def from_conf(conf, options): import sfepy from sfepy.fem import Mesh, Domain, H1NodalVolumeField mesh = Mesh.from_file('meshes/2d/rectangle_tri.mesh', prefix_dir=sfepy.data_dir) domain = Domain('domain', mesh) dim = domain.shape.dim min_x, max_x = domain.get_mesh_bounding_box()[:,0] eps = 1e-8 * (max_x - min_x) omega = domain.create_region('Omega', 'all') gamma1 = domain.create_region('Gamma1', 'vertices in x < %.10f' % (min_x + eps), 'facet') gamma2 = domain.create_region('Gamma2', 'vertices in x > %.10f' % (max_x - eps), 'facet') field = H1NodalVolumeField('fu', nm.float64, 'vector', omega, approx_order=2) test = Test(conf=conf, options=options, dim=dim, omega=omega, gamma1=gamma1, gamma2=gamma2, field=field) return test
def from_conf(conf, options): import sfepy from sfepy.fem import Mesh, Domain, H1NodalVolumeField mesh = Mesh.from_file('meshes/2d/rectangle_tri.mesh', prefix_dir=sfepy.data_dir) domain = Domain('domain', mesh) dim = domain.shape.dim min_x, max_x = domain.get_mesh_bounding_box()[:, 0] eps = 1e-8 * (max_x - min_x) omega = domain.create_region('Omega', 'all') gamma1 = domain.create_region('Gamma1', 'vertices in x < %.10f' % (min_x + eps), 'facet') gamma2 = domain.create_region('Gamma2', 'vertices in x > %.10f' % (max_x - eps), 'facet') field = H1NodalVolumeField('fu', nm.float64, 'vector', omega, approx_order=2) test = Test(conf=conf, options=options, dim=dim, omega=omega, gamma1=gamma1, gamma2=gamma2, field=field) return test
def test_interpolation_two_meshes(self): from sfepy import data_dir from sfepy.fem import Mesh, Domain, H1NodalVolumeField, Variables m1 = Mesh('source mesh', data_dir + '/meshes/3d/block.mesh') m2 = Mesh('target mesh', data_dir + '/meshes/3d/cube_medium_tetra.mesh') m2.coors *= 2.0 bbox = m1.get_bounding_box() dd = bbox[1, :] - bbox[0, :] data = nm.sin(4.0 * nm.pi * m1.coors[:,0:1] / dd[0]) \ * nm.cos(4.0 * nm.pi * m1.coors[:,1:2] / dd[1]) variables1 = { 'u': ('unknown field', 'scalar_tp', 0), 'v': ('test field', 'scalar_tp', 'u'), } variables2 = { 'u': ('unknown field', 'scalar_si', 0), 'v': ('test field', 'scalar_si', 'u'), } d1 = Domain('d1', m1) omega1 = d1.create_region('Omega', 'all') field1 = H1NodalVolumeField('scalar_tp', nm.float64, (1, 1), omega1, approx_order=1) ff1 = {field1.name: field1} d2 = Domain('d2', m2) omega2 = d2.create_region('Omega', 'all') field2 = H1NodalVolumeField('scalar_si', nm.float64, (1, 1), omega2, approx_order=0) ff2 = {field2.name: field2} vv1 = Variables.from_conf(transform_variables(variables1), ff1) u1 = vv1['u'] u1.set_from_mesh_vertices(data) vv2 = Variables.from_conf(transform_variables(variables2), ff2) u2 = vv2['u'] # Performs interpolation, if other field differs from self.field # or, in particular, is defined on a different mesh. u2.set_from_other(u1, strategy='interpolation', close_limit=0.1) fname = in_dir(self.options.out_dir) u1.save_as_mesh(fname('test_mesh_interp_block_scalar.vtk')) u2.save_as_mesh(fname('test_mesh_interp_cube_scalar.vtk')) return True
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version="%prog") parser.add_option("-s", "--show", action="store_true", dest="show", default=False, help=help["show"]) options, args = parser.parse_args() mesh = Mesh.from_file(data_dir + "/meshes/2d/rectangle_tri.mesh") domain = Domain("domain", mesh) min_x, max_x = domain.get_mesh_bounding_box()[:, 0] eps = 1e-8 * (max_x - min_x) omega = domain.create_region("Omega", "all") gamma1 = domain.create_region("Gamma1", "nodes in x < %.10f" % (min_x + eps)) gamma2 = domain.create_region("Gamma2", "nodes in x > %.10f" % (max_x - eps)) field = Field("fu", nm.float64, "vector", omega, space="H1", poly_space_base="lagrange", approx_order=2) u = FieldVariable("u", "unknown", field, mesh.dim) v = FieldVariable("v", "test", field, mesh.dim, primary_var_name="u") m = Material("m", lam=1.0, mu=1.0) f = Material("f", val=[[0.02], [0.01]]) integral = Integral("i", order=3) t1 = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u) t2 = Term.new("dw_volume_lvf(f.val, v)", integral, omega, f=f, v=v) eq = Equation("balance", t1 + t2) eqs = Equations([eq]) fix_u = EssentialBC("fix_u", gamma1, {"u.all": 0.0}) bc_fun = Function("shift_u_fun", shift_u_fun, extra_args={"shift": 0.01}) shift_u = EssentialBC("shift_u", gamma2, {"u.0": bc_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = ProblemDefinition("elasticity", equations=eqs, nls=nls, ls=ls) pb.save_regions_as_groups("regions") pb.time_update(ebcs=Conditions([fix_u, shift_u])) vec = pb.solve() print nls_status pb.save_state("linear_elasticity.vtk", vec) if options.show: view = Viewer("linear_elasticity.vtk") view(vector_mode="warp_norm", rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
def test_interpolation_two_meshes(self): from sfepy import data_dir from sfepy.fem import Mesh, Domain, H1NodalVolumeField, Variables m1 = Mesh('source mesh', data_dir + '/meshes/3d/block.mesh') m2 = Mesh('target mesh', data_dir + '/meshes/3d/cube_medium_tetra.mesh') m2.coors *= 2.0 bbox = m1.get_bounding_box() dd = bbox[1,:] - bbox[0,:] data = nm.sin(4.0 * nm.pi * m1.coors[:,0:1] / dd[0]) \ * nm.cos(4.0 * nm.pi * m1.coors[:,1:2] / dd[1]) variables1 = { 'u' : ('unknown field', 'scalar_tp', 0), 'v' : ('test field', 'scalar_tp', 'u'), } variables2 = { 'u' : ('unknown field', 'scalar_si', 0), 'v' : ('test field', 'scalar_si', 'u'), } d1 = Domain('d1', m1) omega1 = d1.create_region('Omega', 'all') field1 = H1NodalVolumeField('scalar_tp', nm.float64, (1,1), omega1, approx_order=1) ff1 = {field1.name : field1} d2 = Domain('d2', m2) omega2 = d2.create_region('Omega', 'all') field2 = H1NodalVolumeField('scalar_si', nm.float64, (1,1), omega2, approx_order=0) ff2 = {field2.name : field2} vv1 = Variables.from_conf(transform_variables(variables1), ff1) u1 = vv1['u'] u1.set_from_mesh_vertices(data) vv2 = Variables.from_conf(transform_variables(variables2), ff2) u2 = vv2['u'] # Performs interpolation, if other field differs from self.field # or, in particular, is defined on a different mesh. u2.set_from_other(u1, strategy='interpolation', close_limit=0.1) fname = in_dir(self.options.out_dir) u1.save_as_mesh(fname('test_mesh_interp_block_scalar.vtk')) u2.save_as_mesh(fname('test_mesh_interp_cube_scalar.vtk')) return True
def do_interpolation(m2, m1, data, field_name, force=False): """Interpolate data from m1 to m2. """ from sfepy.fem import Domain, H1NodalVolumeField, Variables fields = { 'scalar_si': ((1, 1), 'Omega', 2), 'vector_si': ((3, 1), 'Omega', 2), 'scalar_tp': ((1, 1), 'Omega', 1), 'vector_tp': ((3, 1), 'Omega', 1), } d1 = Domain('d1', m1) omega1 = d1.create_region('Omega', 'all') f = fields[field_name] field1 = H1NodalVolumeField('f', nm.float64, f[0], d1.regions[f[1]], approx_order=f[2]) ff = {field1.name: field1} vv = Variables.from_conf(transform_variables(variables), ff) u1 = vv['u'] u1.set_from_mesh_vertices(data) d2 = Domain('d2', m2) omega2 = d2.create_region('Omega', 'all') field2 = H1NodalVolumeField('f', nm.float64, f[0], d2.regions[f[1]], approx_order=f[2]) ff2 = {field2.name: field2} vv2 = Variables.from_conf(transform_variables(variables), ff2) u2 = vv2['u'] if not force: # Performs interpolation, if other field differs from self.field # or, in particular, is defined on a different mesh. u2.set_from_other(u1, strategy='interpolation', close_limit=0.5) else: coors = u2.field.get_coor() vals = u1.evaluate_at(coors, close_limit=0.5) u2.set_data(vals) return u1, u2
def main(): parser = OptionParser(usage=usage, version="%prog") options, args = parser.parse_args() if (len(args) == 1): mesh_filename = args[0]; else: parser.print_help(), return mesh = Mesh('mesh', mesh_filename) print mesh domain = Domain('domain', mesh) print domain reg = domain.create_region('Surface', 'nodes of surface', {'can_cells' : True}) dual_mesh = DualMesh(reg) dual_mesh.save('dual_mesh.mesh',) dual_mesh.save_axes('axes.vtk',) print dual_mesh
def do_interpolation(m2, m1, data, field_name, force=False): """Interpolate data from m1 to m2. """ from sfepy.fem import Domain, H1NodalVolumeField, Variables fields = { 'scalar_si' : ((1,1), 'Omega', 2), 'vector_si' : ((3,1), 'Omega', 2), 'scalar_tp' : ((1,1), 'Omega', 1), 'vector_tp' : ((3,1), 'Omega', 1), } d1 = Domain('d1', m1) omega1 = d1.create_region('Omega', 'all') f = fields[field_name] field1 = H1NodalVolumeField('f', nm.float64, f[0], d1.regions[f[1]], approx_order=f[2]) ff = {field1.name : field1} vv = Variables.from_conf(transform_variables(variables), ff) u1 = vv['u'] u1.set_from_mesh_vertices(data) d2 = Domain('d2', m2) omega2 = d2.create_region('Omega', 'all') field2 = H1NodalVolumeField('f', nm.float64, f[0], d2.regions[f[1]], approx_order=f[2]) ff2 = {field2.name : field2} vv2 = Variables.from_conf(transform_variables(variables), ff2) u2 = vv2['u'] if not force: # Performs interpolation, if other field differs from self.field # or, in particular, is defined on a different mesh. u2.set_from_other(u1, strategy='interpolation', close_limit=0.5) else: coors = u2.field.get_coor() vals = u1.evaluate_at(coors, close_limit=0.5) u2.set_data(vals) return u1, u2
def from_conf(conf, options): from sfepy.fem import Mesh, Domain, Integral domains = [] for filename in filename_meshes: mesh = Mesh.from_file(filename) domain = Domain('domain_%s' % mesh.name.replace(data_dir, ''), mesh) domain.create_region('Omega', 'all') domain.create_region('Gamma', 'vertices of surface', 'facet') domains.append(domain) integral = Integral('i', order=3) test = Test(domains=domains, integral=integral, conf=conf, options=options) return test
def from_conf(conf, options): mesh = Mesh.from_file("meshes/2d/square_unit_tri.mesh", prefix_dir=sfepy.data_dir) domain = Domain("domain", mesh) omega = domain.create_region("Omega", "all") field = H1NodalVolumeField("linear", nm.float64, "scalar", omega, approx_order=1) test = Test(conf=conf, options=options, omega=omega, field=field) return test
def from_conf(conf, options): from sfepy.fem import Mesh, Domain, Integral domains = [] for filename in filename_meshes: mesh = Mesh.from_file(filename) domain = Domain('domain_%s' % mesh.name.replace(data_dir, ''), mesh) domain.create_region('Omega', 'all') domain.create_region('Gamma', 'nodes of surface') domains.append(domain) integrals = {'Omega' : Integral('iv', kind='v', order=3), 'Gamma' : Integral('is', kind='s', order=3)} test = Test(domains=domains, integrals=integrals, conf=conf, options=options) return test
def from_conf(conf, options): mesh = Mesh.from_file('meshes/2d/square_unit_tri.mesh', prefix_dir=sfepy.data_dir) domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') field = Field('linear', nm.float64, 'scalar', omega, space='H1', poly_space_base='lagrange', approx_order=1) test = Test(conf=conf, options=options, omega=omega, field=field) return test
def from_conf(conf, options): mesh = Mesh.from_file('meshes/2d/square_unit_tri.mesh', prefix_dir=sfepy.data_dir) domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') field = H1NodalVolumeField('linear', nm.float64, 'scalar', omega, approx_order=1) test = Test(conf=conf, options=options, omega=omega, field=field) return test
def test_normals(self): """ Check orientations of surface normals on the reference elements. """ import sfepy from sfepy.fem import Mesh, Domain, Integral from sfepy.fem.poly_spaces import PolySpace from sfepy.fem.mappings import SurfaceMapping from sfepy.linalg import normalize_vectors ok = True for geom in ['2_3', '2_4', '3_4', '3_8']: mesh = Mesh.from_file('meshes/elements/%s_1.mesh' % geom, prefix_dir=sfepy.data_dir) domain = Domain('domain', mesh) surface = domain.create_region('Surface', 'vertices of surface', 'facet') domain.create_surface_group(surface) sd = domain.surface_groups[0][surface.name] coors = domain.get_mesh_coors() gel = domain.geom_els[geom].surface_facet ps = PolySpace.any_from_args('aux', gel, 1) mapping = SurfaceMapping(coors, sd.get_connectivity(), ps) integral = Integral('i', order=1) vals, weights = integral.get_qp(gel.name) # Evaluate just in the first quadrature point... geo = mapping.get_mapping(vals[:1], weights[:1]) expected = expected_normals[geom].copy() normalize_vectors(expected) _ok = nm.allclose(expected, geo.normal[:, 0, :, 0], rtol=0.0, atol=1e-14) self.report('%s: %s' % (geom, _ok)) if not _ok: self.report('expected:') self.report(expected) self.report('actual:') self.report(geo.normal[:, 0, :, 0]) ok = ok and _ok return ok
def test_normals(self): """ Check orientations of surface normals on the reference elements. """ import sfepy from sfepy.fem import Mesh, Domain, Integral from sfepy.fem.poly_spaces import PolySpace from sfepy.fem.mappings import SurfaceMapping from sfepy.linalg import normalize_vectors ok = True for geom in ['2_3', '2_4', '3_4', '3_8']: mesh = Mesh.from_file('meshes/elements/%s_1.mesh' % geom, prefix_dir=sfepy.data_dir) domain = Domain('domain', mesh) surface = domain.create_region('Surface', 'nodes of surface') domain.create_surface_group(surface) sd = domain.surface_groups[0][surface.name] coors = domain.get_mesh_coors() gel = domain.geom_els[geom].surface_facet ps = PolySpace.any_from_args('aux', gel, 1) mapping = SurfaceMapping(coors, sd.get_connectivity(), ps) integral = Integral('i', order=1) vals, weights = integral.get_qp(gel.name) # Evaluate just in the first quadrature point... geo = mapping.get_mapping(vals[:1], weights[:1]) expected = expected_normals[geom].copy() normalize_vectors(expected) _ok = nm.allclose(expected, geo.normal[:, 0, :, 0], rtol=0.0, atol=1e-14) self.report('%s: %s' % (geom, _ok)) if not _ok: self.report('expected:') self.report(expected) self.report('actual:') self.report(geo.normal[:, 0, :, 0]) ok = ok and _ok return ok
def test_invariance_qp(self): from sfepy import data_dir from sfepy.fem import (Mesh, Domain, H1NodalVolumeField, Variables, Integral) from sfepy.terms import Term from sfepy.fem.mappings import get_physical_qps mesh = Mesh('source mesh', data_dir + '/meshes/3d/block.mesh') bbox = mesh.get_bounding_box() dd = bbox[1, :] - bbox[0, :] data = nm.sin(4.0 * nm.pi * mesh.coors[:,0:1] / dd[0]) \ * nm.cos(4.0 * nm.pi * mesh.coors[:,1:2] / dd[1]) variables = { 'u': ('unknown field', 'scalar_tp', 0), 'v': ('test field', 'scalar_tp', 'u'), } domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') field = H1NodalVolumeField('scalar_tp', nm.float64, 1, omega, approx_order=1) ff = {field.name: field} vv = Variables.from_conf(transform_variables(variables), ff) u = vv['u'] u.set_from_mesh_vertices(data) integral = Integral('i', order=2) term = Term.new('ev_volume_integrate(u)', integral, omega, u=u) term.setup() val1, _ = term.evaluate(mode='qp') val1 = val1.ravel() qps = get_physical_qps(omega, integral) coors = qps.get_merged_values() val2 = u.evaluate_at(coors).ravel() self.report('max. difference:', nm.abs(val1 - val2).max()) ok = nm.allclose(val1, val2, rtol=0.0, atol=1e-12) self.report('invariance in qp: %s' % ok) return ok
def test_projection_tri_quad(self): from sfepy.fem.projections import make_l2_projection source = FieldVariable('us', 'unknown', self.field, 1) coors = self.field.get_coor() vals = nm.sin(2.0 * nm.pi * coors[:, 0] * coors[:, 1]) source.data_from_any(vals) name = op.join(self.options.out_dir, 'test_projection_tri_quad_source.vtk') source.save_as_mesh(name) mesh = Mesh.from_file('meshes/2d/square_quad.mesh', prefix_dir=sfepy.data_dir) domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') field = H1NodalVolumeField('bilinear', nm.float64, 'scalar', omega, approx_order=1) target = FieldVariable('ut', 'unknown', field, 1) make_l2_projection(target, source) name = op.join(self.options.out_dir, 'test_projection_tri_quad_target.vtk') target.save_as_mesh(name) bbox = self.field.domain.get_mesh_bounding_box() x = nm.linspace(bbox[0, 0] + 0.001, bbox[1, 0] - 0.001, 20) y = nm.linspace(bbox[0, 1] + 0.001, bbox[1, 1] - 0.001, 20) xx, yy = nm.meshgrid(x, y) test_coors = nm.c_[xx.ravel(), yy.ravel()].copy() vec1 = source.evaluate_at(test_coors) vec2 = target.evaluate_at(test_coors) ok = (nm.abs(vec1 - vec2) < 0.01).all() return ok
def test_invariance_qp(self): from sfepy import data_dir from sfepy.fem import (Mesh, Domain, H1NodalVolumeField, Variables, Integral) from sfepy.terms import Term from sfepy.fem.mappings import get_physical_qps mesh = Mesh('source mesh', data_dir + '/meshes/3d/block.mesh') bbox = mesh.get_bounding_box() dd = bbox[1,:] - bbox[0,:] data = nm.sin(4.0 * nm.pi * mesh.coors[:,0:1] / dd[0]) \ * nm.cos(4.0 * nm.pi * mesh.coors[:,1:2] / dd[1]) variables = { 'u' : ('unknown field', 'scalar_tp', 0), 'v' : ('test field', 'scalar_tp', 'u'), } domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') field = H1NodalVolumeField('scalar_tp', nm.float64, 1, omega, approx_order=1) ff = {field.name : field} vv = Variables.from_conf(transform_variables(variables), ff) u = vv['u'] u.set_from_mesh_vertices(data) integral = Integral('i', order=2) term = Term.new('ev_volume_integrate(u)', integral, omega, u=u) term.setup() val1, _ = term.evaluate(mode='qp') val1 = val1.ravel() qps = get_physical_qps(omega, integral) coors = qps.get_merged_values() val2 = u.evaluate_at(coors).ravel() self.report('max. difference:', nm.abs(val1 - val2).max()) ok = nm.allclose(val1, val2, rtol=0.0, atol=1e-12) self.report('invariance in qp: %s' % ok) return ok
def test_projection_tri_quad(self): from sfepy.fem.projections import make_l2_projection source = FieldVariable('us', 'unknown', self.field, 1) coors = self.field.get_coor() vals = nm.sin(2.0 * nm.pi * coors[:,0] * coors[:,1]) source.data_from_any(vals) name = op.join(self.options.out_dir, 'test_projection_tri_quad_source.vtk') source.save_as_mesh(name) mesh = Mesh.from_file('meshes/2d/square_quad.mesh', prefix_dir=sfepy.data_dir) domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') field = Field('bilinear', nm.float64, 'scalar', omega, space='H1', poly_space_base='lagrange', approx_order=1) target = FieldVariable('ut', 'unknown', field, 1) make_l2_projection(target, source) name = op.join(self.options.out_dir, 'test_projection_tri_quad_target.vtk') target.save_as_mesh(name) bbox = self.field.domain.get_mesh_bounding_box() x = nm.linspace(bbox[0, 0] + 0.001, bbox[1, 0] - 0.001, 20) y = nm.linspace(bbox[0, 1] + 0.001, bbox[1, 1] - 0.001, 20) xx, yy = nm.meshgrid(x, y) test_coors = nm.c_[xx.ravel(), yy.ravel()].copy() vec1 = source.evaluate_at(test_coors) vec2 = target.evaluate_at(test_coors) ok = (nm.abs(vec1 - vec2) < 0.01).all() return ok
def test_projection_tri_quad(self): from sfepy.fem.projections import make_l2_projection source = FieldVariable("us", "unknown", self.field, 1) coors = self.field.get_coor() vals = nm.sin(2.0 * nm.pi * coors[:, 0] * coors[:, 1]) source.data_from_any(vals) name = op.join(self.options.out_dir, "test_projection_tri_quad_source.vtk") source.save_as_mesh(name) mesh = Mesh.from_file("meshes/2d/square_quad.mesh", prefix_dir=sfepy.data_dir) domain = Domain("domain", mesh) omega = domain.create_region("Omega", "all") field = H1NodalVolumeField("bilinear", nm.float64, "scalar", omega, approx_order=1) target = FieldVariable("ut", "unknown", field, 1) make_l2_projection(target, source) name = op.join(self.options.out_dir, "test_projection_tri_quad_target.vtk") target.save_as_mesh(name) bbox = self.field.domain.get_mesh_bounding_box() x = nm.linspace(bbox[0, 0] + 0.001, bbox[1, 0] - 0.001, 20) y = nm.linspace(bbox[0, 1] + 0.001, bbox[1, 1] - 0.001, 20) xx, yy = nm.meshgrid(x, y) test_coors = nm.c_[xx.ravel(), yy.ravel()].copy() vec1 = source.evaluate_at(test_coors) vec2 = target.evaluate_at(test_coors) ok = (nm.abs(vec1 - vec2) < 0.01).all() return ok
from sfepy.fem import (Mesh, Domain, Field, FieldVariable, Material, Integral, Equation, Equations, ProblemDefinition) from sfepy.terms import Term from sfepy.fem.conditions import Conditions, EssentialBC from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.postprocess import Viewer mesh = Mesh.from_file('meshes/2d/square_tri2.mesh') domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < -0.999', 'facet') right = domain.create_region('Right', 'vertices in x > 0.999', 'facet') bottom = domain.create_region('Bottom', 'vertices in y < -0.999', 'facet') top = domain.create_region('Top', 'vertices in y > 0.999', 'facet') domain.save_regions_as_groups('regions.vtk')
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version='%prog') parser.add_option('-s', '--show', action="store_true", dest='show', default=False, help=help['show']) options, args = parser.parse_args() mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh') domain = Domain('domain', mesh) min_x, max_x = domain.get_mesh_bounding_box()[:, 0] eps = 1e-8 * (max_x - min_x) omega = domain.create_region('Omega', 'all') gamma1 = domain.create_region('Gamma1', 'nodes in x < %.10f' % (min_x + eps)) gamma2 = domain.create_region('Gamma2', 'nodes in x > %.10f' % (max_x - eps)) field = H1NodalVolumeField('fu', nm.float64, 'vector', omega, approx_order=2) u = FieldVariable('u', 'unknown', field, mesh.dim) v = FieldVariable('v', 'test', field, mesh.dim, primary_var_name='u') m = Material('m', lam=1.0, mu=1.0) f = Material('f', val=[[0.02], [0.01]]) integral = Integral('i', order=3) t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) fix_u = EssentialBC('fix_u', gamma1, {'u.all': 0.0}) bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift': 0.01}) shift_u = EssentialBC('shift_u', gamma2, {'u.0': bc_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls) pb.save_regions_as_groups('regions') pb.time_update(ebcs=Conditions([fix_u, shift_u])) vec = pb.solve() print nls_status pb.save_state('linear_elasticity.vtk', vec) if options.show: view = Viewer('linear_elasticity.vtk') view(vector_mode='warp_norm', rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
def main(): parser = OptionParser(usage=usage, version='%prog') parser.add_option('-b', '--basis', metavar='name', action='store', dest='basis', default='lagrange', help=help['basis']) parser.add_option('-d', '--derivative', metavar='d', type=int, action='store', dest='derivative', default=0, help=help['derivative']) parser.add_option('-n', '--max-order', metavar='order', type=int, action='store', dest='max_order', default=2, help=help['max_order']) parser.add_option('-g', '--geometry', metavar='name', action='store', dest='geometry', default='2_4', help=help['geometry']) parser.add_option('-m', '--mesh', metavar='mesh', action='store', dest='mesh', default=None, help=help['mesh']) parser.add_option('', '--permutations', metavar='permutations', action='store', dest='permutations', default=None, help=help['permutations']) parser.add_option('', '--dofs', metavar='dofs', action='store', dest='dofs', default=None, help=help['dofs']) parser.add_option('-l', '--lin-options', metavar='options', action='store', dest='lin_options', default='min_level=2,max_level=5,eps=1e-3', help=help['lin_options']) parser.add_option('', '--plot-dofs', action='store_true', dest='plot_dofs', default=False, help=help['plot_dofs']) options, args = parser.parse_args() if len(args) == 1: output_dir = args[0] else: parser.print_help(), return output('polynomial space:', options.basis) output('max. order:', options.max_order) lin = Struct(kind='adaptive', min_level=2, max_level=5, eps=1e-3) for opt in options.lin_options.split(','): key, val = opt.split('=') setattr(lin, key, eval(val)) if options.mesh is None: dim, n_ep = int(options.geometry[0]), int(options.geometry[2]) output('reference element geometry:') output(' dimension: %d, vertices: %d' % (dim, n_ep)) gel = GeometryElement(options.geometry) gps = PolySpace.any_from_args(None, gel, 1, base=options.basis) ps = PolySpace.any_from_args(None, gel, options.max_order, base=options.basis) n_digit, _format = get_print_info(ps.n_nod, fill='0') name_template = os.path.join(output_dir, 'bf_%s.vtk' % _format) for ip in get_dofs(options.dofs, ps.n_nod): output('shape function %d...' % ip) def eval_dofs(iels, rx): if options.derivative == 0: bf = ps.eval_base(rx).squeeze() rvals = bf[None, :, ip:ip+1] else: bfg = ps.eval_base(rx, diff=True) rvals = bfg[None, ..., ip] return rvals def eval_coors(iels, rx): bf = gps.eval_base(rx).squeeze() coors = nm.dot(bf, gel.coors)[None, ...] return coors (level, coors, conn, vdofs, mat_ids) = create_output(eval_dofs, eval_coors, 1, ps, min_level=lin.min_level, max_level=lin.max_level, eps=lin.eps) out = { 'bf' : Struct(name='output_data', mode='vertex', data=vdofs, var_name='bf', dofs=None) } mesh = Mesh.from_data('bf_mesh', coors, None, [conn], [mat_ids], [options.geometry]) name = name_template % ip mesh.write(name, out=out) output('...done (%s)' % name) else: mesh = Mesh.from_file(options.mesh) output('mesh geometry:') output(' dimension: %d, vertices: %d, elements: %d' % (mesh.dim, mesh.n_nod, mesh.n_el)) domain = Domain('domain', mesh) if options.permutations: permutations = [int(ii) for ii in options.permutations.split(',')] output('using connectivity permutations:', permutations) for group in domain.iter_groups(): perms = group.gel.get_conn_permutations()[permutations] offsets = nm.arange(group.shape.n_el) * group.shape.n_ep group.conn[:] = group.conn.take(perms + offsets[:, None]) domain.setup_facets() omega = domain.create_region('Omega', 'all') field = Field.from_args('f', nm.float64, shape=1, region=omega, approx_order=options.max_order, poly_space_base=options.basis) var = FieldVariable('u', 'unknown', field, 1) if options.plot_dofs: import sfepy.postprocess.plot_dofs as pd group = domain.groups[0] ax = pd.plot_mesh(None, mesh.coors, mesh.conns[0], group.gel.edges) ax = pd.plot_global_dofs(ax, field.get_coor(), field.aps[0].econn) ax = pd.plot_local_dofs(ax, field.get_coor(), field.aps[0].econn) pd.plt.show() output('dofs: %d' % var.n_dof) vec = nm.empty(var.n_dof, dtype=var.dtype) n_digit, _format = get_print_info(var.n_dof, fill='0') name_template = os.path.join(output_dir, 'dof_%s.vtk' % _format) for ip in get_dofs(options.dofs, var.n_dof): output('dof %d...' % ip) vec.fill(0.0) vec[ip] = 1.0 var.data_from_any(vec) if options.derivative == 0: out = var.create_output(vec, linearization=lin) else: out = create_expression_output('ev_grad.ie.Elements(u)', 'u', 'f', {'f' : field}, None, Variables([var]), mode='qp', verbose=False, min_level=lin.min_level, max_level=lin.max_level, eps=lin.eps) name = name_template % ip out['u'].mesh.write(name, out=out) output('...done (%s)' % name)
def _gen_common_data(order, gels, report): import sfepy from sfepy.base.base import Struct from sfepy.linalg import combine from sfepy.fem import Mesh, Domain, Field, FieldVariable, Integral from sfepy.fem.global_interp import get_ref_coors integral = Integral('i', order=order) for geom, poly_space_base in combine([['2_4', '3_8'], ['lagrange', 'lobatto']]): report('geometry: %s, base: %s' % (geom, poly_space_base)) mesh0 = Mesh.from_file('meshes/elements/%s_2.mesh' % geom, prefix_dir=sfepy.data_dir) gel = gels[geom] perms = gel.get_conn_permutations() qps, qp_weights = integral.get_qp(gel.surface_facet.name) zz = nm.zeros_like(qps[:, :1]) qps = nm.hstack(([qps] + [zz])) rot = rots[geom] if rot is not None: pass shift = shifts[geom] rcoors = nm.ascontiguousarray(qps + shift[:1, :] - shift[1:, :]) ccoors = nm.ascontiguousarray(qps + shift[:1, :] + shift[1:, :]) for ir, pr in enumerate(perms): for ic, pc in enumerate(perms): report('ir: %d, ic: %d' % (ir, ic)) mesh = mesh0.copy() conn = mesh.conns[0] conn[0, :] = conn[0, pr] conn[1, :] = conn[1, pc] cache = Struct(mesh=mesh) domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') region = domain.create_region('Facet', rsels[geom]) field = Field.from_args('f', nm.float64, shape=1, region=omega, approx_order=order, poly_space_base=poly_space_base) var = FieldVariable('u', 'unknown', field, 1) report('# dofs: %d' % var.n_dof) vec = nm.empty(var.n_dof, dtype=var.dtype) ap = field.aps[0] ps = ap.interp.poly_spaces['v'] dofs = field.get_dofs_in_region_group(region, 0, merge=False) edofs, fdofs = nm.unique(dofs[1]), nm.unique(dofs[2]) rrc, rcells, rstatus = get_ref_coors(field, rcoors, cache=cache) crc, ccells, cstatus = get_ref_coors(field, ccoors, cache=cache) yield (geom, poly_space_base, qp_weights, mesh, ir, ic, ap, ps, rrc, crc, vec, edofs, fdofs)
def main(): parser = OptionParser(usage=usage, version='%prog') parser.add_option('-b', '--basis', metavar='name', action='store', dest='basis', default='lagrange', help=help['basis']) parser.add_option('-n', '--max-order', metavar='order', type=int, action='store', dest='max_order', default=10, help=help['max_order']) parser.add_option('-m', '--matrix', metavar='type', action='store', dest='matrix_type', default='laplace', help=help['matrix_type']) parser.add_option('-g', '--geometry', metavar='name', action='store', dest='geometry', default='2_4', help=help['geometry']) options, args = parser.parse_args() dim, n_ep = int(options.geometry[0]), int(options.geometry[2]) output('reference element geometry:') output(' dimension: %d, vertices: %d' % (dim, n_ep)) n_c = {'laplace': 1, 'elasticity': dim}[options.matrix_type] output('matrix type:', options.matrix_type) output('number of variable components:', n_c) output('polynomial space:', options.basis) output('max. order:', options.max_order) mesh = Mesh.from_file(data_dir + '/meshes/elements/%s_1.mesh' % options.geometry) domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') orders = nm.arange(1, options.max_order + 1, dtype=nm.int) conds = [] order_fix = 0 if options.geometry in ['2_4', '3_8'] else 1 for order in orders: output('order:', order, '...') field = Field.from_args('fu', nm.float64, n_c, omega, approx_order=order, space='H1', poly_space_base=options.basis) to = field.approx_order quad_order = 2 * (max(to - order_fix, 0)) output('quadrature order:', quad_order) integral = Integral('i', order=quad_order) qp, _ = integral.get_qp(options.geometry) output('number of quadrature points:', qp.shape[0]) u = FieldVariable('u', 'unknown', field, n_c) v = FieldVariable('v', 'test', field, n_c, primary_var_name='u') m = Material('m', lam=1.0, mu=1.0) if options.matrix_type == 'laplace': term = Term.new('dw_laplace(m.mu, v, u)', integral, omega, m=m, v=v, u=u) n_zero = 1 else: assert_(options.matrix_type == 'elasticity') term = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, omega, m=m, v=v, u=u) n_zero = (dim + 1) * dim / 2 term.setup() output('assembling...') tt = time.clock() mtx, iels = term.evaluate(mode='weak', diff_var='u') output('...done in %.2f s' % (time.clock() - tt)) mtx = mtx[0][0, 0] try: assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10) except: from sfepy.base.base import debug debug() output('matrix shape:', mtx.shape) eigs = eig(mtx, method='eig.sgscipy', eigenvectors=False) eigs.sort() # Zero 'true' zeros. eigs[:n_zero] = 0.0 ii = nm.where(eigs < 0.0)[0] if len(ii): output('matrix is not positive semi-definite!') ii = nm.where(eigs[n_zero:] < 1e-12)[0] if len(ii): output('matrix has more than %d zero eigenvalues!' % n_zero) output('smallest eigs:\n', eigs[:10]) ii = nm.where(eigs > 0.0)[0] emin, emax = eigs[ii[[0, -1]]] output('min:', emin, 'max:', emax) cond = emax / emin conds.append(cond) output('condition number:', cond) output('...done') plt.figure(1) plt.semilogy(orders, conds) plt.xticks(orders, orders) plt.xlabel('polynomial order') plt.ylabel('condition number') plt.grid() plt.figure(2) plt.loglog(orders, conds) plt.xticks(orders, orders) plt.xlabel('polynomial order') plt.ylabel('condition number') plt.grid() plt.show()
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version='%prog') parser.add_option('-s', '--show', action="store_true", dest='show', default=False, help=help['show']) options, args = parser.parse_args() mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh') domain = Domain('domain', mesh) min_x, max_x = domain.get_mesh_bounding_box()[:,0] eps = 1e-8 * (max_x - min_x) omega = domain.create_region('Omega', 'all') gamma1 = domain.create_region('Gamma1', 'nodes in x < %.10f' % (min_x + eps)) gamma2 = domain.create_region('Gamma2', 'nodes in x > %.10f' % (max_x - eps)) field = Field('fu', nm.float64, 'vector', omega, space='H1', poly_space_base='lagrange', approx_order=2) u = FieldVariable('u', 'unknown', field, mesh.dim) v = FieldVariable('v', 'test', field, mesh.dim, primary_var_name='u') m = Material('m', lam=1.0, mu=1.0) f = Material('f', val=[[0.02], [0.01]]) integral = Integral('i', order=3) t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0}) bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift' : 0.01}) shift_u = EssentialBC('shift_u', gamma2, {'u.0' : bc_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls) pb.save_regions_as_groups('regions') pb.time_update(ebcs=Conditions([fix_u, shift_u])) vec = pb.solve() print nls_status pb.save_state('linear_elasticity.vtk', vec) if options.show: view = Viewer('linear_elasticity.vtk') view(vector_mode='warp_norm', rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
def main(): parser = OptionParser(usage=usage, version='%prog') parser.add_option('-b', '--basis', metavar='name', action='store', dest='basis', default='lagrange', help=help['basis']) parser.add_option('-n', '--max-order', metavar='order', type=int, action='store', dest='max_order', default=10, help=help['max_order']) parser.add_option('-m', '--matrix', metavar='type', action='store', dest='matrix_type', default='laplace', help=help['matrix_type']) parser.add_option('-g', '--geometry', metavar='name', action='store', dest='geometry', default='2_4', help=help['geometry']) options, args = parser.parse_args() dim, n_ep = int(options.geometry[0]), int(options.geometry[2]) output('reference element geometry:') output(' dimension: %d, vertices: %d' % (dim, n_ep)) n_c = {'laplace' : 1, 'elasticity' : dim}[options.matrix_type] output('matrix type:', options.matrix_type) output('number of variable components:', n_c) output('polynomial space:', options.basis) output('max. order:', options.max_order) mesh = Mesh.from_file(data_dir + '/meshes/elements/%s_1.mesh' % options.geometry) domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') orders = nm.arange(1, options.max_order + 1, dtype=nm.int) conds = [] order_fix = 0 if options.geometry in ['2_4', '3_8'] else 1 for order in orders: output('order:', order, '...') field = Field.from_args('fu', nm.float64, n_c, omega, approx_order=order, space='H1', poly_space_base=options.basis) to = field.approx_order quad_order = 2 * (max(to - order_fix, 0)) output('quadrature order:', quad_order) u = FieldVariable('u', 'unknown', field, n_c) v = FieldVariable('v', 'test', field, n_c, primary_var_name='u') m = Material('m', lam=1.0, mu=1.0) integral = Integral('i', order=quad_order) if options.matrix_type == 'laplace': term = Term.new('dw_laplace(m.mu, v, u)', integral, omega, m=m, v=v, u=u) n_zero = 1 else: assert_(options.matrix_type == 'elasticity') term = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, omega, m=m, v=v, u=u) n_zero = (dim + 1) * dim / 2 term.setup() output('assembling...') tt = time.clock() mtx, iels = term.evaluate(mode='weak', diff_var='u') output('...done in %.2f s' % (time.clock() - tt)) mtx = mtx[0][0, 0] try: assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10) except: from sfepy.base.base import debug; debug() output('matrix shape:', mtx.shape) eigs = eig(mtx, method='eig.sgscipy', eigenvectors=False) eigs.sort() # Zero 'true' zeros. eigs[:n_zero] = 0.0 ii = nm.where(eigs < 0.0)[0] if len(ii): output('matrix is not positive semi-definite!') ii = nm.where(eigs[n_zero:] < 1e-12)[0] if len(ii): output('matrix has more than %d zero eigenvalues!' % n_zero) output('smallest eigs:\n', eigs[:10]) ii = nm.where(eigs > 0.0)[0] emin, emax = eigs[ii[[0, -1]]] output('min:', emin, 'max:', emax) cond = emax / emin conds.append(cond) output('condition number:', cond) output('...done') plt.figure(1) plt.semilogy(orders, conds) plt.xticks(orders, orders) plt.xlabel('polynomial order') plt.ylabel('condition number') plt.grid() plt.figure(2) plt.loglog(orders, conds) plt.xticks(orders, orders) plt.xlabel('polynomial order') plt.ylabel('condition number') plt.grid() plt.show()
def save_basis_on_mesh(mesh, options, output_dir, lin, permutations=None, suffix=''): if permutations is not None: mesh = mesh.copy() for ig, conn in enumerate(mesh.conns): gel = GeometryElement(mesh.descs[ig]) perms = gel.get_conn_permutations()[permutations] n_el, n_ep = conn.shape offsets = nm.arange(n_el) * n_ep conn[:] = conn.take(perms + offsets[:, None]) domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') field = Field.from_args('f', nm.float64, shape=1, region=omega, approx_order=options.max_order, poly_space_base=options.basis) var = FieldVariable('u', 'unknown', field, 1) if options.plot_dofs: import sfepy.postprocess.plot_dofs as pd group = domain.groups[0] ax = pd.plot_mesh(None, mesh.coors, mesh.conns[0], group.gel.edges) ax = pd.plot_global_dofs(ax, field.get_coor(), field.aps[0].econn) ax = pd.plot_local_dofs(ax, field.get_coor(), field.aps[0].econn) if options.dofs is not None: ax = pd.plot_nodes(ax, field.get_coor(), field.aps[0].econn, field.aps[0].interp.poly_spaces['v'].nodes, get_dofs(options.dofs, var.n_dof)) pd.plt.show() output('dofs: %d' % var.n_dof) vec = nm.empty(var.n_dof, dtype=var.dtype) n_digit, _format = get_print_info(var.n_dof, fill='0') name_template = os.path.join(output_dir, 'dof_%s%s.vtk' % (_format, suffix)) for ip in get_dofs(options.dofs, var.n_dof): output('dof %d...' % ip) vec.fill(0.0) vec[ip] = 1.0 var.set_data(vec) if options.derivative == 0: out = var.create_output(vec, linearization=lin) else: out = create_expression_output('ev_grad.ie.Elements(u)', 'u', 'f', {'f' : field}, None, Variables([var]), mode='qp', verbose=False, min_level=lin.min_level, max_level=lin.max_level, eps=lin.eps) name = name_template % ip ensure_path(name) out['u'].mesh.write(name, out=out) output('...done (%s)' % name)
def _gen_common_data(orders, gels, report): import sfepy from sfepy.base.base import Struct from sfepy.linalg import combine from sfepy.fem import Mesh, Domain, Field, FieldVariable, Integral from sfepy.fem.global_interp import get_ref_coors bases = ([ii for ii in combine([['2_4', '3_8'], ['lagrange', 'lobatto']])] + [ii for ii in combine([['2_3', '3_4'], ['lagrange']])]) for geom, poly_space_base in bases: report('geometry: %s, base: %s' % (geom, poly_space_base)) order = orders[geom] integral = Integral('i', order=order) aux = '' if geom in ['2_4', '3_8'] else 'z' mesh0 = Mesh.from_file('meshes/elements/%s_2%s.mesh' % (geom, aux), prefix_dir=sfepy.data_dir) gel = gels[geom] perms = gel.get_conn_permutations() qps, qp_weights = integral.get_qp(gel.surface_facet.name) zz = nm.zeros_like(qps[:, :1]) qps = nm.hstack(([qps] + [zz])) shift = shifts[geom] rcoors = nm.ascontiguousarray(qps + shift[:1, :] - shift[1:, :]) ccoors = nm.ascontiguousarray(qps + shift[:1, :] + shift[1:, :]) for ir, pr in enumerate(perms): for ic, pc in enumerate(perms): report('ir: %d, ic: %d' % (ir, ic)) report('pr: %s, pc: %s' % (pr, pc)) mesh = mesh0.copy() conn = mesh.conns[0] conn[0, :] = conn[0, pr] conn[1, :] = conn[1, pc] cache = Struct(mesh=mesh) domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') region = domain.create_region('Facet', rsels[geom], 'facet') field = Field.from_args('f', nm.float64, shape=1, region=omega, approx_order=order, poly_space_base=poly_space_base) var = FieldVariable('u', 'unknown', field, 1) report('# dofs: %d' % var.n_dof) vec = nm.empty(var.n_dof, dtype=var.dtype) ap = field.aps[0] ps = ap.interp.poly_spaces['v'] dofs = field.get_dofs_in_region_group(region, 0, merge=False) edofs, fdofs = nm.unique(dofs[1]), nm.unique(dofs[2]) rrc, rcells, rstatus = get_ref_coors(field, rcoors, cache=cache) crc, ccells, cstatus = get_ref_coors(field, ccoors, cache=cache) assert_((rstatus == 0).all() and (cstatus == 0).all()) yield (geom, poly_space_base, qp_weights, mesh, ir, ic, ap, ps, rrc, rcells[0, 1], crc, ccells[0, 1], vec, edofs, fdofs)
def test_linearization(self): from sfepy.base.base import Struct from sfepy.fem import Mesh, Domain, H1NodalVolumeField from sfepy import data_dir geometries = ['2_3', '2_4', '3_4', '3_8'] approx_orders = [1, 2] funs = [nm.cos, nm.sin, lambda x: x] ok = True for geometry in geometries: name = os.path.join(data_dir, 'meshes/elements/%s_1.mesh' % geometry) mesh = Mesh.from_file(name) domain = Domain('', mesh) domain = domain.refine() domain.mesh.write(self.join('linearizer-%s-0.mesh' % geometry)) omega = domain.create_region('Omega', 'all') for approx_order in approx_orders: for dpn in [1, mesh.dim]: self.report('geometry: %s, approx. order: %d, dpn: %d' % (geometry, approx_order, dpn)) field = H1NodalVolumeField('fu', nm.float64, dpn, omega, approx_order=approx_order) cc = field.get_coor() dofs = nm.zeros((field.n_nod, dpn), dtype=nm.float64) for ic in range(dpn): dofs[:, ic] = funs[ic](3 * (cc[:, 0] * cc[:, 1])) vmesh, vdofs, levels = field.linearize(dofs, min_level=0, max_level=3, eps=1e-2) level = levels[0] if approx_order == 1: _ok = level == 0 else: _ok = level > 0 self.report('max. refinement level: %d: %s' % (level, _ok)) ok = ok and _ok rdofs = nm.zeros((vmesh.n_nod, dpn), dtype=nm.float64) cc = vmesh.coors for ic in range(dpn): rdofs[:, ic] = funs[ic](3 * (cc[:, 0] * cc[:, 1])) _ok = nm.allclose(rdofs, vdofs, rtol=0.0, atol=0.03) self.report('interpolation: %s' % _ok) ok = ok and _ok out = { 'u': Struct(name='output_data', mode='vertex', data=vdofs, var_name='u', dofs=None) } name = self.join('linearizer-%s-%d-%d' % (geometry, approx_order, dpn)) vmesh.write(name + '.mesh') vmesh.write(name + '.vtk', out=out) return ok
def test_linearization(self): from sfepy.base.base import Struct from sfepy.fem import Mesh, Domain, Field from sfepy import data_dir geometries = ['2_3', '2_4', '3_4', '3_8'] approx_orders = [1, 2] funs = [nm.cos, nm.sin, lambda x: x] ok = True for geometry in geometries: name = os.path.join(data_dir, 'meshes/elements/%s_1.mesh' % geometry) mesh = Mesh.from_file(name) domain = Domain('', mesh) domain = domain.refine() domain.mesh.write(self.join('linearizer-%s-0.mesh' % geometry)) omega = domain.create_region('Omega', 'all') for approx_order in approx_orders: for dpn in [1, mesh.dim]: self.report('geometry: %s, approx. order: %d, dpn: %d' % (geometry, approx_order, dpn)) field = Field('fu', nm.float64, dpn, omega, space='H1', poly_space_base='lagrange', approx_order=approx_order) cc = field.get_coor() dofs = nm.zeros((field.n_nod, dpn), dtype=nm.float64) for ic in range(dpn): dofs[:, ic] = funs[ic](3 * (cc[:, 0] * cc[:, 1])) vmesh, vdofs, levels = field.linearize(dofs, min_level=0, max_level=3, eps=1e-2) level = levels[0] if approx_order == 1: _ok = level == 0 else: _ok = level > 0 self.report('max. refinement level: %d: %s' % (level, _ok)) ok = ok and _ok rdofs = nm.zeros((vmesh.n_nod, dpn), dtype=nm.float64) cc = vmesh.coors for ic in range(dpn): rdofs[:, ic] = funs[ic](3 * (cc[:, 0] * cc[:, 1])) _ok = nm.allclose(rdofs, vdofs, rtol=0.0, atol=0.03) self.report('interpolation: %s' % _ok) ok = ok and _ok out = { 'u' : Struct(name='output_data', mode='vertex', data=vdofs, var_name='u', dofs=None) } name = self.join('linearizer-%s-%d-%d' % (geometry, approx_order, dpn)) vmesh.write(name + '.mesh') vmesh.write(name + '.vtk', out=out) return ok
def save_basis_on_mesh(mesh, options, output_dir, lin, permutations=None, suffix=''): if permutations is not None: mesh = mesh.copy() for ig, conn in enumerate(mesh.conns): gel = GeometryElement(mesh.descs[ig]) perms = gel.get_conn_permutations()[permutations] n_el, n_ep = conn.shape offsets = nm.arange(n_el) * n_ep conn[:] = conn.take(perms + offsets[:, None]) domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') field = Field.from_args('f', nm.float64, shape=1, region=omega, approx_order=options.max_order, poly_space_base=options.basis) var = FieldVariable('u', 'unknown', field, 1) if options.plot_dofs: import sfepy.postprocess.plot_dofs as pd group = domain.groups[0] ax = pd.plot_mesh(None, mesh.coors, mesh.conns[0], group.gel.edges) ax = pd.plot_global_dofs(ax, field.get_coor(), field.aps[0].econn) ax = pd.plot_local_dofs(ax, field.get_coor(), field.aps[0].econn) if options.dofs is not None: ax = pd.plot_nodes(ax, field.get_coor(), field.aps[0].econn, field.aps[0].interp.poly_spaces['v'].nodes, get_dofs(options.dofs, var.n_dof)) pd.plt.show() output('dofs: %d' % var.n_dof) vec = nm.empty(var.n_dof, dtype=var.dtype) n_digit, _format = get_print_info(var.n_dof, fill='0') name_template = os.path.join(output_dir, 'dof_%s%s.vtk' % (_format, suffix)) for ip in get_dofs(options.dofs, var.n_dof): output('dof %d...' % ip) vec.fill(0.0) vec[ip] = 1.0 var.set_data(vec) if options.derivative == 0: out = var.create_output(vec, linearization=lin) else: out = create_expression_output('ev_grad.ie.Elements(u)', 'u', 'f', {'f': field}, None, Variables([var]), mode='qp', verbose=False, min_level=lin.min_level, max_level=lin.max_level, eps=lin.eps) name = name_template % ip ensure_path(name) out['u'].mesh.write(name, out=out) output('...done (%s)' % name)
def main(): parser = OptionParser(usage=usage, version="%prog") parser.add_option( "-b", "--basis", metavar="name", action="store", dest="basis", default="lagrange", help=help["basis"] ) parser.add_option( "-n", "--max-order", metavar="order", type=int, action="store", dest="max_order", default=10, help=help["max_order"], ) parser.add_option( "-m", "--matrix", metavar="type", action="store", dest="matrix_type", default="laplace", help=help["matrix_type"], ) parser.add_option( "-g", "--geometry", metavar="name", action="store", dest="geometry", default="2_4", help=help["geometry"] ) options, args = parser.parse_args() dim, n_ep = int(options.geometry[0]), int(options.geometry[2]) output("reference element geometry:") output(" dimension: %d, vertices: %d" % (dim, n_ep)) n_c = {"laplace": 1, "elasticity": dim}[options.matrix_type] output("matrix type:", options.matrix_type) output("number of variable components:", n_c) output("polynomial space:", options.basis) output("max. order:", options.max_order) mesh = Mesh.from_file(data_dir + "/meshes/elements/%s_1.mesh" % options.geometry) domain = Domain("domain", mesh) omega = domain.create_region("Omega", "all") orders = nm.arange(1, options.max_order + 1, dtype=nm.int) conds = [] order_fix = 0 if options.geometry in ["2_4", "3_8"] else 1 for order in orders: output("order:", order, "...") field = Field.from_args( "fu", nm.float64, n_c, omega, approx_order=order, space="H1", poly_space_base=options.basis ) to = field.approx_order quad_order = 2 * (max(to - order_fix, 0)) output("quadrature order:", quad_order) integral = Integral("i", order=quad_order) qp, _ = integral.get_qp(options.geometry) output("number of quadrature points:", qp.shape[0]) u = FieldVariable("u", "unknown", field, n_c) v = FieldVariable("v", "test", field, n_c, primary_var_name="u") m = Material("m", lam=1.0, mu=1.0) if options.matrix_type == "laplace": term = Term.new("dw_laplace(m.mu, v, u)", integral, omega, m=m, v=v, u=u) n_zero = 1 else: assert_(options.matrix_type == "elasticity") term = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u) n_zero = (dim + 1) * dim / 2 term.setup() output("assembling...") tt = time.clock() mtx, iels = term.evaluate(mode="weak", diff_var="u") output("...done in %.2f s" % (time.clock() - tt)) mtx = mtx[0][0, 0] try: assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10) except: from sfepy.base.base import debug debug() output("matrix shape:", mtx.shape) eigs = eig(mtx, method="eig.sgscipy", eigenvectors=False) eigs.sort() # Zero 'true' zeros. eigs[:n_zero] = 0.0 ii = nm.where(eigs < 0.0)[0] if len(ii): output("matrix is not positive semi-definite!") ii = nm.where(eigs[n_zero:] < 1e-12)[0] if len(ii): output("matrix has more than %d zero eigenvalues!" % n_zero) output("smallest eigs:\n", eigs[:10]) ii = nm.where(eigs > 0.0)[0] emin, emax = eigs[ii[[0, -1]]] output("min:", emin, "max:", emax) cond = emax / emin conds.append(cond) output("condition number:", cond) output("...done") plt.figure(1) plt.semilogy(orders, conds) plt.xticks(orders, orders) plt.xlabel("polynomial order") plt.ylabel("condition number") plt.grid() plt.figure(2) plt.loglog(orders, conds) plt.xticks(orders, orders) plt.xlabel("polynomial order") plt.ylabel("condition number") plt.grid() plt.show()
def main(): parser = OptionParser(usage=usage, version='%prog') parser.add_option('-b', '--basis', metavar='name', action='store', dest='basis', default='lagrange', help=help['basis']) parser.add_option('-d', '--derivative', metavar='d', type=int, action='store', dest='derivative', default=0, help=help['derivative']) parser.add_option('-n', '--max-order', metavar='order', type=int, action='store', dest='max_order', default=2, help=help['max_order']) parser.add_option('-g', '--geometry', metavar='name', action='store', dest='geometry', default='2_4', help=help['geometry']) parser.add_option('-m', '--mesh', metavar='mesh', action='store', dest='mesh', default=None, help=help['mesh']) parser.add_option('', '--permutations', metavar='permutations', action='store', dest='permutations', default=None, help=help['permutations']) parser.add_option('', '--dofs', metavar='dofs', action='store', dest='dofs', default=None, help=help['dofs']) parser.add_option('-l', '--lin-options', metavar='options', action='store', dest='lin_options', default='min_level=2,max_level=5,eps=1e-3', help=help['lin_options']) parser.add_option('', '--plot-dofs', action='store_true', dest='plot_dofs', default=False, help=help['plot_dofs']) options, args = parser.parse_args() if len(args) == 1: output_dir = args[0] else: parser.print_help(), return output('polynomial space:', options.basis) output('max. order:', options.max_order) lin = Struct(kind='adaptive', min_level=2, max_level=5, eps=1e-3) for opt in options.lin_options.split(','): key, val = opt.split('=') setattr(lin, key, eval(val)) if options.mesh is None: dim, n_ep = int(options.geometry[0]), int(options.geometry[2]) output('reference element geometry:') output(' dimension: %d, vertices: %d' % (dim, n_ep)) gel = GeometryElement(options.geometry) gps = PolySpace.any_from_args(None, gel, 1, base=options.basis) ps = PolySpace.any_from_args(None, gel, options.max_order, base=options.basis) n_digit, _format = get_print_info(ps.n_nod, fill='0') name_template = os.path.join(output_dir, 'bf_%s.vtk' % _format) for ip in get_dofs(options.dofs, ps.n_nod): output('shape function %d...' % ip) def eval_dofs(iels, rx): if options.derivative == 0: bf = ps.eval_base(rx).squeeze() rvals = bf[None, :, ip:ip + 1] else: bfg = ps.eval_base(rx, diff=True) rvals = bfg[None, ..., ip] return rvals def eval_coors(iels, rx): bf = gps.eval_base(rx).squeeze() coors = nm.dot(bf, gel.coors)[None, ...] return coors (level, coors, conn, vdofs, mat_ids) = create_output(eval_dofs, eval_coors, 1, ps, min_level=lin.min_level, max_level=lin.max_level, eps=lin.eps) out = { 'bf': Struct(name='output_data', mode='vertex', data=vdofs, var_name='bf', dofs=None) } mesh = Mesh.from_data('bf_mesh', coors, None, [conn], [mat_ids], [options.geometry]) name = name_template % ip mesh.write(name, out=out) output('...done (%s)' % name) else: mesh = Mesh.from_file(options.mesh) output('mesh geometry:') output(' dimension: %d, vertices: %d, elements: %d' % (mesh.dim, mesh.n_nod, mesh.n_el)) domain = Domain('domain', mesh) if options.permutations: permutations = [int(ii) for ii in options.permutations.split(',')] output('using connectivity permutations:', permutations) for group in domain.iter_groups(): perms = group.gel.get_conn_permutations()[permutations] offsets = nm.arange(group.shape.n_el) * group.shape.n_ep group.conn[:] = group.conn.take(perms + offsets[:, None]) domain.setup_facets() omega = domain.create_region('Omega', 'all') field = Field.from_args('f', nm.float64, shape=1, region=omega, approx_order=options.max_order, poly_space_base=options.basis) var = FieldVariable('u', 'unknown', field, 1) if options.plot_dofs: import sfepy.postprocess.plot_dofs as pd group = domain.groups[0] ax = pd.plot_mesh(None, mesh.coors, mesh.conns[0], group.gel.edges) ax = pd.plot_global_dofs(ax, field.get_coor(), field.aps[0].econn) ax = pd.plot_local_dofs(ax, field.get_coor(), field.aps[0].econn) if options.dofs is not None: ax = pd.plot_nodes(ax, field.get_coor(), field.aps[0].econn, field.aps[0].interp.poly_spaces['v'].nodes, get_dofs(options.dofs, var.n_dof)) pd.plt.show() output('dofs: %d' % var.n_dof) vec = nm.empty(var.n_dof, dtype=var.dtype) n_digit, _format = get_print_info(var.n_dof, fill='0') name_template = os.path.join(output_dir, 'dof_%s.vtk' % _format) for ip in get_dofs(options.dofs, var.n_dof): output('dof %d...' % ip) vec.fill(0.0) vec[ip] = 1.0 var.set_data(vec) if options.derivative == 0: out = var.create_output(vec, linearization=lin) else: out = create_expression_output('ev_grad.ie.Elements(u)', 'u', 'f', {'f': field}, None, Variables([var]), mode='qp', verbose=False, min_level=lin.min_level, max_level=lin.max_level, eps=lin.eps) name = name_template % ip out['u'].mesh.write(name, out=out) output('...done (%s)' % name)