def test_build_randomized_omega(self): artemis_update = ArtemisUpdate(self.params, self.workers) artemis_update.workers_sub_set = self.workers artemis_update.value_to_compress = torch.FloatTensor( [i for i in range(0, 100, 10)]) # We initilize omega_k with two values (as if we are at iteration 2) artemis_update.omega_k = [[ torch.FloatTensor([i for i in range(0, 100, 10)]), torch.FloatTensor([i for i in range(10)]) ], [ torch.FloatTensor( [i for i in range(0, 20, 2)]), torch.FloatTensor([i for i in range(10)]) ]] nb_try = 1 # We want to check that we have two different quantization of the value to compress. # But in quantization there is some randomness, and thus vectors can some time be identical. # We carry out five try, it after that there are still equal we consider that it is uncorrect. artemis_update.build_randomized_omega(self.cost_models) self.assertEqual( len(artemis_update.omega), 2, "The number of compressed value kept on central server must be equal to 2." ) while (nb_try < 5 and torch.all(artemis_update.omega[0].eq( artemis_update.omega[1]))): artemis_update.build_randomized_omega(self.cost_models) nb_try += 1 self.assertTrue( nb_try < 5, "After 5 try, the two different quantizations are still identical." ) self.assertTrue(len(artemis_update.omega_k) == 3)
def test_send_back_global_informations_and_update(self): artemis_update = ArtemisUpdate(self.params, self.workers) self.workers[0].idx_last_update = 1 self.workers[1].idx_last_update = 1 artemis_update.workers_sub_set = [ (self.workers[i], self.cost_models[i]) for i in range(self.params.nb_devices) ] artemis_update.omega_k = [[ torch.FloatTensor([0, 50]), torch.FloatTensor([0, 10]) ], [torch.FloatTensor([2, 4]), torch.FloatTensor([10, 20])]] nb_try = 1 artemis_update.step = 1 / 10 artemis_update.send_back_global_informations_and_update( self.cost_models) while (nb_try < 5 and torch.all( artemis_update.workers[0].local_update.model_param.eq( artemis_update.workers[1].local_update.model_param))): self.workers[0].idx_last_update = 1 self.workers[1].idx_last_update = 1 artemis_update.send_back_global_informations_and_update( self.cost_models) nb_try += 1 self.assertFalse( torch.all(artemis_update.workers[0].local_update.model_param.eq( artemis_update.workers[1].local_update.model_param)), "The models on workers are expected to be different.") self.assertTrue( self.workers[0].idx_last_update == 2 and self.workers[1].idx_last_update == 2, "Index of last participation of each worker should be updated to 2" )