12)
        self.report('invariance in qp: %s' % ok)

        return ok
예제 #18
0
    def from_conf(conf, options):
        from sfepy.fem import Mesh, Domain, Integral

        domains = []
        for filename in filename_meshes:
            mesh = Mesh.from_file(filename)
            domain = Domain('domain_%s' % mesh.name.replace(data_dir, ''),
                            mesh)
            domain.create_region('Omega', 'all')
            domain.create_region('Gamma', 'vertices of surface', 'facet')

            domains.append(domain)

        integral = Integral('i', order=3)

        test = Test(domains=domains, integral=integral,
                    conf=conf, options=options)
        return test
예제 #19
0
    def test_projection_tri_quad(self):
        from sfepy.fem.projections import make_l2_projection

        source = FieldVariable('us', 'unknown', self.field, 1)

        coors = self.field.get_coor()
        vals = nm.sin(2.0 * nm.pi * coors[:,0] * coors[:,1])
        source.data_from_any(vals)

        name = op.join(self.options.out_dir,
                       'test_projection_tri_quad_source.vtk')
        source.save_as_mesh(name)

        mesh = Mesh.from_file('meshes/2d/square_quad.mesh',
                              prefix_dir=sfepy.data_dir)
        domain = Domain('domain', mesh)

        omega = domain.create_region('Omega', 'all')


        field = Field('bilinear', nm.float64, 'scalar', omega,
                      space='H1', poly_space_base='lagrange', approx_order=1)

        target = FieldVariable('ut', 'unknown', field, 1)

        make_l2_projection(target, source)

        name = op.join(self.options.out_dir,
                       'test_projection_tri_quad_target.vtk')
        target.save_as_mesh(name)

        bbox = self.field.domain.get_mesh_bounding_box()
        x = nm.linspace(bbox[0, 0] + 0.001, bbox[1, 0] - 0.001, 20)
        y = nm.linspace(bbox[0, 1] + 0.001, bbox[1, 1] - 0.001, 20)

        xx, yy = nm.meshgrid(x, y)
        test_coors = nm.c_[xx.ravel(), yy.ravel()].copy()

        vec1 = source.evaluate_at(test_coors)
        vec2 = target.evaluate_at(test_coors)

        ok = (nm.abs(vec1 - vec2) < 0.01).all()

        return ok
예제 #20
0
파일: sinbc.py 프로젝트: AshitaPrasad/sfepy
def mesh_hook(mesh, mode):
    """
    Load and refine a mesh here.
    """
    if mode == 'read':
        mesh = Mesh.from_file(base_mesh)
        domain = Domain(mesh.name, mesh)
        for ii in range(3):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements'
                   % (domain.shape.n_nod, domain.shape.n_el))

        domain.mesh.name = '2_4_2_refined'

        return domain.mesh

    elif mode == 'write':
        pass
예제 #21
0
파일: sinbc.py 프로젝트: sdurve/sfepy
def mesh_hook(mesh, mode):
    """
    Load and refine a mesh here.
    """
    if mode == 'read':
        mesh = Mesh.from_file(base_mesh)
        domain = Domain(mesh.name, mesh)
        for ii in range(3):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements' %
                   (domain.shape.n_nod, domain.shape.n_el))

        domain.mesh.name = '2_4_2_refined'

        return domain.mesh

    elif mode == 'write':
        pass
예제 #22
0
    def from_conf(conf, options):
        import sfepy
        from sfepy.fem import Mesh, Domain, H1NodalVolumeField
        mesh = Mesh.from_file('meshes/2d/rectangle_tri.mesh',
                              prefix_dir=sfepy.data_dir)
        domain = Domain('domain', mesh)
        dim = domain.shape.dim

        min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
        eps = 1e-8 * (max_x - min_x)

        omega = domain.create_region('Omega', 'all')
        gamma1 = domain.create_region('Gamma1',
                                      'vertices in x < %.10f' % (min_x + eps),
                                      'facet')
        gamma2 = domain.create_region('Gamma2',
                                      'vertices in x > %.10f' % (max_x - eps),
                                      'facet')

        field = H1NodalVolumeField('fu',
                                   nm.float64,
                                   'vector',
                                   omega,
                                   approx_order=2)

        test = Test(conf=conf,
                    options=options,
                    dim=dim,
                    omega=omega,
                    gamma1=gamma1,
                    gamma2=gamma2,
                    field=field)
        return test
예제 #23
0
    def test_projection_tri_quad(self):
        from sfepy.fem.projections import make_l2_projection

        source = FieldVariable("us", "unknown", self.field, 1)

        coors = self.field.get_coor()
        vals = nm.sin(2.0 * nm.pi * coors[:, 0] * coors[:, 1])
        source.data_from_any(vals)

        name = op.join(self.options.out_dir, "test_projection_tri_quad_source.vtk")
        source.save_as_mesh(name)

        mesh = Mesh.from_file("meshes/2d/square_quad.mesh", prefix_dir=sfepy.data_dir)
        domain = Domain("domain", mesh)

        omega = domain.create_region("Omega", "all")

        field = H1NodalVolumeField("bilinear", nm.float64, "scalar", omega, approx_order=1)

        target = FieldVariable("ut", "unknown", field, 1)

        make_l2_projection(target, source)

        name = op.join(self.options.out_dir, "test_projection_tri_quad_target.vtk")
        target.save_as_mesh(name)

        bbox = self.field.domain.get_mesh_bounding_box()
        x = nm.linspace(bbox[0, 0] + 0.001, bbox[1, 0] - 0.001, 20)
        y = nm.linspace(bbox[0, 1] + 0.001, bbox[1, 1] - 0.001, 20)

        xx, yy = nm.meshgrid(x, y)
        test_coors = nm.c_[xx.ravel(), yy.ravel()].copy()

        vec1 = source.evaluate_at(test_coors)
        vec2 = target.evaluate_at(test_coors)

        ok = (nm.abs(vec1 - vec2) < 0.01).all()

        return ok
예제 #24
0
    def test_interpolation_two_meshes(self):
        from sfepy import data_dir
        from sfepy.fem import Mesh, Domain, H1NodalVolumeField, Variables

        m1 = Mesh('source mesh', data_dir + '/meshes/3d/block.mesh')

        m2 = Mesh('target mesh',
                  data_dir + '/meshes/3d/cube_medium_tetra.mesh')
        m2.coors *= 2.0

        bbox = m1.get_bounding_box()
        dd = bbox[1, :] - bbox[0, :]
        data = nm.sin(4.0 * nm.pi * m1.coors[:,0:1] / dd[0]) \
               * nm.cos(4.0 * nm.pi * m1.coors[:,1:2] / dd[1])

        variables1 = {
            'u': ('unknown field', 'scalar_tp', 0),
            'v': ('test field', 'scalar_tp', 'u'),
        }

        variables2 = {
            'u': ('unknown field', 'scalar_si', 0),
            'v': ('test field', 'scalar_si', 'u'),
        }

        d1 = Domain('d1', m1)
        omega1 = d1.create_region('Omega', 'all')
        field1 = H1NodalVolumeField('scalar_tp',
                                    nm.float64, (1, 1),
                                    omega1,
                                    approx_order=1)
        ff1 = {field1.name: field1}

        d2 = Domain('d2', m2)
        omega2 = d2.create_region('Omega', 'all')
        field2 = H1NodalVolumeField('scalar_si',
                                    nm.float64, (1, 1),
                                    omega2,
                                    approx_order=0)
        ff2 = {field2.name: field2}

        vv1 = Variables.from_conf(transform_variables(variables1), ff1)
        u1 = vv1['u']
        u1.set_from_mesh_vertices(data)

        vv2 = Variables.from_conf(transform_variables(variables2), ff2)
        u2 = vv2['u']

        # Performs interpolation, if other field differs from self.field
        # or, in particular, is defined on a different mesh.
        u2.set_from_other(u1, strategy='interpolation', close_limit=0.1)

        fname = in_dir(self.options.out_dir)
        u1.save_as_mesh(fname('test_mesh_interp_block_scalar.vtk'))
        u2.save_as_mesh(fname('test_mesh_interp_cube_scalar.vtk'))

        return True
예제 #25
0
def do_interpolation(m2, m1, data, field_name, force=False):
    """Interpolate data from m1 to m2. """
    from sfepy.fem import Domain, H1NodalVolumeField, Variables

    fields = {
        'scalar_si': ((1, 1), 'Omega', 2),
        'vector_si': ((3, 1), 'Omega', 2),
        'scalar_tp': ((1, 1), 'Omega', 1),
        'vector_tp': ((3, 1), 'Omega', 1),
    }

    d1 = Domain('d1', m1)

    omega1 = d1.create_region('Omega', 'all')

    f = fields[field_name]

    field1 = H1NodalVolumeField('f',
                                nm.float64,
                                f[0],
                                d1.regions[f[1]],
                                approx_order=f[2])
    ff = {field1.name: field1}

    vv = Variables.from_conf(transform_variables(variables), ff)
    u1 = vv['u']
    u1.set_from_mesh_vertices(data)

    d2 = Domain('d2', m2)
    omega2 = d2.create_region('Omega', 'all')

    field2 = H1NodalVolumeField('f',
                                nm.float64,
                                f[0],
                                d2.regions[f[1]],
                                approx_order=f[2])
    ff2 = {field2.name: field2}

    vv2 = Variables.from_conf(transform_variables(variables), ff2)
    u2 = vv2['u']

    if not force:
        # Performs interpolation, if other field differs from self.field
        # or, in particular, is defined on a different mesh.
        u2.set_from_other(u1, strategy='interpolation', close_limit=0.5)

    else:
        coors = u2.field.get_coor()
        vals = u1.evaluate_at(coors, close_limit=0.5)
        u2.set_data(vals)

    return u1, u2
예제 #26
0
    def test_normals(self):
        """
        Check orientations of surface normals on the reference elements.
        """
        import sfepy
        from sfepy.fem import Mesh, Domain, Integral
        from sfepy.fem.poly_spaces import PolySpace
        from sfepy.fem.mappings import SurfaceMapping
        from sfepy.linalg import normalize_vectors

        ok = True

        for geom in ['2_3', '2_4', '3_4', '3_8']:
            mesh = Mesh.from_file('meshes/elements/%s_1.mesh' % geom,
                                  prefix_dir=sfepy.data_dir)
            domain = Domain('domain', mesh)
            surface = domain.create_region('Surface', 'vertices of surface',
                                           'facet')
            domain.create_surface_group(surface)

            sd = domain.surface_groups[0][surface.name]

            coors = domain.get_mesh_coors()
            gel = domain.geom_els[geom].surface_facet
            ps = PolySpace.any_from_args('aux', gel, 1)

            mapping = SurfaceMapping(coors, sd.get_connectivity(), ps)

            integral = Integral('i', order=1)
            vals, weights = integral.get_qp(gel.name)

            # Evaluate just in the first quadrature point...
            geo = mapping.get_mapping(vals[:1], weights[:1])

            expected = expected_normals[geom].copy()
            normalize_vectors(expected)

            _ok = nm.allclose(expected,
                              geo.normal[:, 0, :, 0],
                              rtol=0.0,
                              atol=1e-14)
            self.report('%s: %s' % (geom, _ok))

            if not _ok:
                self.report('expected:')
                self.report(expected)
                self.report('actual:')
                self.report(geo.normal[:, 0, :, 0])

            ok = ok and _ok

        return ok
예제 #27
0
    def from_conf(conf, options):
        from sfepy import data_dir
        from sfepy.fem import Mesh, Domain, Functions

        mesh = Mesh('test mesh',
                    data_dir + '/meshes/various_formats/abaqus_tet.inp')
        domain = Domain('test domain', mesh)

        conf_functions = {
            'get_nodes': (get_nodes, ),
            'get_elements': (get_elements, ),
        }
        functions = Functions.from_conf(transform_functions(conf_functions))

        test = Test(conf=conf,
                    options=options,
                    domain=domain,
                    functions=functions)
        return test
예제 #28
0
    def from_conf(conf, options):
        from sfepy import data_dir
        from sfepy.fem import Mesh, Domain, Functions

        mesh = Mesh('test mesh',
                    data_dir + '/meshes/various_formats/abaqus_tet.inp')
        mesh.nodal_bcs['set0'] = [0, 7]
        domain = Domain('test domain', mesh)

        conf_functions = {
            'get_vertices': (get_vertices, ),
            'get_cells': (get_cells, ),
        }
        functions = Functions.from_conf(transform_functions(conf_functions))

        test = Test(conf=conf,
                    options=options,
                    domain=domain,
                    functions=functions)
        return test
예제 #29
0
파일: plot_mesh.py 프로젝트: mfkiwl/sfepy
def main():
    parser = OptionParser(usage=usage, version='%prog')
    options, args = parser.parse_args()

    if len(args) == 1:
        filename = args[0]
    else:
        parser.print_help(),
        return

    mesh = Mesh.from_file(filename)
    output('Mesh:')
    output('  dimension: %d, vertices: %d, elements: %d' %
           (mesh.dim, mesh.n_nod, mesh.n_el))

    domain = Domain('domain', mesh)
    output(domain.cmesh)
    domain.cmesh.cprint(1)
    dim = domain.cmesh.dim

    ax = pc.plot_wireframe(None, domain.cmesh)

    ax = pc.plot_entities(ax, domain.cmesh, 0, 'k')
    ax = pc.label_global_entities(ax, domain.cmesh, 0, 'k', 12)
    ax = pc.label_local_entities(ax, domain.cmesh, 0, 'k', 8)

    ax = pc.plot_entities(ax, domain.cmesh, 1, 'b')
    ax = pc.label_global_entities(ax, domain.cmesh, 1, 'b', 12)
    ax = pc.label_local_entities(ax, domain.cmesh, 1, 'b', 8)

    if dim == 3:
        ax = pc.plot_entities(ax, domain.cmesh, 2, 'g')
        ax = pc.label_global_entities(ax, domain.cmesh, 2, 'g', 12)
        ax = pc.label_local_entities(ax, domain.cmesh, 2, 'g', 8)

    ax = pc.plot_entities(ax, domain.cmesh, dim, 'r')
    ax = pc.label_global_entities(ax, domain.cmesh, dim, 'r', 12)

    pc.plt.show()
예제 #30
0
    def from_conf(conf, options):
        from sfepy.fem import Mesh, Domain, Integral

        domains = []
        for filename in filename_meshes:
            mesh = Mesh.from_file(filename)
            domain = Domain('domain_%s' % mesh.name.replace(data_dir, ''),
                            mesh)
            domain.create_region('Omega', 'all')
            domain.create_region('Gamma', 'nodes of surface')

            domains.append(domain)

        integrals = {'Omega' : Integral('iv', kind='v', order=3),
                     'Gamma' : Integral('is', kind='s', order=3)}

        test = Test(domains=domains, integrals=integrals,
                    conf=conf, options=options)
        return test
예제 #31
0
    def from_conf(conf, options):
        from sfepy.fem import Mesh, Domain, Integral

        domains = []
        for filename in filename_meshes:
            mesh = Mesh.from_file(filename)
            domain = Domain('domain_%s' % mesh.name.replace(data_dir, ''),
                            mesh)
            domain.create_region('Omega', 'all')
            domain.create_region('Gamma', 'vertices of surface', 'facet')

            domains.append(domain)

        integral = Integral('i', order=3)

        test = Test(domains=domains,
                    integral=integral,
                    conf=conf,
                    options=options)
        return test
예제 #32
0
파일: refine.py 프로젝트: sdurve/sfepy
def refine_reference(geometry, level):
    """
    Refine reference element given by `geometry`.

    Notes
    -----
    The error edges must be generated in the order of the connectivity
    of the previous (lower) level.
    """
    from sfepy.fem import Domain
    from sfepy.fem.geometry_element import geometry_data

    gcoors, gconn = geometry.coors, geometry.conn
    if level == 0:
        return gcoors, gconn

    gd = geometry_data[geometry.name]
    conn = nm.array([gd.conn], dtype=nm.int32)
    mat_id = conn[:, 0].copy()
    mat_id[:] = 0

    mesh = Mesh.from_data('aux', gd.coors, None, [conn], [mat_id],
                          [geometry.name])
    domain = Domain('aux', mesh)

    for ii in range(level):
        domain = domain.refine()

    coors = domain.mesh.coors
    conn = domain.mesh.conns[0]

    n_el = conn.shape[0]

    if geometry.name == '2_3':
        aux_conn = conn.reshape((n_el / 4, 4, 3))

        ir = [[0, 1, 2], [2, 2, 3], [3, 3, 0]]
        ic = [[0, 0, 0], [0, 1, 0], [0, 1, 0]]

    elif geometry.name == '2_4':
        aux_conn = conn.reshape((n_el / 4, 4, 4))

        ir = [[0, 0, 1], [1, 1, 2], [2, 2, 3], [3, 3, 0], [0, 0, 2], [3, 3, 1]]
        ic = [[0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [1, 2, 1], [1, 2, 1]]

    elif geometry.name == '3_4':
        aux_conn = conn.reshape((n_el / 8, 8, 4))

        ir = [[0, 0, 1], [1, 1, 2], [2, 0, 0], [3, 1, 1], [3, 2, 2], [3, 0, 0]]
        ic = [[0, 1, 1], [1, 2, 2], [2, 2, 0], [3, 3, 1], [3, 3, 2], [3, 3, 0]]

    elif geometry.name == '3_8':
        aux_conn = conn.reshape((n_el / 8, 8, 8))

        ir = [[0, 0, 1], [1, 1, 2], [2, 2, 3], [3, 0, 0], [0, 0, 2], [0, 0, 1],
              [0, 0, 1], [1, 1, 2], [2, 2, 3], [3, 0, 0], [0, 0, 2], [0, 0, 1],
              [4, 4, 5], [5, 5, 6], [6, 6, 7], [7, 4, 4], [4, 4, 6], [4, 4, 5],
              [0, 0, 4], [1, 1, 5], [2, 2, 6], [3, 3, 7], [0, 0, 4], [1, 1, 5],
              [2, 2, 6], [0, 0, 4], [0, 0, 4]]
        ic = [[0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 3, 0], [1, 2, 1], [3, 2, 1],
              [4, 5, 4], [4, 5, 4], [4, 5, 4], [4, 7, 4], [5, 6, 5], [7, 6, 5],
              [0, 3, 0], [0, 3, 0], [0, 3, 0], [0, 1, 0], [3, 2, 3], [1, 2, 3],
              [0, 4, 0], [0, 4, 0], [0, 4, 0], [0, 4, 0], [1, 5, 3], [1, 5, 3],
              [1, 5, 3], [3, 7, 1], [2, 6, 2]]

    else:
        raise ValueError('unsupported geometry! (%s)' % geometry.name)

    conn = nm.array(conn, dtype=nm.int32)
    error_edges = aux_conn[:, ir, ic]

    return coors, conn, error_edges
예제 #33
0
파일: mesh_tools.py 프로젝트: mfkiwl/sfepy
def smooth_mesh(mesh, n_iter=4, lam=0.6307, mu=-0.6347,
                weights=None, bconstr=True,
                volume_corr=False):
    """
    FE mesh smoothing.

    Based on:

    [1] Steven K. Boyd, Ralph Muller, Smooth surface meshing for automated
    finite element model generation from 3D image data, Journal of
    Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295,
    ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006.
    (http://www.sciencedirect.com/science/article/pii/S0021929005001442)

    Parameters
    ----------
    mesh : mesh
        FE mesh.
    n_iter : integer, optional
        Number of iteration steps.
    lam : float, optional
        Smoothing factor, see [1].
    mu : float, optional
        Unshrinking factor, see [1].
    weights : array, optional
        Edge weights, see [1].
    bconstr: logical, optional
        Boundary constraints, if True only surface smoothing performed.
    volume_corr: logical, optional
        Correct volume after smoothing process.

    Returns
    -------
    coors : array
        Coordinates of mesh nodes.
    """

    def laplacian(coors, weights):

        n_nod = coors.shape[0]
        displ = (weights - sps.identity(n_nod)) * coors

        return displ

    def taubin(coors0, weights, lam, mu, n_iter):

        coors = coors0.copy()

        for ii in range(n_iter):
            displ = laplacian(coors, weights)
            if nm.mod(ii, 2) == 0:
                coors += lam * displ
            else:
                coors += mu * displ

        return coors

    def get_volume(el, nd):
        from sfepy.linalg.utils import dets_fast

        dim = nd.shape[1]
        nnd = el.shape[1]

        etype = '%d_%d' % (dim, nnd)
        if etype == '2_4' or etype == '3_8':
            el = elems_q2t(el)

        nel = el.shape[0]

        #bc = nm.zeros((dim, ), dtype=nm.double)
        mul = 1.0 / factorial(dim)
        if dim == 3:
            mul *= -1.0

        mtx = nm.ones((nel, dim + 1, dim + 1), dtype=nm.double)
        mtx[:,:,:-1] = nd[el,:]
        vols = mul * dets_fast(mtx.copy())
        vol = vols.sum()
        bc = nm.dot(vols, mtx.sum(1)[:,:-1] / nnd)

        bc /= vol

        return vol, bc

    import time

    output('smoothing...')
    tt = time.clock()

    if weights is None:
        n_nod = mesh.n_nod
        domain = Domain('mesh', mesh)
        cmesh = domain.cmesh

        # initiate all vertices as inner - hierarchy = 2
        node_group = nm.ones((n_nod,), dtype=nm.int16) * 2
        # boundary vertices - set hierarchy = 4
        if bconstr:
            # get "vertices of surface"
            facets = cmesh.get_surface_facets()
            f_verts = cmesh.get_incident(0, facets, cmesh.dim - 1)
            node_group[f_verts] = 4

        # generate costs matrix
        e_verts = cmesh.get_conn(1, 0).indices
        fc1, fc2 = e_verts[0::2], e_verts[1::2]
        idxs = nm.where(node_group[fc2] >= node_group[fc1])
        rows1 = fc1[idxs]
        cols1 = fc2[idxs]
        idxs = nm.where(node_group[fc1] >= node_group[fc2])
        rows2 = fc2[idxs]
        cols2 = fc1[idxs]
        crows = nm.concatenate((rows1, rows2))
        ccols = nm.concatenate((cols1, cols2))
        costs = sps.coo_matrix((nm.ones_like(crows), (crows, ccols)),
                               shape=(n_nod, n_nod),
                               dtype=nm.double)

        # generate weights matrix
        idxs = range(n_nod)
        aux = sps.coo_matrix((1.0 / nm.asarray(costs.sum(1)).squeeze(),
                              (idxs, idxs)),
                             shape=(n_nod, n_nod),
                             dtype=nm.double)

        #aux.setdiag(1.0 / costs.sum(1))
        weights = (aux.tocsc() * costs.tocsc()).tocsr()

    coors = taubin(mesh.coors, weights, lam, mu, n_iter)

    output('...done in %.2f s' % (time.clock() - tt))

    if volume_corr:
        output('rescaling...')
        volume0, bc = get_volume(mesh.conns[0], mesh.coors)
        volume, _ = get_volume(mesh.conns[0], coors)

        scale = volume0 / volume
        output('scale factor: %.2f' % scale)

        coors = (coors - bc) * scale + bc

        output('...done in %.2f s' % (time.clock() - tt))

    return coors
예제 #34
0
파일: mesh_tools.py 프로젝트: brbr520/sfepy
def smooth_mesh(mesh,
                n_iter=4,
                lam=0.6307,
                mu=-0.6347,
                weights=None,
                bconstr=True,
                volume_corr=False):
    """
    FE mesh smoothing.

    Based on:

    [1] Steven K. Boyd, Ralph Muller, Smooth surface meshing for automated
    finite element model generation from 3D image data, Journal of
    Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295,
    ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006.
    (http://www.sciencedirect.com/science/article/pii/S0021929005001442)

    Parameters
    ----------
    mesh : mesh
        FE mesh.
    n_iter : integer, optional
        Number of iteration steps.
    lam : float, optional
        Smoothing factor, see [1].
    mu : float, optional
        Unshrinking factor, see [1].
    weights : array, optional
        Edge weights, see [1].
    bconstr: logical, optional
        Boundary constraints, if True only surface smoothing performed.
    volume_corr: logical, optional
        Correct volume after smoothing process.

    Returns
    -------
    coors : array
        Coordinates of mesh nodes.
    """
    def laplacian(coors, weights):

        n_nod = coors.shape[0]
        displ = (weights - sps.identity(n_nod)) * coors

        return displ

    def taubin(coors0, weights, lam, mu, n_iter):

        coors = coors0.copy()

        for ii in range(n_iter):
            displ = laplacian(coors, weights)
            if nm.mod(ii, 2) == 0:
                coors += lam * displ
            else:
                coors += mu * displ

        return coors

    def dets_fast(a):
        m = a.shape[0]
        n = a.shape[1]
        lapack_routine = lapack_lite.dgetrf
        pivots = nm.zeros((m, n), intc)
        flags = nm.arange(1, n + 1).reshape(1, -1)
        for i in xrange(m):
            tmp = a[i]
            lapack_routine(n, n, tmp, n, pivots[i], 0)
        sign = 1. - 2. * (nm.add.reduce(pivots != flags, axis=1) % 2)
        idx = nm.arange(n)
        d = a[:, idx, idx]
        absd = nm.absolute(d)
        sign *= nm.multiply.reduce(d / absd, axis=1)
        nm.log(absd, absd)
        logdet = nm.add.reduce(absd, axis=-1)

        return sign * nm.exp(logdet)

    def get_volume(el, nd):

        dim = nd.shape[1]
        nnd = el.shape[1]

        etype = '%d_%d' % (dim, nnd)
        if etype == '2_4' or etype == '3_8':
            el = elems_q2t(el)

        nel = el.shape[0]

        #bc = nm.zeros((dim, ), dtype=nm.double)
        mul = 1.0 / factorial(dim)
        if dim == 3:
            mul *= -1.0

        mtx = nm.ones((nel, dim + 1, dim + 1), dtype=nm.double)
        mtx[:, :, :-1] = nd[el, :]
        vols = mul * dets_fast(mtx.copy())  # copy() ???
        vol = vols.sum()
        bc = nm.dot(vols, mtx.sum(1)[:, :-1] / nnd)

        bc /= vol

        return vol, bc

    import time

    output('smoothing...')
    tt = time.clock()

    domain = Domain('mesh', mesh)

    n_nod = mesh.n_nod
    edges = domain.ed

    if weights is None:
        # initiate all vertices as inner - hierarchy = 2
        node_group = nm.ones((n_nod, ), dtype=nm.int16) * 2
        # boundary vertices - set hierarchy = 4
        if bconstr:
            # get "nodes of surface"
            if domain.fa:  # 3D.
                fa = domain.fa
            else:
                fa = domain.ed

            flag = fa.mark_surface_facets()
            ii = nm.where(flag > 0)[0]
            aux = nm.unique(fa.facets[ii])
            if aux[0] == -1:  # Triangular faces have -1 as 4. point.
                aux = aux[1:]

            node_group[aux] = 4

        # generate costs matrix
        mtx_ed = edges.mtx.tocoo()
        _, idxs = nm.unique(mtx_ed.row, return_index=True)
        aux = edges.facets[mtx_ed.col[idxs]]
        fc1 = aux[:, 0]
        fc2 = aux[:, 1]
        idxs = nm.where(node_group[fc2] >= node_group[fc1])
        rows1 = fc1[idxs]
        cols1 = fc2[idxs]
        idxs = nm.where(node_group[fc1] >= node_group[fc2])
        rows2 = fc2[idxs]
        cols2 = fc1[idxs]
        crows = nm.concatenate((rows1, rows2))
        ccols = nm.concatenate((cols1, cols2))
        costs = sps.coo_matrix((nm.ones_like(crows), (crows, ccols)),
                               shape=(n_nod, n_nod),
                               dtype=nm.double)

        # generate weights matrix
        idxs = range(n_nod)
        aux = sps.coo_matrix(
            (1.0 / nm.asarray(costs.sum(1)).squeeze(), (idxs, idxs)),
            shape=(n_nod, n_nod),
            dtype=nm.double)

        #aux.setdiag(1.0 / costs.sum(1))
        weights = (aux.tocsc() * costs.tocsc()).tocsr()

    coors = taubin(mesh.coors, weights, lam, mu, n_iter)

    output('...done in %.2f s' % (time.clock() - tt))

    if volume_corr:
        output('rescaling...')
        volume0, bc = get_volume(mesh.conns[0], mesh.coors)
        volume, _ = get_volume(mesh.conns[0], coors)

        scale = volume0 / volume
        output('scale factor: %.2f' % scale)

        coors = (coors - bc) * scale + bc

        output('...done in %.2f s' % (time.clock() - tt))

    return coors
예제 #35
0
파일: findSurf.py 프로젝트: certik/sfepy
def main():
    parser = OptionParser( usage = usage, version = "%prog " + version )
    parser.add_option( "-m", "--mesh",
                       action = "store_true", dest = "save_mesh",
                       default = True,
                       help = "save surface mesh [default: %default]" )
    parser.add_option( "-n", "--no-surface",
                       action = "store_true", dest = "no_surface",
                       default = False,
                       help = "do not output surface [default: %default]" )
    (options, args) = parser.parse_args()

    if (len( args ) == 2):
        filename_in = args[0];
        filename_out = args[1];
    else:
        parser.print_help(),
        return

    if (filename_in == '-'):
        file_in = sys.stdin
    else:
        file_in = open( filename_in, "r" ); 

    mesh = Mesh.from_file( filename_in )

    if (filename_in != '-'):
        file_in.close()

    domain = Domain.from_mesh( mesh, op.join( init_sfepy.install_dir, 'eldesc' ) )
    domain.setup_groups()

    if domain.has_faces():
        domain.fix_element_orientation()
        domain.setup_neighbour_lists( create_edge_list = False )

        lst, surf_faces = domain.surface_faces()

        surf_mesh = Mesh.from_surface( surf_faces, mesh )

        if options.save_mesh:
            base, ext = op.splitext( op.basename( filename_in ) )
            surf_mesh.write( "surf_" + base + '.mesh', io = 'auto' )

        if options.no_surface:
            return

        n_nod = mesh.nod0.shape[0]
        gr_s = surface_graph( surf_faces, n_nod )
##         import sfepy.base.plotutils as plu
##         plu.spy( gr_s )
##         plu.pylab.show()

        n_comp, comps = surface_components( gr_s, surf_faces )
#        print 'components:', n_comp

        ccs, comps = comps, nm.zeros( (0,1), nm.int32 )
        for cc in ccs:
            comps = nm.concatenate( (comps, cc[:,nm.newaxis]), 0 )

        out = nm.concatenate( (lst, comps), 1 )

        if (filename_out == '-'):
            file_out = sys.stdout
        else:
            file_out = open( filename_out, "w" ); 
        for row in out:
            file_out.write( '%d %d %d %d\n' % (row[0], row[1], row[2], row[3]) )
        if (filename_out != '-'):
            file_out.close()
예제 #36
0
    def test_linearization(self):
        from sfepy.base.base import Struct
        from sfepy.fem import Mesh, Domain, Field
        from sfepy import data_dir

        geometries = ['2_3', '2_4', '3_4', '3_8']
        approx_orders = [1, 2]
        funs = [nm.cos, nm.sin, lambda x: x]

        ok = True
        for geometry in geometries:
            name = os.path.join(data_dir,
                                'meshes/elements/%s_1.mesh' % geometry)
            mesh = Mesh.from_file(name)

            domain = Domain('', mesh)
            domain = domain.refine()

            domain.mesh.write(self.join('linearizer-%s-0.mesh' % geometry))

            omega = domain.create_region('Omega', 'all')

            for approx_order in approx_orders:
                for dpn in [1, mesh.dim]:
                    self.report('geometry: %s, approx. order: %d, dpn: %d' %
                                (geometry, approx_order, dpn))

                    field = Field('fu', nm.float64, dpn, omega,
                                  space='H1', poly_space_base='lagrange',
                                  approx_order=approx_order)

                    cc = field.get_coor()
                    dofs = nm.zeros((field.n_nod, dpn), dtype=nm.float64)

                    for ic in range(dpn):
                        dofs[:, ic] = funs[ic](3 * (cc[:, 0] * cc[:, 1]))

                    vmesh, vdofs, levels = field.linearize(dofs,
                                                           min_level=0,
                                                           max_level=3,
                                                           eps=1e-2)
                    level = levels[0]

                    if approx_order == 1:
                        _ok = level == 0

                    else:
                        _ok = level > 0
                    self.report('max. refinement level: %d: %s' % (level, _ok))

                    ok = ok and _ok

                    rdofs = nm.zeros((vmesh.n_nod, dpn), dtype=nm.float64)
                    cc = vmesh.coors
                    for ic in range(dpn):
                        rdofs[:, ic] = funs[ic](3 * (cc[:, 0] * cc[:, 1]))

                    _ok = nm.allclose(rdofs, vdofs, rtol=0.0, atol=0.03)
                    self.report('interpolation: %s' % _ok)
                    ok = ok and _ok

                    out = {
                        'u' : Struct(name='output_data',
                                     mode='vertex', data=vdofs,
                                     var_name='u', dofs=None)
                    }

                    name = self.join('linearizer-%s-%d-%d'
                                     % (geometry, approx_order, dpn))

                    vmesh.write(name + '.mesh')
                    vmesh.write(name + '.vtk', out=out)

        return ok
예제 #37
0
파일: save_basis.py 프로젝트: mfkiwl/sfepy
def save_basis_on_mesh(mesh,
                       options,
                       output_dir,
                       lin,
                       permutations=None,
                       suffix=''):
    if permutations is not None:
        mesh = mesh.copy()
        for ig, conn in enumerate(mesh.conns):
            gel = GeometryElement(mesh.descs[ig])
            perms = gel.get_conn_permutations()[permutations]
            n_el, n_ep = conn.shape
            offsets = nm.arange(n_el) * n_ep

            conn[:] = conn.take(perms + offsets[:, None])

    domain = Domain('domain', mesh)

    omega = domain.create_region('Omega', 'all')
    field = Field.from_args('f',
                            nm.float64,
                            shape=1,
                            region=omega,
                            approx_order=options.max_order,
                            poly_space_base=options.basis)
    var = FieldVariable('u', 'unknown', field, 1)

    if options.plot_dofs:
        import sfepy.postprocess.plot_dofs as pd
        group = domain.groups[0]
        ax = pd.plot_mesh(None, mesh.coors, mesh.conns[0], group.gel.edges)
        ax = pd.plot_global_dofs(ax, field.get_coor(), field.aps[0].econn)
        ax = pd.plot_local_dofs(ax, field.get_coor(), field.aps[0].econn)
        if options.dofs is not None:
            ax = pd.plot_nodes(ax, field.get_coor(), field.aps[0].econn,
                               field.aps[0].interp.poly_spaces['v'].nodes,
                               get_dofs(options.dofs, var.n_dof))
        pd.plt.show()

    output('dofs: %d' % var.n_dof)

    vec = nm.empty(var.n_dof, dtype=var.dtype)
    n_digit, _format = get_print_info(var.n_dof, fill='0')
    name_template = os.path.join(output_dir,
                                 'dof_%s%s.vtk' % (_format, suffix))
    for ip in get_dofs(options.dofs, var.n_dof):
        output('dof %d...' % ip)

        vec.fill(0.0)
        vec[ip] = 1.0

        var.set_data(vec)

        if options.derivative == 0:
            out = var.create_output(vec, linearization=lin)

        else:
            out = create_expression_output('ev_grad.ie.Elements(u)',
                                           'u',
                                           'f', {'f': field},
                                           None,
                                           Variables([var]),
                                           mode='qp',
                                           verbose=False,
                                           min_level=lin.min_level,
                                           max_level=lin.max_level,
                                           eps=lin.eps)

        name = name_template % ip
        ensure_path(name)
        out['u'].mesh.write(name, out=out)

        output('...done (%s)' % name)
예제 #38
0
파일: save_basis.py 프로젝트: brbr520/sfepy
def main():
    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-b',
                      '--basis',
                      metavar='name',
                      action='store',
                      dest='basis',
                      default='lagrange',
                      help=help['basis'])
    parser.add_option('-d',
                      '--derivative',
                      metavar='d',
                      type=int,
                      action='store',
                      dest='derivative',
                      default=0,
                      help=help['derivative'])
    parser.add_option('-n',
                      '--max-order',
                      metavar='order',
                      type=int,
                      action='store',
                      dest='max_order',
                      default=2,
                      help=help['max_order'])
    parser.add_option('-g',
                      '--geometry',
                      metavar='name',
                      action='store',
                      dest='geometry',
                      default='2_4',
                      help=help['geometry'])
    parser.add_option('-m',
                      '--mesh',
                      metavar='mesh',
                      action='store',
                      dest='mesh',
                      default=None,
                      help=help['mesh'])
    parser.add_option('',
                      '--permutations',
                      metavar='permutations',
                      action='store',
                      dest='permutations',
                      default=None,
                      help=help['permutations'])
    parser.add_option('',
                      '--dofs',
                      metavar='dofs',
                      action='store',
                      dest='dofs',
                      default=None,
                      help=help['dofs'])
    parser.add_option('-l',
                      '--lin-options',
                      metavar='options',
                      action='store',
                      dest='lin_options',
                      default='min_level=2,max_level=5,eps=1e-3',
                      help=help['lin_options'])
    parser.add_option('',
                      '--plot-dofs',
                      action='store_true',
                      dest='plot_dofs',
                      default=False,
                      help=help['plot_dofs'])
    options, args = parser.parse_args()

    if len(args) == 1:
        output_dir = args[0]
    else:
        parser.print_help(),
        return

    output('polynomial space:', options.basis)
    output('max. order:', options.max_order)

    lin = Struct(kind='adaptive', min_level=2, max_level=5, eps=1e-3)
    for opt in options.lin_options.split(','):
        key, val = opt.split('=')
        setattr(lin, key, eval(val))

    if options.mesh is None:
        dim, n_ep = int(options.geometry[0]), int(options.geometry[2])
        output('reference element geometry:')
        output('  dimension: %d, vertices: %d' % (dim, n_ep))

        gel = GeometryElement(options.geometry)
        gps = PolySpace.any_from_args(None, gel, 1, base=options.basis)
        ps = PolySpace.any_from_args(None,
                                     gel,
                                     options.max_order,
                                     base=options.basis)

        n_digit, _format = get_print_info(ps.n_nod, fill='0')
        name_template = os.path.join(output_dir, 'bf_%s.vtk' % _format)
        for ip in get_dofs(options.dofs, ps.n_nod):
            output('shape function %d...' % ip)

            def eval_dofs(iels, rx):
                if options.derivative == 0:
                    bf = ps.eval_base(rx).squeeze()
                    rvals = bf[None, :, ip:ip + 1]

                else:
                    bfg = ps.eval_base(rx, diff=True)
                    rvals = bfg[None, ..., ip]

                return rvals

            def eval_coors(iels, rx):
                bf = gps.eval_base(rx).squeeze()
                coors = nm.dot(bf, gel.coors)[None, ...]
                return coors

            (level, coors, conn, vdofs,
             mat_ids) = create_output(eval_dofs,
                                      eval_coors,
                                      1,
                                      ps,
                                      min_level=lin.min_level,
                                      max_level=lin.max_level,
                                      eps=lin.eps)
            out = {
                'bf':
                Struct(name='output_data',
                       mode='vertex',
                       data=vdofs,
                       var_name='bf',
                       dofs=None)
            }

            mesh = Mesh.from_data('bf_mesh', coors, None, [conn], [mat_ids],
                                  [options.geometry])

            name = name_template % ip
            mesh.write(name, out=out)

            output('...done (%s)' % name)

    else:
        mesh = Mesh.from_file(options.mesh)
        output('mesh geometry:')
        output('  dimension: %d, vertices: %d, elements: %d' %
               (mesh.dim, mesh.n_nod, mesh.n_el))

        domain = Domain('domain', mesh)

        if options.permutations:
            permutations = [int(ii) for ii in options.permutations.split(',')]
            output('using connectivity permutations:', permutations)
            for group in domain.iter_groups():
                perms = group.gel.get_conn_permutations()[permutations]
                offsets = nm.arange(group.shape.n_el) * group.shape.n_ep

                group.conn[:] = group.conn.take(perms + offsets[:, None])

            domain.setup_facets()

        omega = domain.create_region('Omega', 'all')
        field = Field.from_args('f',
                                nm.float64,
                                shape=1,
                                region=omega,
                                approx_order=options.max_order,
                                poly_space_base=options.basis)
        var = FieldVariable('u', 'unknown', field, 1)

        if options.plot_dofs:
            import sfepy.postprocess.plot_dofs as pd
            group = domain.groups[0]
            ax = pd.plot_mesh(None, mesh.coors, mesh.conns[0], group.gel.edges)
            ax = pd.plot_global_dofs(ax, field.get_coor(), field.aps[0].econn)
            ax = pd.plot_local_dofs(ax, field.get_coor(), field.aps[0].econn)
            if options.dofs is not None:
                ax = pd.plot_nodes(ax, field.get_coor(), field.aps[0].econn,
                                   field.aps[0].interp.poly_spaces['v'].nodes,
                                   get_dofs(options.dofs, var.n_dof))
            pd.plt.show()

        output('dofs: %d' % var.n_dof)

        vec = nm.empty(var.n_dof, dtype=var.dtype)
        n_digit, _format = get_print_info(var.n_dof, fill='0')
        name_template = os.path.join(output_dir, 'dof_%s.vtk' % _format)
        for ip in get_dofs(options.dofs, var.n_dof):
            output('dof %d...' % ip)

            vec.fill(0.0)
            vec[ip] = 1.0

            var.set_data(vec)

            if options.derivative == 0:
                out = var.create_output(vec, linearization=lin)

            else:
                out = create_expression_output('ev_grad.ie.Elements(u)',
                                               'u',
                                               'f', {'f': field},
                                               None,
                                               Variables([var]),
                                               mode='qp',
                                               verbose=False,
                                               min_level=lin.min_level,
                                               max_level=lin.max_level,
                                               eps=lin.eps)

            name = name_template % ip
            out['u'].mesh.write(name, out=out)

            output('...done (%s)' % name)
예제 #39
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=help['show'])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    domain = Domain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Gamma1',
                                  'nodes in x < %.10f' % (min_x + eps))
    gamma2 = domain.create_region('Gamma2',
                                  'nodes in x > %.10f' % (max_x - eps))

    field = H1NodalVolumeField('fu',
                               nm.float64,
                               'vector',
                               omega,
                               approx_order=2)

    u = FieldVariable('u', 'unknown', field, mesh.dim)
    v = FieldVariable('v', 'test', field, mesh.dim, primary_var_name='u')

    m = Material('m', lam=1.0, mu=1.0)
    f = Material('f', val=[[0.02], [0.01]])

    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                  integral,
                  omega,
                  m=m,
                  v=v,
                  u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all': 0.0})

    bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift': 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0': bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print nls_status

    pb.save_state('linear_elasticity.vtk', vec)

    if options.show:
        view = Viewer('linear_elasticity.vtk')
        view(vector_mode='warp_norm',
             rel_scaling=2,
             is_scalar_bar=True,
             is_wireframe=True)
예제 #40
0
def main():
    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-b',
                      '--basis',
                      metavar='name',
                      action='store',
                      dest='basis',
                      default='lagrange',
                      help=help['basis'])
    parser.add_option('-n',
                      '--max-order',
                      metavar='order',
                      type=int,
                      action='store',
                      dest='max_order',
                      default=10,
                      help=help['max_order'])
    parser.add_option('-m',
                      '--matrix',
                      metavar='type',
                      action='store',
                      dest='matrix_type',
                      default='laplace',
                      help=help['matrix_type'])
    parser.add_option('-g',
                      '--geometry',
                      metavar='name',
                      action='store',
                      dest='geometry',
                      default='2_4',
                      help=help['geometry'])
    options, args = parser.parse_args()

    dim, n_ep = int(options.geometry[0]), int(options.geometry[2])
    output('reference element geometry:')
    output('  dimension: %d, vertices: %d' % (dim, n_ep))

    n_c = {'laplace': 1, 'elasticity': dim}[options.matrix_type]

    output('matrix type:', options.matrix_type)
    output('number of variable components:', n_c)

    output('polynomial space:', options.basis)

    output('max. order:', options.max_order)

    mesh = Mesh.from_file(data_dir +
                          '/meshes/elements/%s_1.mesh' % options.geometry)
    domain = Domain('domain', mesh)
    omega = domain.create_region('Omega', 'all')

    orders = nm.arange(1, options.max_order + 1, dtype=nm.int)
    conds = []

    order_fix = 0 if options.geometry in ['2_4', '3_8'] else 1

    for order in orders:
        output('order:', order, '...')

        field = Field.from_args('fu',
                                nm.float64,
                                n_c,
                                omega,
                                approx_order=order,
                                space='H1',
                                poly_space_base=options.basis)

        to = field.approx_order
        quad_order = 2 * (max(to - order_fix, 0))
        output('quadrature order:', quad_order)

        integral = Integral('i', order=quad_order)
        qp, _ = integral.get_qp(options.geometry)
        output('number of quadrature points:', qp.shape[0])

        u = FieldVariable('u', 'unknown', field, n_c)
        v = FieldVariable('v', 'test', field, n_c, primary_var_name='u')

        m = Material('m', lam=1.0, mu=1.0)

        if options.matrix_type == 'laplace':
            term = Term.new('dw_laplace(m.mu, v, u)',
                            integral,
                            omega,
                            m=m,
                            v=v,
                            u=u)
            n_zero = 1

        else:
            assert_(options.matrix_type == 'elasticity')
            term = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                            integral,
                            omega,
                            m=m,
                            v=v,
                            u=u)
            n_zero = (dim + 1) * dim / 2

        term.setup()

        output('assembling...')
        tt = time.clock()
        mtx, iels = term.evaluate(mode='weak', diff_var='u')
        output('...done in %.2f s' % (time.clock() - tt))
        mtx = mtx[0][0, 0]

        try:
            assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10)

        except:
            from sfepy.base.base import debug
            debug()

        output('matrix shape:', mtx.shape)

        eigs = eig(mtx, method='eig.sgscipy', eigenvectors=False)
        eigs.sort()

        # Zero 'true' zeros.
        eigs[:n_zero] = 0.0

        ii = nm.where(eigs < 0.0)[0]
        if len(ii):
            output('matrix is not positive semi-definite!')

        ii = nm.where(eigs[n_zero:] < 1e-12)[0]
        if len(ii):
            output('matrix has more than %d zero eigenvalues!' % n_zero)

        output('smallest eigs:\n', eigs[:10])

        ii = nm.where(eigs > 0.0)[0]
        emin, emax = eigs[ii[[0, -1]]]

        output('min:', emin, 'max:', emax)

        cond = emax / emin
        conds.append(cond)

        output('condition number:', cond)

        output('...done')

    plt.figure(1)
    plt.semilogy(orders, conds)
    plt.xticks(orders, orders)
    plt.xlabel('polynomial order')
    plt.ylabel('condition number')
    plt.grid()

    plt.figure(2)
    plt.loglog(orders, conds)
    plt.xticks(orders, orders)
    plt.xlabel('polynomial order')
    plt.ylabel('condition number')
    plt.grid()

    plt.show()
import numpy as np

from sfepy.fem import (Mesh, Domain, Field,
                       FieldVariable,
                       Material, Integral,
                       Equation, Equations,
                       ProblemDefinition)
from sfepy.terms import Term
from sfepy.fem.conditions import Conditions, EssentialBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.postprocess import Viewer

mesh = Mesh.from_file('meshes/2d/square_tri2.mesh')
domain = Domain('domain', mesh)

omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
                            'vertices in x < -0.999',
                            'facet')
right = domain.create_region('Right',
                             'vertices in x > 0.999',
                             'facet')
bottom = domain.create_region('Bottom',
                              'vertices in y < -0.999',
                              'facet')
top = domain.create_region('Top',
                           'vertices in y > 0.999',
                           'facet')

domain.save_regions_as_groups('regions.vtk')
예제 #42
0
def main():
    parser = OptionParser(usage=usage)
    parser.add_option('-s', '--scale', metavar='scale',
                      action='store', dest='scale',
                      default=None, help=help['scale'])
    parser.add_option('-c', '--center', metavar='center',
                      action='store', dest='center',
                      default=None, help=help['center'])
    parser.add_option('-r', '--refine', metavar='level',
                      action='store', type=int, dest='refine',
                      default=0, help=help['refine'])
    parser.add_option('-f', '--format', metavar='format',
                      action='store', type='string', dest='format',
                      default=None, help=help['format'])
    parser.add_option('-l', '--list', action='store_true',
                      dest='list', help=help['list'])
    (options, args) = parser.parse_args()

    if options.list:
        output_writable_meshes()
        sys.exit(0)

    if len(args) != 2:
        parser.print_help()
        sys.exit(1)

    scale = _parse_val_or_vec(options.scale, 'scale', parser)
    center = _parse_val_or_vec(options.center, 'center', parser)

    filename_in, filename_out = args

    mesh = Mesh.from_file(filename_in)

    if scale is not None:
        if len(scale) == 1:
            tr = nm.eye(mesh.dim, dtype=nm.float64) * scale
        elif len(scale) == mesh.dim:
            tr = nm.diag(scale)
        else:
            raise ValueError('bad scale! (%s)' % scale)
        mesh.transform_coors(tr)

    if center is not None:
        cc = 0.5 * mesh.get_bounding_box().sum(0)
        shift = center - cc
        tr = nm.c_[nm.eye(mesh.dim, dtype=nm.float64), shift[:, None]]
        mesh.transform_coors(tr)

    if options.refine > 0:
        domain = Domain(mesh.name, mesh)
        output('initial mesh: %d nodes %d elements'
               % (domain.shape.n_nod, domain.shape.n_el))

        for ii in range(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements'
                   % (domain.shape.n_nod, domain.shape.n_el))

        mesh = domain.mesh

    io = MeshIO.for_format(filename_out, format=options.format,
                           writable=True)

    output('writing %s...' % filename_out)
    mesh.write(filename_out, io=io)
    output('...done')
예제 #43
0
def main():
    parser = OptionParser(usage=usage, version="%prog")
    parser.add_option(
        "-b", "--basis", metavar="name", action="store", dest="basis", default="lagrange", help=help["basis"]
    )
    parser.add_option(
        "-n",
        "--max-order",
        metavar="order",
        type=int,
        action="store",
        dest="max_order",
        default=10,
        help=help["max_order"],
    )
    parser.add_option(
        "-m",
        "--matrix",
        metavar="type",
        action="store",
        dest="matrix_type",
        default="laplace",
        help=help["matrix_type"],
    )
    parser.add_option(
        "-g", "--geometry", metavar="name", action="store", dest="geometry", default="2_4", help=help["geometry"]
    )
    options, args = parser.parse_args()

    dim, n_ep = int(options.geometry[0]), int(options.geometry[2])
    output("reference element geometry:")
    output("  dimension: %d, vertices: %d" % (dim, n_ep))

    n_c = {"laplace": 1, "elasticity": dim}[options.matrix_type]

    output("matrix type:", options.matrix_type)
    output("number of variable components:", n_c)

    output("polynomial space:", options.basis)

    output("max. order:", options.max_order)

    mesh = Mesh.from_file(data_dir + "/meshes/elements/%s_1.mesh" % options.geometry)
    domain = Domain("domain", mesh)
    omega = domain.create_region("Omega", "all")

    orders = nm.arange(1, options.max_order + 1, dtype=nm.int)
    conds = []

    order_fix = 0 if options.geometry in ["2_4", "3_8"] else 1

    for order in orders:
        output("order:", order, "...")

        field = Field.from_args(
            "fu", nm.float64, n_c, omega, approx_order=order, space="H1", poly_space_base=options.basis
        )

        to = field.approx_order
        quad_order = 2 * (max(to - order_fix, 0))
        output("quadrature order:", quad_order)

        integral = Integral("i", order=quad_order)
        qp, _ = integral.get_qp(options.geometry)
        output("number of quadrature points:", qp.shape[0])

        u = FieldVariable("u", "unknown", field, n_c)
        v = FieldVariable("v", "test", field, n_c, primary_var_name="u")

        m = Material("m", lam=1.0, mu=1.0)

        if options.matrix_type == "laplace":
            term = Term.new("dw_laplace(m.mu, v, u)", integral, omega, m=m, v=v, u=u)
            n_zero = 1

        else:
            assert_(options.matrix_type == "elasticity")
            term = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u)
            n_zero = (dim + 1) * dim / 2

        term.setup()

        output("assembling...")
        tt = time.clock()
        mtx, iels = term.evaluate(mode="weak", diff_var="u")
        output("...done in %.2f s" % (time.clock() - tt))
        mtx = mtx[0][0, 0]

        try:
            assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10)

        except:
            from sfepy.base.base import debug

            debug()

        output("matrix shape:", mtx.shape)

        eigs = eig(mtx, method="eig.sgscipy", eigenvectors=False)
        eigs.sort()

        # Zero 'true' zeros.
        eigs[:n_zero] = 0.0

        ii = nm.where(eigs < 0.0)[0]
        if len(ii):
            output("matrix is not positive semi-definite!")

        ii = nm.where(eigs[n_zero:] < 1e-12)[0]
        if len(ii):
            output("matrix has more than %d zero eigenvalues!" % n_zero)

        output("smallest eigs:\n", eigs[:10])

        ii = nm.where(eigs > 0.0)[0]
        emin, emax = eigs[ii[[0, -1]]]

        output("min:", emin, "max:", emax)

        cond = emax / emin
        conds.append(cond)

        output("condition number:", cond)

        output("...done")

    plt.figure(1)
    plt.semilogy(orders, conds)
    plt.xticks(orders, orders)
    plt.xlabel("polynomial order")
    plt.ylabel("condition number")
    plt.grid()

    plt.figure(2)
    plt.loglog(orders, conds)
    plt.xticks(orders, orders)
    plt.xlabel("polynomial order")
    plt.ylabel("condition number")
    plt.grid()

    plt.show()
예제 #44
0
    def test_linearization(self):
        from sfepy.base.base import Struct
        from sfepy.fem import Mesh, Domain, H1NodalVolumeField
        from sfepy import data_dir

        geometries = ['2_3', '2_4', '3_4', '3_8']
        approx_orders = [1, 2]
        funs = [nm.cos, nm.sin, lambda x: x]

        ok = True
        for geometry in geometries:
            name = os.path.join(data_dir,
                                'meshes/elements/%s_1.mesh' % geometry)
            mesh = Mesh.from_file(name)

            domain = Domain('', mesh)
            domain = domain.refine()

            domain.mesh.write(self.join('linearizer-%s-0.mesh' % geometry))

            omega = domain.create_region('Omega', 'all')

            for approx_order in approx_orders:
                for dpn in [1, mesh.dim]:
                    self.report('geometry: %s, approx. order: %d, dpn: %d' %
                                (geometry, approx_order, dpn))

                    field = H1NodalVolumeField('fu',
                                               nm.float64,
                                               dpn,
                                               omega,
                                               approx_order=approx_order)

                    cc = field.get_coor()
                    dofs = nm.zeros((field.n_nod, dpn), dtype=nm.float64)

                    for ic in range(dpn):
                        dofs[:, ic] = funs[ic](3 * (cc[:, 0] * cc[:, 1]))

                    vmesh, vdofs, levels = field.linearize(dofs,
                                                           min_level=0,
                                                           max_level=3,
                                                           eps=1e-2)
                    level = levels[0]

                    if approx_order == 1:
                        _ok = level == 0

                    else:
                        _ok = level > 0
                    self.report('max. refinement level: %d: %s' % (level, _ok))

                    ok = ok and _ok

                    rdofs = nm.zeros((vmesh.n_nod, dpn), dtype=nm.float64)
                    cc = vmesh.coors
                    for ic in range(dpn):
                        rdofs[:, ic] = funs[ic](3 * (cc[:, 0] * cc[:, 1]))

                    _ok = nm.allclose(rdofs, vdofs, rtol=0.0, atol=0.03)
                    self.report('interpolation: %s' % _ok)
                    ok = ok and _ok

                    out = {
                        'u':
                        Struct(name='output_data',
                               mode='vertex',
                               data=vdofs,
                               var_name='u',
                               dofs=None)
                    }

                    name = self.join('linearizer-%s-%d-%d' %
                                     (geometry, approx_order, dpn))

                    vmesh.write(name + '.mesh')
                    vmesh.write(name + '.vtk', out=out)

        return ok
예제 #45
0
def _gen_common_data(order, gels, report):
    import sfepy
    from sfepy.base.base import Struct
    from sfepy.linalg import combine
    from sfepy.fem import Mesh, Domain, Field, FieldVariable, Integral
    from sfepy.fem.global_interp import get_ref_coors

    integral = Integral('i', order=order)

    for geom, poly_space_base in combine([['2_4', '3_8'],
                                          ['lagrange', 'lobatto']]):
        report('geometry: %s, base: %s' % (geom, poly_space_base))

        mesh0 = Mesh.from_file('meshes/elements/%s_2.mesh' % geom,
                               prefix_dir=sfepy.data_dir)
        gel = gels[geom]

        perms = gel.get_conn_permutations()

        qps, qp_weights = integral.get_qp(gel.surface_facet.name)
        zz = nm.zeros_like(qps[:, :1])
        qps = nm.hstack(([qps] + [zz]))

        rot = rots[geom]
        if rot is not None:
            pass

        shift = shifts[geom]
        rcoors = nm.ascontiguousarray(qps
                                      + shift[:1, :] - shift[1:, :])
        ccoors = nm.ascontiguousarray(qps
                                      + shift[:1, :] + shift[1:, :])

        for ir, pr in enumerate(perms):
            for ic, pc in enumerate(perms):
                report('ir: %d, ic: %d' % (ir, ic))

                mesh = mesh0.copy()
                conn = mesh.conns[0]
                conn[0, :] = conn[0, pr]
                conn[1, :] = conn[1, pc]

                cache = Struct(mesh=mesh)

                domain = Domain('domain', mesh)
                omega = domain.create_region('Omega', 'all')
                region = domain.create_region('Facet', rsels[geom])
                field = Field.from_args('f', nm.float64, shape=1,
                                        region=omega, approx_order=order,
                                        poly_space_base=poly_space_base)
                var = FieldVariable('u', 'unknown', field, 1)
                report('# dofs: %d' % var.n_dof)

                vec = nm.empty(var.n_dof, dtype=var.dtype)

                ap = field.aps[0]
                ps = ap.interp.poly_spaces['v']

                dofs = field.get_dofs_in_region_group(region, 0,
                                                      merge=False)
                edofs, fdofs = nm.unique(dofs[1]), nm.unique(dofs[2])

                rrc, rcells, rstatus = get_ref_coors(field, rcoors,
                                                     cache=cache)
                crc, ccells, cstatus = get_ref_coors(field, ccoors,
                                                     cache=cache)

                yield (geom, poly_space_base, qp_weights, mesh, ir, ic,
                       ap, ps, rrc, crc, vec, edofs, fdofs)
예제 #46
0
파일: refine.py 프로젝트: ZJLi2013/sfepy
def refine_reference(geometry, level):
    """
    Refine reference element given by `geometry`.

    Notes
    -----
    The error edges must be generated in the order of the connectivity
    of the previous (lower) level.
    """
    from sfepy.fem import Domain
    from sfepy.fem.geometry_element import geometry_data

    gcoors, gconn = geometry.coors, geometry.conn
    if level == 0:
        return gcoors, gconn

    gd = geometry_data[geometry.name]
    conn = nm.array([gd.conn], dtype=nm.int32)
    mat_id = conn[:, 0].copy()
    mat_id[:] = 0

    mesh = Mesh.from_data("aux", gd.coors, None, [conn], [mat_id], [geometry.name])
    domain = Domain("aux", mesh)

    for ii in range(level):
        domain = domain.refine()

    coors = domain.mesh.coors
    conn = domain.mesh.conns[0]

    n_el = conn.shape[0]

    if geometry.name == "2_3":
        aux_conn = conn.reshape((n_el / 4, 4, 3))

        ir = [[0, 1, 2], [2, 2, 3], [3, 3, 0]]
        ic = [[0, 0, 0], [0, 1, 0], [0, 1, 0]]

    elif geometry.name == "2_4":
        aux_conn = conn.reshape((n_el / 4, 4, 4))

        ir = [[0, 0, 1], [1, 1, 2], [2, 2, 3], [3, 3, 0], [0, 0, 2], [3, 3, 1]]
        ic = [[0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [1, 2, 1], [1, 2, 1]]

    elif geometry.name == "3_4":
        aux_conn = conn.reshape((n_el / 8, 8, 4))

        ir = [[0, 0, 1], [1, 1, 2], [2, 0, 0], [3, 1, 1], [3, 2, 2], [3, 0, 0]]
        ic = [[0, 1, 1], [1, 2, 2], [2, 2, 0], [3, 3, 1], [3, 3, 2], [3, 3, 0]]

    elif geometry.name == "3_8":
        aux_conn = conn.reshape((n_el / 8, 8, 8))

        ir = [
            [0, 0, 1],
            [1, 1, 2],
            [2, 2, 3],
            [3, 0, 0],
            [0, 0, 2],
            [0, 0, 1],
            [0, 0, 1],
            [1, 1, 2],
            [2, 2, 3],
            [3, 0, 0],
            [0, 0, 2],
            [0, 0, 1],
            [4, 4, 5],
            [5, 5, 6],
            [6, 6, 7],
            [7, 4, 4],
            [4, 4, 6],
            [4, 4, 5],
            [0, 0, 4],
            [1, 1, 5],
            [2, 2, 6],
            [3, 3, 7],
            [0, 0, 4],
            [1, 1, 5],
            [2, 2, 6],
            [0, 0, 4],
            [0, 0, 4],
        ]
        ic = [
            [0, 1, 0],
            [0, 1, 0],
            [0, 1, 0],
            [0, 3, 0],
            [1, 2, 1],
            [3, 2, 1],
            [4, 5, 4],
            [4, 5, 4],
            [4, 5, 4],
            [4, 7, 4],
            [5, 6, 5],
            [7, 6, 5],
            [0, 3, 0],
            [0, 3, 0],
            [0, 3, 0],
            [0, 1, 0],
            [3, 2, 3],
            [1, 2, 3],
            [0, 4, 0],
            [0, 4, 0],
            [0, 4, 0],
            [0, 4, 0],
            [1, 5, 3],
            [1, 5, 3],
            [1, 5, 3],
            [3, 7, 1],
            [2, 6, 2],
        ]

    else:
        raise ValueError("unsupported geometry! (%s)" % geometry.name)

    conn = nm.array(conn, dtype=nm.int32)
    error_edges = aux_conn[:, ir, ic]

    return coors, conn, error_edges
예제 #47
0
def main():
    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-b', '--basis', metavar='name',
                      action='store', dest='basis',
                      default='lagrange', help=help['basis'])
    parser.add_option('-d', '--derivative', metavar='d', type=int,
                      action='store', dest='derivative',
                      default=0, help=help['derivative'])
    parser.add_option('-n', '--max-order', metavar='order', type=int,
                      action='store', dest='max_order',
                      default=2, help=help['max_order'])
    parser.add_option('-g', '--geometry', metavar='name',
                      action='store', dest='geometry',
                      default='2_4', help=help['geometry'])
    parser.add_option('-m', '--mesh', metavar='mesh',
                      action='store', dest='mesh',
                      default=None, help=help['mesh'])
    parser.add_option('', '--permutations', metavar='permutations',
                      action='store', dest='permutations',
                      default=None, help=help['permutations'])
    parser.add_option('', '--dofs', metavar='dofs',
                      action='store', dest='dofs',
                      default=None, help=help['dofs'])
    parser.add_option('-l', '--lin-options', metavar='options',
                      action='store', dest='lin_options',
                      default='min_level=2,max_level=5,eps=1e-3',
                      help=help['lin_options'])
    parser.add_option('', '--plot-dofs',
                      action='store_true', dest='plot_dofs',
                      default=False, help=help['plot_dofs'])
    options, args = parser.parse_args()

    if len(args) == 1:
        output_dir = args[0]
    else:
        parser.print_help(),
        return

    output('polynomial space:', options.basis)
    output('max. order:', options.max_order)

    lin = Struct(kind='adaptive', min_level=2, max_level=5, eps=1e-3)
    for opt in options.lin_options.split(','):
        key, val = opt.split('=')
        setattr(lin, key, eval(val))

    if options.mesh is None:
        dim, n_ep = int(options.geometry[0]), int(options.geometry[2])
        output('reference element geometry:')
        output('  dimension: %d, vertices: %d' % (dim, n_ep))

        gel = GeometryElement(options.geometry)
        gps = PolySpace.any_from_args(None, gel, 1,
                                      base=options.basis)
        ps = PolySpace.any_from_args(None, gel, options.max_order,
                                     base=options.basis)

        n_digit, _format = get_print_info(ps.n_nod, fill='0')
        name_template = os.path.join(output_dir, 'bf_%s.vtk' % _format)
        for ip in get_dofs(options.dofs, ps.n_nod):
            output('shape function %d...' % ip)

            def eval_dofs(iels, rx):
                if options.derivative == 0:
                    bf = ps.eval_base(rx).squeeze()
                    rvals = bf[None, :, ip:ip+1]

                else:
                    bfg = ps.eval_base(rx, diff=True)
                    rvals = bfg[None, ..., ip]

                return rvals

            def eval_coors(iels, rx):
                bf = gps.eval_base(rx).squeeze()
                coors = nm.dot(bf, gel.coors)[None, ...]
                return coors

            (level, coors, conn,
             vdofs, mat_ids) = create_output(eval_dofs, eval_coors, 1,
                                             ps, min_level=lin.min_level,
                                             max_level=lin.max_level,
                                             eps=lin.eps)
            out = {
                'bf' : Struct(name='output_data',
                              mode='vertex', data=vdofs,
                              var_name='bf', dofs=None)
            }

            mesh = Mesh.from_data('bf_mesh', coors, None, [conn], [mat_ids],
                                  [options.geometry])

            name = name_template % ip
            mesh.write(name, out=out)

            output('...done (%s)' % name)

    else:
        mesh = Mesh.from_file(options.mesh)
        output('mesh geometry:')
        output('  dimension: %d, vertices: %d, elements: %d'
               % (mesh.dim, mesh.n_nod, mesh.n_el))

        domain = Domain('domain', mesh)

        if options.permutations:
            permutations = [int(ii) for ii in options.permutations.split(',')]
            output('using connectivity permutations:', permutations)
            for group in domain.iter_groups():
                perms = group.gel.get_conn_permutations()[permutations]
                offsets = nm.arange(group.shape.n_el) * group.shape.n_ep

                group.conn[:] = group.conn.take(perms + offsets[:, None])

            domain.setup_facets()

        omega = domain.create_region('Omega', 'all')
        field = Field.from_args('f', nm.float64, shape=1, region=omega,
                                approx_order=options.max_order,
                                poly_space_base=options.basis)
        var = FieldVariable('u', 'unknown', field, 1)

        if options.plot_dofs:
            import sfepy.postprocess.plot_dofs as pd
            group = domain.groups[0]
            ax = pd.plot_mesh(None, mesh.coors, mesh.conns[0], group.gel.edges)
            ax = pd.plot_global_dofs(ax, field.get_coor(), field.aps[0].econn)
            ax = pd.plot_local_dofs(ax, field.get_coor(), field.aps[0].econn)
            pd.plt.show()

        output('dofs: %d' % var.n_dof)

        vec = nm.empty(var.n_dof, dtype=var.dtype)
        n_digit, _format = get_print_info(var.n_dof, fill='0')
        name_template = os.path.join(output_dir, 'dof_%s.vtk' % _format)
        for ip in get_dofs(options.dofs, var.n_dof):
            output('dof %d...' % ip)

            vec.fill(0.0)
            vec[ip] = 1.0

            var.data_from_any(vec)

            if options.derivative == 0:
                out = var.create_output(vec, linearization=lin)

            else:
                out = create_expression_output('ev_grad.ie.Elements(u)',
                                               'u', 'f', {'f' : field}, None,
                                               Variables([var]),
                                               mode='qp', verbose=False,
                                               min_level=lin.min_level,
                                               max_level=lin.max_level,
                                               eps=lin.eps)

            name = name_template % ip
            out['u'].mesh.write(name, out=out)

            output('...done (%s)' % name)
예제 #48
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s', '--show',
                      action="store_true", dest='show',
                      default=False, help=help['show'])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    domain = Domain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:,0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Gamma1',
                                  'nodes in x < %.10f' % (min_x + eps))
    gamma2 = domain.create_region('Gamma2',
                                  'nodes in x > %.10f' % (max_x - eps))

    field = Field('fu', nm.float64, 'vector', omega,
                  space='H1', poly_space_base='lagrange', approx_order=2)

    u = FieldVariable('u', 'unknown', field, mesh.dim)
    v = FieldVariable('v', 'test', field, mesh.dim, primary_var_name='u')

    m = Material('m', lam=1.0, mu=1.0)
    f = Material('f', val=[[0.02], [0.01]])

    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
         integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})

    bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift' : 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0' : bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print nls_status

    pb.save_state('linear_elasticity.vtk', vec)

    if options.show:
        view = Viewer('linear_elasticity.vtk')
        view(vector_mode='warp_norm', rel_scaling=2,
             is_scalar_bar=True, is_wireframe=True)
예제 #49
0
def _gen_common_data(orders, gels, report):
    import sfepy
    from sfepy.base.base import Struct
    from sfepy.linalg import combine
    from sfepy.fem import Mesh, Domain, Field, FieldVariable, Integral
    from sfepy.fem.global_interp import get_ref_coors

    bases = ([ii for ii in combine([['2_4', '3_8'],
                                    ['lagrange', 'lobatto']])]
             + [ii for ii in combine([['2_3', '3_4'],
                                      ['lagrange']])])
    for geom, poly_space_base in bases:
        report('geometry: %s, base: %s' % (geom, poly_space_base))

        order = orders[geom]
        integral = Integral('i', order=order)

        aux = '' if geom in ['2_4', '3_8'] else 'z'
        mesh0 = Mesh.from_file('meshes/elements/%s_2%s.mesh' % (geom, aux),
                               prefix_dir=sfepy.data_dir)
        gel = gels[geom]

        perms = gel.get_conn_permutations()

        qps, qp_weights = integral.get_qp(gel.surface_facet.name)
        zz = nm.zeros_like(qps[:, :1])
        qps = nm.hstack(([qps] + [zz]))

        shift = shifts[geom]
        rcoors = nm.ascontiguousarray(qps
                                      + shift[:1, :] - shift[1:, :])
        ccoors = nm.ascontiguousarray(qps
                                      + shift[:1, :] + shift[1:, :])

        for ir, pr in enumerate(perms):
            for ic, pc in enumerate(perms):
                report('ir: %d, ic: %d' % (ir, ic))
                report('pr: %s, pc: %s' % (pr, pc))

                mesh = mesh0.copy()
                conn = mesh.conns[0]
                conn[0, :] = conn[0, pr]
                conn[1, :] = conn[1, pc]

                cache = Struct(mesh=mesh)

                domain = Domain('domain', mesh)
                omega = domain.create_region('Omega', 'all')
                region = domain.create_region('Facet', rsels[geom], 'facet')
                field = Field.from_args('f', nm.float64, shape=1,
                                        region=omega, approx_order=order,
                                        poly_space_base=poly_space_base)
                var = FieldVariable('u', 'unknown', field, 1)
                report('# dofs: %d' % var.n_dof)

                vec = nm.empty(var.n_dof, dtype=var.dtype)

                ap = field.aps[0]
                ps = ap.interp.poly_spaces['v']

                dofs = field.get_dofs_in_region_group(region, 0,
                                                      merge=False)
                edofs, fdofs = nm.unique(dofs[1]), nm.unique(dofs[2])

                rrc, rcells, rstatus = get_ref_coors(field, rcoors,
                                                     cache=cache)
                crc, ccells, cstatus = get_ref_coors(field, ccoors,
                                                     cache=cache)
                assert_((rstatus == 0).all() and (cstatus == 0).all())

                yield (geom, poly_space_base, qp_weights, mesh, ir, ic,
                       ap, ps, rrc, rcells[0, 1], crc, ccells[0, 1],
                       vec, edofs, fdofs)
예제 #50
0
def main():
    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-b', '--basis', metavar='name',
                      action='store', dest='basis',
                      default='lagrange', help=help['basis'])
    parser.add_option('-n', '--max-order', metavar='order', type=int,
                      action='store', dest='max_order',
                      default=10, help=help['max_order'])
    parser.add_option('-m', '--matrix', metavar='type',
                      action='store', dest='matrix_type',
                      default='laplace', help=help['matrix_type'])
    parser.add_option('-g', '--geometry', metavar='name',
                      action='store', dest='geometry',
                      default='2_4', help=help['geometry'])
    options, args = parser.parse_args()

    dim, n_ep = int(options.geometry[0]), int(options.geometry[2])
    output('reference element geometry:')
    output('  dimension: %d, vertices: %d' % (dim, n_ep))

    n_c = {'laplace' : 1, 'elasticity' : dim}[options.matrix_type]

    output('matrix type:', options.matrix_type)
    output('number of variable components:',  n_c)

    output('polynomial space:', options.basis)

    output('max. order:', options.max_order)

    mesh = Mesh.from_file(data_dir + '/meshes/elements/%s_1.mesh'
                          % options.geometry)
    domain = Domain('domain', mesh)
    omega = domain.create_region('Omega', 'all')

    orders = nm.arange(1, options.max_order + 1, dtype=nm.int)
    conds = []

    order_fix = 0 if  options.geometry in ['2_4', '3_8'] else 1

    for order in orders:
        output('order:', order, '...')

        field = Field.from_args('fu', nm.float64, n_c, omega,
                                approx_order=order,
                                space='H1', poly_space_base=options.basis)

        to = field.approx_order
        quad_order = 2 * (max(to - order_fix, 0))
        output('quadrature order:', quad_order)

        u = FieldVariable('u', 'unknown', field, n_c)
        v = FieldVariable('v', 'test', field, n_c, primary_var_name='u')

        m = Material('m', lam=1.0, mu=1.0)

        integral = Integral('i', order=quad_order)

        if options.matrix_type == 'laplace':
            term = Term.new('dw_laplace(m.mu, v, u)',
                            integral, omega, m=m, v=v, u=u)
            n_zero = 1

        else:
            assert_(options.matrix_type == 'elasticity')
            term = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                            integral, omega, m=m, v=v, u=u)
            n_zero = (dim + 1) * dim / 2

        term.setup()

        output('assembling...')
        tt = time.clock()
        mtx, iels = term.evaluate(mode='weak', diff_var='u')
        output('...done in %.2f s' % (time.clock() - tt))
        mtx = mtx[0][0, 0]

        try:
            assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10)

        except:
            from sfepy.base.base import debug; debug()

        output('matrix shape:', mtx.shape)

        eigs = eig(mtx, method='eig.sgscipy', eigenvectors=False)
        eigs.sort()

        # Zero 'true' zeros.
        eigs[:n_zero] = 0.0

        ii = nm.where(eigs < 0.0)[0]
        if len(ii):
            output('matrix is not positive semi-definite!')

        ii = nm.where(eigs[n_zero:] < 1e-12)[0]
        if len(ii):
            output('matrix has more than %d zero eigenvalues!' % n_zero)

        output('smallest eigs:\n', eigs[:10])

        ii = nm.where(eigs > 0.0)[0]
        emin, emax = eigs[ii[[0, -1]]]

        output('min:', emin, 'max:', emax)

        cond = emax / emin
        conds.append(cond)

        output('condition number:', cond)

        output('...done')

    plt.figure(1)
    plt.semilogy(orders, conds)
    plt.xticks(orders, orders)
    plt.xlabel('polynomial order')
    plt.ylabel('condition number')
    plt.grid()

    plt.figure(2)
    plt.loglog(orders, conds)
    plt.xticks(orders, orders)
    plt.xlabel('polynomial order')
    plt.ylabel('condition number')
    plt.grid()

    plt.show()
예제 #51
0
def save_basis_on_mesh(mesh, options, output_dir, lin,
                       permutations=None, suffix=''):
    if permutations is not None:
        mesh = mesh.copy()
        for ig, conn in enumerate(mesh.conns):
            gel = GeometryElement(mesh.descs[ig])
            perms = gel.get_conn_permutations()[permutations]
            n_el, n_ep = conn.shape
            offsets = nm.arange(n_el) * n_ep

            conn[:] = conn.take(perms + offsets[:, None])

    domain = Domain('domain', mesh)

    omega = domain.create_region('Omega', 'all')
    field = Field.from_args('f', nm.float64, shape=1, region=omega,
                            approx_order=options.max_order,
                            poly_space_base=options.basis)
    var = FieldVariable('u', 'unknown', field, 1)

    if options.plot_dofs:
        import sfepy.postprocess.plot_dofs as pd
        group = domain.groups[0]
        ax = pd.plot_mesh(None, mesh.coors, mesh.conns[0], group.gel.edges)
        ax = pd.plot_global_dofs(ax, field.get_coor(), field.aps[0].econn)
        ax = pd.plot_local_dofs(ax, field.get_coor(), field.aps[0].econn)
        if options.dofs is not None:
            ax = pd.plot_nodes(ax, field.get_coor(), field.aps[0].econn,
                               field.aps[0].interp.poly_spaces['v'].nodes,
                               get_dofs(options.dofs, var.n_dof))
        pd.plt.show()

    output('dofs: %d' % var.n_dof)

    vec = nm.empty(var.n_dof, dtype=var.dtype)
    n_digit, _format = get_print_info(var.n_dof, fill='0')
    name_template = os.path.join(output_dir,
                                 'dof_%s%s.vtk' % (_format, suffix))
    for ip in get_dofs(options.dofs, var.n_dof):
        output('dof %d...' % ip)

        vec.fill(0.0)
        vec[ip] = 1.0

        var.set_data(vec)

        if options.derivative == 0:
            out = var.create_output(vec, linearization=lin)

        else:
            out = create_expression_output('ev_grad.ie.Elements(u)',
                                           'u', 'f', {'f' : field}, None,
                                           Variables([var]),
                                           mode='qp', verbose=False,
                                           min_level=lin.min_level,
                                           max_level=lin.max_level,
                                           eps=lin.eps)

        name = name_template % ip
        ensure_path(name)
        out['u'].mesh.write(name, out=out)

        output('...done (%s)' % name)
예제 #52
0
파일: findSurf.py 프로젝트: ZJLi2013/sfepy
def main():
    parser = OptionParser(usage=usage, version="%prog " + sfepy.__version__)
    parser.add_option("-m", "--mesh",
                      action="store_true", dest="save_mesh",
                      default=True,
                      help="save surface mesh [default: %default]")
    parser.add_option("-n", "--no-surface",
                      action="store_true", dest="no_surface",
                      default=False,
                      help="do not output surface [default: %default]")
    (options, args) = parser.parse_args()

    if (len(args) == 2):
        filename_in = args[0];
        filename_out = args[1];
    else:
        parser.print_help(),
        return

    if (filename_in == '-'):
        file_in = sys.stdin
    else:
        file_in = open(filename_in, "r");

    mesh = Mesh.from_file(filename_in)

    if (filename_in != '-'):
        file_in.close()

    domain = Domain('domain', mesh)
    domain.setup_groups()

    if domain.has_faces():
        domain.fix_element_orientation()

        lst, surf_faces = get_surface_faces(domain)

        surf_mesh = Mesh.from_surface(surf_faces, mesh)

        if options.save_mesh:
            aux = edit_filename(filename_in, prefix='surf_', new_ext='.mesh')
            surf_mesh.write(aux, io='auto')

        if options.no_surface:
            return

        gr_s = surface_graph(surf_faces, mesh.n_nod)

        n_comp, comps = surface_components(gr_s, surf_faces)
        output('number of surface components:', n_comp)

        ccs, comps = comps, nm.zeros((0,1), nm.int32)
        for cc in ccs:
            comps = nm.concatenate((comps, cc[:,nm.newaxis]), 0)

        out = nm.concatenate((lst, comps), 1)

        if (filename_out == '-'):
            file_out = sys.stdout
        else:
            file_out = open(filename_out, "w");
        for row in out:
            file_out.write('%d %d %d\n' % (row[0], row[1], row[2]))
        if (filename_out != '-'):
            file_out.close()
예제 #53
0
파일: findSurf.py 프로젝트: brbr520/sfepy
def main():
    parser = OptionParser(usage=usage, version="%prog " + sfepy.__version__)
    parser.add_option("-m",
                      "--mesh",
                      action="store_true",
                      dest="save_mesh",
                      default=True,
                      help="save surface mesh [default: %default]")
    parser.add_option("-n",
                      "--no-surface",
                      action="store_true",
                      dest="no_surface",
                      default=False,
                      help="do not output surface [default: %default]")
    (options, args) = parser.parse_args()

    if (len(args) == 2):
        filename_in = args[0]
        filename_out = args[1]
    else:
        parser.print_help(),
        return

    if (filename_in == '-'):
        file_in = sys.stdin
    else:
        file_in = open(filename_in, "r")

    mesh = Mesh.from_file(filename_in)

    if (filename_in != '-'):
        file_in.close()

    domain = Domain('domain', mesh)
    domain.setup_groups()

    if domain.has_faces():
        domain.fix_element_orientation()
        domain.setup_facets(create_edges=False)

        lst, surf_faces = domain.surface_faces()

        surf_mesh = Mesh.from_surface(surf_faces, mesh)

        if options.save_mesh:
            aux = edit_filename(filename_in, prefix='surf_', new_ext='.mesh')
            surf_mesh.write(aux, io='auto')

        if options.no_surface:
            return

        gr_s = surface_graph(surf_faces, mesh.n_nod)
        ##         import sfepy.base.plotutils as plu
        ##         plu.spy( gr_s )
        ##         plu.pylab.show()

        n_comp, comps = surface_components(gr_s, surf_faces)
        #        print 'components:', n_comp

        ccs, comps = comps, nm.zeros((0, 1), nm.int32)
        for cc in ccs:
            comps = nm.concatenate((comps, cc[:, nm.newaxis]), 0)

        out = nm.concatenate((lst, comps), 1)

        if (filename_out == '-'):
            file_out = sys.stdout
        else:
            file_out = open(filename_out, "w")
        for row in out:
            file_out.write('%d %d %d %d\n' % (row[0], row[1], row[2], row[3]))
        if (filename_out != '-'):
            file_out.close()
예제 #54
0
파일: mesh_tools.py 프로젝트: sdurve/sfepy
def smooth_mesh(mesh,
                n_iter=4,
                lam=0.6307,
                mu=-0.6347,
                weights=None,
                bconstr=True,
                volume_corr=False):
    """
    FE mesh smoothing.

    Based on:

    [1] Steven K. Boyd, Ralph Muller, Smooth surface meshing for automated
    finite element model generation from 3D image data, Journal of
    Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295,
    ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006.
    (http://www.sciencedirect.com/science/article/pii/S0021929005001442)

    Parameters
    ----------
    mesh : mesh
        FE mesh.
    n_iter : integer, optional
        Number of iteration steps.
    lam : float, optional
        Smoothing factor, see [1].
    mu : float, optional
        Unshrinking factor, see [1].
    weights : array, optional
        Edge weights, see [1].
    bconstr: logical, optional
        Boundary constraints, if True only surface smoothing performed.
    volume_corr: logical, optional
        Correct volume after smoothing process.

    Returns
    -------
    coors : array
        Coordinates of mesh nodes.
    """
    def laplacian(coors, weights):

        n_nod = coors.shape[0]
        displ = (weights - sps.identity(n_nod)) * coors

        return displ

    def taubin(coors0, weights, lam, mu, n_iter):

        coors = coors0.copy()

        for ii in range(n_iter):
            displ = laplacian(coors, weights)
            if nm.mod(ii, 2) == 0:
                coors += lam * displ
            else:
                coors += mu * displ

        return coors

    def get_volume(el, nd):

        dim = nd.shape[1]
        nnd = el.shape[1]

        etype = '%d_%d' % (dim, nnd)
        if etype == '2_4' or etype == '3_8':
            el = elems_q2t(el)

        vol = 0.0
        bc = nm.zeros((dim, ), dtype=nm.double)
        mtx = nm.ones((dim + 1, dim + 1), dtype=nm.double)
        mul = 1.0 / sc.factorial(dim)
        if dim == 3:
            mul *= -1.0

        for iel in el:
            mtx[:, :-1] = nd[iel, :]
            ve = mul * nm.linalg.det(mtx)
            vol += ve
            bc += ve * mtx.sum(0)[:-1] / nnd

        bc /= vol

        return vol, bc

    domain = Domain('mesh', mesh)

    n_nod = mesh.n_nod
    edges = domain.ed

    if weights is None:
        # initiate all vertices as inner - hierarchy = 2
        node_group = nm.ones((n_nod, ), dtype=nm.int16) * 2
        # boundary vertices - set hierarchy = 4
        if bconstr:
            # get "nodes of surface"
            if domain.fa:  # 3D.
                fa = domain.fa
            else:
                fa = domain.ed

            flag = fa.mark_surface_facets()
            ii = nm.where(flag > 0)[0]
            aux = nm.unique(fa.facets[ii])
            if aux[0] == -1:  # Triangular faces have -1 as 4. point.
                aux = aux[1:]

            node_group[aux] = 4

        # generate costs matrix
        costs = sps.lil_matrix((n_nod, n_nod), dtype=nm.double)
        for ied in range(edges.mtx.shape[0]):
            cc = edges.mtx.getrow(ied).indices[0]
            n1, n2 = edges.facets[cc, :]
            if node_group[n2] >= node_group[n1]:
                costs[n1, n2] = 1.0

            if node_group[n1] >= node_group[n2]:
                costs[n2, n1] = 1.0

        # generate weights matrix
        aux = sps.lil_matrix((n_nod, n_nod), dtype=nm.double)
        aux.setdiag(1.0 / costs.sum(1))
        weights = (aux * costs).tocsr()

    coors = taubin(mesh.coors, weights, lam, mu, n_iter)

    if volume_corr:

        volume0, bc = get_volume(mesh.conns[0], mesh.coors)
        volume, _ = get_volume(mesh.conns[0], coors)

        scale = volume0 / volume

        coors = (coors - bc) * scale + bc

    return coors
예제 #55
0
    def from_conf(conf, options):
        mesh = Mesh('mesh_tetra',
                    data_dir + '/meshes/various_formats/small3d.mesh')
        domain = Domain('domain', mesh)

        return Test(conf=conf, options=options, domain=domain)
예제 #56
0
def main():
    parser = OptionParser(usage=usage)
    parser.add_option('-s', '--scale', metavar='scale',
                      action='store', dest='scale',
                      default=None, help=help['scale'])
    parser.add_option('-r', '--refine', metavar='level',
                      action='store', type=int, dest='refine',
                      default=0, help=help['refine'])
    parser.add_option('-f', '--format', metavar='format',
                      action='store', type='string', dest='format',
                      default=None, help=help['format'])
    parser.add_option('-l', '--list', action='store_true',
                      dest='list', help=help['list'])
    (options, args) = parser.parse_args()

    if options.list:
        output_writable_meshes()
        sys.exit(0)

    if len(args) != 2:
        parser.print_help()
        sys.exit(1)

    scale = options.scale
    if scale is not None:
        try:
            try:
                scale = float(scale)
            except ValueError:
                scale = [float(ii) for ii in scale.split(',')]
            scale = nm.array(scale, dtype=nm.float64, ndmin=1)
        except:
            output('bad scale! (%s)' % scale)
            parser.print_help()
            sys.exit(1)

    filename_in, filename_out = args

    mesh = Mesh.from_file(filename_in)

    if scale is not None:
        if len(scale) == 1:
            tr = nm.eye(mesh.dim, dtype=nm.float64) * scale
        elif len(scale) == mesh.dim:
            tr = nm.diag(scale)
        else:
            raise ValueError('bad scale! (%s)' % scale)
        mesh.transform_coors(tr)

    if options.refine > 0:
        domain = Domain(mesh.name, mesh)
        output('initial mesh: %d nodes %d elements'
               % (domain.shape.n_nod, domain.shape.n_el))

        for ii in range(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements'
                   % (domain.shape.n_nod, domain.shape.n_el))

        mesh = domain.mesh

    io = MeshIO.for_format(filename_out, format=options.format,
                           writable=True)

    output('writing %s...' % filename_out)
    mesh.write(filename_out, io=io)
    output('...done')