def updateImage(): destDepth = cv2.CV_32F; # should be higher than source depth to avoid overflow imgCopy = cv2.Sobel(img, ddepth=destDepth, dx=cvparam_dict['dx'].value, dy=cvparam_dict['dy'].value, ksize=cvparam_dict['kernelSize'].value, scale=cvparam_dict['scale'].value, delta=cvparam_dict['delta'].value) cvparams.annotateImageWithParams(cvparam_dict, imgCopy) cv2.imshow('results', imgCopy)
def updateImage(): imgCopy = cv2.GaussianBlur(img, (cvparam_dict['kernelWidth'].value, cvparam_dict['kernelHeight'].value), cvparam_dict['sigmaY'].value) cvparams.annotateImageWithParams(cvparam_dict, imgCopy) cv2.imshow('results', imgCopy)
def updateImage(): d = cvparam_dict['filterSize'].value sigmaColor = cvparam_dict['colorKernelSize'].value sigmaSpace = cvparam_dict['spaceKernelSize'].value imgCopy = cv2.bilateralFilter(img, d=d, sigmaColor=sigmaColor, sigmaSpace=sigmaSpace) cvparams.annotateImageWithParams(cvparam_dict, imgCopy) cv2.imshow('results', imgCopy)
def updateImage(): copy = img.copy() squares = find_contours(copy) cv2.drawContours(copy, squares, -1, (0, 255, 0), 1 ) cvparams.annotateImageWithParams(cvparam_dict, copy) cv2.imshow('results', copy)
def updateImage(): copy = img.copy() squares = find_contours(copy) cv2.drawContours(copy, squares, -1, (0, 255, 0), 1) cvparams.annotateImageWithParams(cvparam_dict, copy) cv2.imshow('results', copy)
def updateImage(): edges = cv2.Canny(gray, cvparam_dict['threshold1'].value, cvparam_dict['threshold2'].value, apertureSize=cvparam_dict['aperture'].value) imag = img.copy() imag /= 2 imag[edges != 0] = (0, 255, 0) cvparams.annotateImageWithParams(cvparam_dict, imag) cv2.imshow('results', imag)
def updateImage(): theta = np.pi / 180 rho = 1 threshold = cvparam_dict["threshold"].value minLength = cvparam_dict["minLength"].value maxGapLength = cvparam_dict["maxGapLength"].value lines = cv2.HoughLinesP(edges, rho, theta, threshold=threshold, minLineLength=minLength, maxLineGap=maxGapLength) imag = img.copy() for x1, y1, x2, y2 in lines[0]: cv2.line(imag, (x1, y1), (x2, y2), (0, 255, 0), 2) cvparams.annotateImageWithParams(cvparam_dict, imag) cv2.imshow("results", imag)
def updateImage(): theta = np.pi/180 rho = 1 threshold = cvparam_dict['threshold'].value minLength = cvparam_dict['minLength'].value maxGapLength = cvparam_dict['maxGapLength'].value lines = cv2.HoughLinesP(edges, rho, theta, threshold=threshold, minLineLength=minLength, maxLineGap=maxGapLength) imag = img.copy() for x1,y1,x2,y2 in lines[0]: cv2.line(imag,(x1,y1),(x2,y2),(0,255,0),2) cvparams.annotateImageWithParams(cvparam_dict, imag) cv2.imshow('results', imag)
def updateImage(): destDepth = cv2.CV_32F # should be higher than source depth to avoid overflow imgCopy = cv2.Sobel(img, ddepth=destDepth, dx=cvparam_dict['dx'].value, dy=cvparam_dict['dy'].value, ksize=cvparam_dict['kernelSize'].value, scale=cvparam_dict['scale'].value, delta=cvparam_dict['delta'].value) cvparams.annotateImageWithParams(cvparam_dict, imgCopy) cv2.imshow('results', imgCopy)
def updateImage(): w = cvparam_dict['kernelSize'].value imgCopy = cv2.medianBlur(img, w) cvparams.annotateImageWithParams(cvparam_dict, imgCopy) cv2.imshow('results', imgCopy)