예제 #1
0
def ensemble_demo():
    utc = Calendar()
    t_start = utc.time(YMDhms(2011, 9, 1))
    t_fc_ens_start = utc.time(YMDhms(2015, 7, 26))
    disp_start = utc.time(YMDhms(2015, 7, 20))
    dt = deltahours(1)
    n_obs = int(round((t_fc_ens_start - t_start) / dt))
    n_fc_ens = 30
    n_disp = int(round(t_fc_ens_start - disp_start) / dt) + n_fc_ens + 24 * 7

    obs_time_axis = Timeaxis(t_start, dt, n_obs + 1)
    fc_ens_time_axis = Timeaxis(t_fc_ens_start, dt, n_fc_ens)
    display_time_axis = Timeaxis(disp_start, dt, n_disp)

    q_obs_m3s_ts = observed_tistel_discharge(obs_time_axis.total_period())
    ptgsk = create_tistel_simulator(
        PTGSKOptModel, tistel.geo_ts_repository(tistel.grid_spec.epsg()))
    initial_state = burn_in_state(ptgsk, t_start, utc.time(YMDhms(2012, 9, 1)),
                                  q_obs_m3s_ts)

    ptgsk.run(obs_time_axis, initial_state)
    current_state = adjust_simulator_state(ptgsk, t_fc_ens_start, q_obs_m3s_ts)
    q_obs_m3s_ts = observed_tistel_discharge(display_time_axis.total_period())
    ens_repos = tistel.arome_ensemble_repository(tistel.grid_spec)
    ptgsk_fc_ens = create_tistel_simulator(PTGSKModel, ens_repos)
    sims = ptgsk_fc_ens.create_ensembles(fc_ens_time_axis, t_fc_ens_start,
                                         current_state)
    for sim in sims:
        sim.simulate()
    plt.hold(1)
    percentiles = [10, 25, 50, 75, 90]
    plot_percentiles(sims, percentiles, obs=q_obs_m3s_ts)
    plt.interactive(1)
    plt.show()
예제 #2
0
파일: tistel_demo.py 프로젝트: yisak/shyft
def ensemble_demo():
    utc = Calendar()
    t_start = utc.time(YMDhms(2011, 9, 1))
    t_fc_ens_start = utc.time(YMDhms(2015, 7, 26))
    disp_start = utc.time(YMDhms(2015, 7, 20))
    dt = deltahours(1)
    n_obs = int(round((t_fc_ens_start - t_start)/dt))
    n_fc_ens = 30
    n_disp = int(round(t_fc_ens_start - disp_start)/dt) + n_fc_ens + 24*7

    obs_time_axis = Timeaxis(t_start, dt, n_obs + 1)
    fc_ens_time_axis = Timeaxis(t_fc_ens_start, dt, n_fc_ens)
    display_time_axis = Timeaxis(disp_start, dt, n_disp)

    q_obs_m3s_ts = observed_tistel_discharge(obs_time_axis.total_period())
    ptgsk = create_tistel_simulator(PTGSKOptModel, tistel.geo_ts_repository(tistel.grid_spec.epsg()))
    initial_state = burn_in_state(ptgsk, t_start, utc.time(YMDhms(2012, 9, 1)), q_obs_m3s_ts)

    ptgsk.run(obs_time_axis, initial_state)
    current_state = adjust_simulator_state(ptgsk, t_fc_ens_start, q_obs_m3s_ts)
    q_obs_m3s_ts = observed_tistel_discharge(display_time_axis.total_period())
    ens_repos = tistel.arome_ensemble_repository(tistel.grid_spec)
    ptgsk_fc_ens = create_tistel_simulator(PTGSKModel, ens_repos)
    sims = ptgsk_fc_ens.create_ensembles(fc_ens_time_axis, t_fc_ens_start, current_state)
    for sim in sims:
        sim.simulate()
    plt.hold(1)
    percentiles = [10, 25, 50, 75, 90]
    plot_percentiles(sims, percentiles, obs=q_obs_m3s_ts)
    #plt.interactive(1)
    plt.show()
예제 #3
0
파일: tistel_demo.py 프로젝트: yisak/shyft
def continuous_calibration():
    utc = Calendar()
    t_start = utc.time(YMDhms(2011, 9, 1))
    t_fc_start = utc.time(YMDhms(2015, 10, 1))
    dt = deltahours(1)
    n_obs = int(round((t_fc_start - t_start)/dt))
    obs_time_axis = Timeaxis(t_start, dt, n_obs + 1)
    q_obs_m3s_ts = observed_tistel_discharge(obs_time_axis.total_period())

    ptgsk = create_tistel_simulator(PTGSKOptModel, tistel.geo_ts_repository(tistel.grid_spec.epsg()))
    initial_state = burn_in_state(ptgsk, t_start, utc.time(YMDhms(2012, 9, 1)), q_obs_m3s_ts)

    num_opt_days = 30
    # Step forward num_opt_days days and store the state for each day:
    recal_start = t_start + deltahours(num_opt_days*24)
    t = t_start
    state = initial_state
    opt_states = {t: state}
    while t < recal_start:
        ptgsk.run(Timeaxis(t, dt, 24), state)
        t += deltahours(24)
        state = ptgsk.reg_model_state
        opt_states[t] = state

    recal_stop = utc.time(YMDhms(2011, 10, 30))
    recal_stop = utc.time(YMDhms(2012, 5, 30))
    curr_time = recal_start
    q_obs_avg = TsTransform().to_average(t_start, dt, n_obs + 1, q_obs_m3s_ts)
    target_spec = TargetSpecificationPts(q_obs_avg, IntVector([0]), 1.0, KLING_GUPTA)
    target_spec_vec = TargetSpecificationVector([target_spec])
    i = 0
    times = []
    values = []
    p, p_min, p_max = construct_calibration_parameters(ptgsk)
    while curr_time < recal_stop:
        print(i)
        i += 1
        opt_start = curr_time - deltahours(24*num_opt_days)
        opt_state = opt_states.pop(opt_start)
        p = ptgsk.region_model.get_region_parameter()
        p_opt = ptgsk.optimize(Timeaxis(opt_start, dt, 24*num_opt_days), opt_state, target_spec_vec,
                               p, p_min, p_max, tr_stop=1.0e-5)
        ptgsk.region_model.set_region_parameter(p_opt)
        corr_state = adjust_simulator_state(ptgsk, curr_time, q_obs_m3s_ts)
        ptgsk.run(Timeaxis(curr_time, dt, 24), corr_state)
        curr_time += deltahours(24)
        opt_states[curr_time] = ptgsk.reg_model_state
        discharge = ptgsk.region_model.statistics.discharge([0])
        times.extend(discharge.time(i) for i in range(discharge.size()))
        values.extend(list(np.array(discharge.v)))
    plt.plot(utc_to_greg(times), values)
    plot_results(None, q_obs=observed_tistel_discharge(UtcPeriod(recal_start, recal_stop)))
    set_calendar_formatter(Calendar())
    #plt.interactive(1)
    plt.title("Continuously recalibrated discharge vs observed")
    plt.xlabel("Time in UTC")
    plt.ylabel(r"Discharge in $\mathbf{m^3s^{-1}}$", verticalalignment="top", rotation="horizontal")
    plt.gca().yaxis.set_label_coords(0, 1.1)
예제 #4
0
def continuous_calibration():
    utc = Calendar()
    t_start = utc.time(YMDhms(2011, 9, 1))
    t_fc_start = utc.time(YMDhms(2015, 10, 1))
    dt = deltahours(1)
    n_obs = int(round((t_fc_start - t_start)/dt))
    obs_time_axis = TimeAxisFixedDeltaT(t_start, dt, n_obs + 1)
    q_obs_m3s_ts = observed_tistel_discharge(obs_time_axis.total_period())

    ptgsk = create_tistel_simulator(PTGSKOptModel, tistel.geo_ts_repository(tistel.grid_spec.epsg()))
    initial_state = burn_in_state(ptgsk, t_start, utc.time(YMDhms(2012, 9, 1)), q_obs_m3s_ts)

    num_opt_days = 30
    # Step forward num_opt_days days and store the state for each day:
    recal_start = t_start + deltahours(num_opt_days*24)
    t = t_start
    state = initial_state
    opt_states = {t: state}
    while t < recal_start:
        ptgsk.run(TimeAxisFixedDeltaT(t, dt, 24), state)
        t += deltahours(24)
        state = ptgsk.reg_model_state
        opt_states[t] = state

    recal_stop = utc.time(YMDhms(2011, 10, 30))
    recal_stop = utc.time(YMDhms(2012, 5, 30))
    curr_time = recal_start
    q_obs_avg = TsTransform().to_average(t_start, dt, n_obs + 1, q_obs_m3s_ts)
    target_spec = TargetSpecificationPts(q_obs_avg, IntVector([0]), 1.0, KLING_GUPTA)
    target_spec_vec = TargetSpecificationVector([target_spec])
    i = 0
    times = []
    values = []
    p, p_min, p_max = construct_calibration_parameters(ptgsk)
    while curr_time < recal_stop:
        print(i)
        i += 1
        opt_start = curr_time - deltahours(24*num_opt_days)
        opt_state = opt_states.pop(opt_start)
        p = ptgsk.region_model.get_region_parameter()
        p_opt = ptgsk.optimize(TimeAxisFixedDeltaT(opt_start, dt, 24*num_opt_days), opt_state, target_spec_vec,
                               p, p_min, p_max, tr_stop=1.0e-5)
        ptgsk.region_model.set_region_parameter(p_opt)
        corr_state = adjust_simulator_state(ptgsk, curr_time, q_obs_m3s_ts)
        ptgsk.run(TimeAxisFixedDeltaT(curr_time, dt, 24), corr_state)
        curr_time += deltahours(24)
        opt_states[curr_time] = ptgsk.reg_model_state
        discharge = ptgsk.region_model.statistics.discharge([0])
        times.extend(discharge.time(i) for i in range(discharge.size()))
        values.extend(list(np.array(discharge.v)))
    plt.plot(utc_to_greg(times), values)
    plot_results(None, q_obs=observed_tistel_discharge(UtcPeriod(recal_start, recal_stop)))
    set_calendar_formatter(Calendar())
    #plt.interactive(1)
    plt.title("Continuously recalibrated discharge vs observed")
    plt.xlabel("Time in UTC")
    plt.ylabel(r"Discharge in $\mathbf{m^3s^{-1}}$", verticalalignment="top", rotation="horizontal")
    plt.gca().yaxis.set_label_coords(0, 1.1)
예제 #5
0
def forecast_demo():
    """Simple forecast demo using arome data from met.no. Initial state
    is bootstrapped by simulating one hydrological year (starting
    Sept 1. 2011), and then calculating the state August 31. 2012. This
    state is then used as initial state for simulating Sept 1, 2011,
    after scaling with observed discharge. The validity of this approach
    is limited by the temporal variation of the spatial distribution of
    the discharge state, q, in the Kirchner method. The model is then
    stepped forward until Oct 1, 2015, and then used to compute the
    discharge for 65 hours using Arome data. At last, the results
    are plotted as simple timeseries.

    """
    utc = Calendar()
    t_start = utc.time(YMDhms(2011, 9, 1))
    t_fc_start = utc.time(YMDhms(2015, 10, 1))
    dt = deltahours(1)
    n_obs = int(round((t_fc_start - t_start) / dt))
    n_fc = 65
    obs_time_axis = Timeaxis(t_start, dt, n_obs)
    fc_time_axis = Timeaxis(t_fc_start, dt, n_fc)
    total_time_axis = Timeaxis(t_start, dt, n_obs + n_fc)
    q_obs_m3s_ts = observed_tistel_discharge(total_time_axis.total_period())
    ptgsk = create_tistel_simulator(
        PTGSKOptModel, tistel.geo_ts_repository(tistel.grid_spec.epsg()))
    initial_state = burn_in_state(ptgsk, t_start, utc.time(YMDhms(2012, 9, 1)),
                                  q_obs_m3s_ts)
    ptgsk.run(obs_time_axis, initial_state)
    plot_results(ptgsk, q_obs_m3s_ts)

    current_state = adjust_simulator_state(ptgsk, t_fc_start, q_obs_m3s_ts)

    ptgsk_fc = create_tistel_simulator(
        PTGSKModel, tistel.arome_repository(tistel.grid_spec, t_fc_start))
    ptgsk_fc.run(fc_time_axis, current_state)
    plt.figure()
    q_obs_m3s_ts = observed_tistel_discharge(fc_time_axis.total_period())
    plot_results(ptgsk_fc, q_obs_m3s_ts)
    plt.interactive(1)
    plt.show()
예제 #6
0
파일: tistel_demo.py 프로젝트: yisak/shyft
def forecast_demo():
    """Simple forecast demo using arome data from met.no. Initial state
    is bootstrapped by simulating one hydrological year (starting
    Sept 1. 2011), and then calculating the state August 31. 2012. This
    state is then used as initial state for simulating Sept 1, 2011,
    after scaling with observed discharge. The validity of this approach
    is limited by the temporal variation of the spatial distribution of
    the discharge state, q, in the Kirchner method. The model is then
    stepped forward until Oct 1, 2015, and then used to compute the
    discharge for 65 hours using Arome data. At last, the results
    are plotted as simple timeseries.

    """
    utc = Calendar()
    t_start = utc.time(YMDhms(2011, 9, 1))
    t_fc_start = utc.time(YMDhms(2015, 10, 1))
    dt = deltahours(1)
    n_obs = int(round((t_fc_start - t_start)/dt))
    n_fc = 65
    obs_time_axis = Timeaxis(t_start, dt, n_obs)
    fc_time_axis = Timeaxis(t_fc_start, dt, n_fc)
    total_time_axis = Timeaxis(t_start, dt, n_obs + n_fc)
    q_obs_m3s_ts = observed_tistel_discharge(total_time_axis.total_period())
    ptgsk = create_tistel_simulator(PTGSKOptModel, tistel.geo_ts_repository(tistel.grid_spec.epsg()))
    initial_state = burn_in_state(ptgsk, t_start, utc.time(YMDhms(2012, 9, 1)), q_obs_m3s_ts)
    ptgsk.run(obs_time_axis, initial_state)
    plot_results(ptgsk, q_obs_m3s_ts)

    current_state = adjust_simulator_state(ptgsk, t_fc_start, q_obs_m3s_ts)

    ptgsk_fc = create_tistel_simulator(PTGSKModel, tistel.arome_repository(tistel.grid_spec, t_fc_start))
    ptgsk_fc.run(fc_time_axis, current_state)
    plt.figure()
    q_obs_m3s_ts = observed_tistel_discharge(fc_time_axis.total_period())
    plot_results(ptgsk_fc, q_obs_m3s_ts)
    #plt.interactive(1)
    plt.show()