def main(): logger.info("Start Training Pipeline") augmented = True if augmented: if not os.path.exists( os.path.join(METADATA_DIR_AUGMENTED_PROCESSED, 'data.pkl')): augment.main() # Read Data dataset = pd.read_pickle( os.path.join(METADATA_DIR_AUGMENTED_PROCESSED, 'data.pkl')) else: # Generate MetaData if not generated yet if not os.path.exists(os.path.join(METADATA_DIR_PROCESSED, 'data.pkl')): generate.run() dataset = pd.read_pickle( os.path.join(METADATA_DIR_PROCESSED, 'data.pkl')) logger.info(f"Number of samples: {len(dataset)}") most_shape = get_most_shape(dataset) train_data, test_data = train_test_split(dataset, augmented=augmented, split_ratio=0.65) X_train, y_train = features_target_split(train_data) X_test, y_test = features_target_split(test_data) # Reshape for CNN input X_train, X_test = reshape_feature_CNN(X_train), reshape_feature_CNN(X_test) # Preserve y_test values y_test_values = y_test.copy() # One-Hot encoding for classes y_train, y_test = one_hot_encode(y_train), one_hot_encode(y_test) # Instance of CNN model cnn = CNN(most_shape) logger.info(str(cnn)) cnn.train(X_train, y_train, X_test, y_test) cnn.evaluate(X_train, y_train, X_test, y_test) predictions = cnn.model.predict_classes(X_test) conf_matrix = confusion_matrix(y_test_values, predictions, labels=range(10)) logger.info('Confusion Matrix for classes {}:\n{}'.format( CLASSES, conf_matrix)) cnn.save_model()
if not os.path.exists(os.path.join(PROCESSED_METADATA_DIR, 'data.pkl')): run() dataset = pd.read_pickle( os.path.join(PROCESSED_METADATA_DIR, 'data.pkl')) print(f"Number of samples: {len(dataset)}") most_shape = get_most_shape(dataset) train_data, test_data = train_test_split(dataset, augmented=False, split_ratio=0.65) X_train, y_train = features_target_split(train_data) X_test, y_test = features_target_split(test_data) # Reshape for CNN input X_train, X_test = reshape_feature_CNN(X_train), reshape_feature_CNN(X_test) # Preserve y_test values y_test_values = y_test.copy() # One-Hot encoding for classes y_train, y_test = one_hot_encode(y_train), one_hot_encode(y_test) # Instance of CNN model cnn = CNN(most_shape) print(str(cnn)) cnn.train(X_train, y_train, X_test, y_test) cnn.evaluate(X_train, y_train, X_test, y_test) predictions = cnn.model.predict_classes(X_test) conf_matrix = confusion_matrix(y_test_values, predictions, labels=range(10)) print('Confusion Matrix for classes {}:\n{}'.format(CLASSES, conf_matrix)) cnn.save_model()