def test_doubleMODELcompression_WITH_memory(self): params = SGDDoubleModelCompressionWithMem().define( n_dimensions=DIM, nb_devices=1, quantization_param=10) params.learning_rate = 0.5 workers = [Worker(0, params)] workers[0].set_data(x, y) workers[0].cost_model.L = workers[0].cost_model.local_L update = ArtemisUpdate(params, workers) artificial_l = ones_tensor.clone().detach() update.l = artificial_l.clone().detach() new_w = update.compute(w, 2, 2) # Check that gradients have been updated. self.assertFalse(torch.equal(update.g, zero_tensor)) self.assertFalse(torch.equal(update.v, zero_tensor)) self.assertFalse(torch.equal(update.h, zero_tensor)) # Check that l has been updated. self.assertFalse(torch.equal(update.l, artificial_l)) # Check that correct value has been compressed self.assertTrue( torch.equal(update.value_to_compress, new_w - artificial_l))
def test_doubleGRADIENTcompression_WITH_additional_memory(self): params = DoreVariant().define(n_dimensions=DIM, nb_devices=1, quantization_param=10) params.learning_rate = 0.5 workers = [Worker(0, params)] workers[0].set_data(x, y) workers[0].cost_model.L = workers[0].cost_model.local_L update = ArtemisUpdate(params, workers) artificial_l = ones_tensor.clone().detach() # We artificially set different memory to check that it has impact on update computation. update.l = artificial_l.clone().detach() update.compute(w, 2, 2) # Check that gradients have been updated. self.assertFalse(torch.equal(update.g, zero_tensor)) self.assertFalse(torch.equal(update.v, zero_tensor)) self.assertFalse(torch.equal(update.h, zero_tensor)) # Check that l has been updated. self.assertFalse(torch.equal(update.l, artificial_l)) # Check that correct value has been compressed self.assertTrue( torch.equal(update.value_to_compress, update.g - artificial_l))