def main(): """Download and serialize training data.""" args = create_parser().parse_args() naip_state, naip_year = args.naip_path download_and_serialize( args.number_of_naips, args.randomize_naips, naip_state, naip_year, args.extract_type, args.bands, args.tile_size, args.pixels_to_fatten_roads, args.label_data_files, args.tile_overlap)
def main(): """Download and serialize training data.""" args = create_parser().parse_args() naip_state, naip_year = args.naip_path download_and_serialize(args.number_of_naips, args.randomize_naips, naip_state, naip_year, args.extract_type, args.bands, args.tile_size, args.pixels_to_fatten_roads, args.label_data_files, args.tile_overlap)
def main(): """Analyze each state and publish results to deeposm.org.""" naip_year = 2013 naip_states = {'de': ['http://download.geofabrik.de/north-america/us/delaware-latest.osm.pbf'], 'ia': ['http://download.geofabrik.de/north-america/us/iowa-latest.osm.pbf'], 'me': ['http://download.geofabrik.de/north-america/us/maine-latest.osm.pbf'] } number_of_naips = 10 extract_type = 'highway' bands = [1, 1, 1, 1] tile_size = 64 pixels_to_fatten_roads = 3 tile_overlap = 1 neural_net = 'two_layer_relu_conv' number_of_epochs = 10 randomize_naips = False for state in naip_states: filenames = naip_states[state] raster_data_paths = download_and_serialize(number_of_naips, randomize_naips, state, naip_year, extract_type, bands, tile_size, pixels_to_fatten_roads, filenames, tile_overlap) model = train_on_cached_data(neural_net, number_of_epochs) with open(CACHE_PATH + METADATA_PATH, 'r') as infile: training_info = pickle.load(infile) post_findings_to_s3(raster_data_paths, model, training_info, training_info['bands'], False) requests.get('http://www.deeposm.org/refresh_findings/')
def main(): """Analyze each state and publish results to deeposm.org.""" naip_year = 2013 naip_states = { 'de': [ 'http://download.geofabrik.de/north-america/us/delaware-latest.osm.pbf' ], 'ia': ['http://download.geofabrik.de/north-america/us/iowa-latest.osm.pbf'], 'me': ['http://download.geofabrik.de/north-america/us/maine-latest.osm.pbf'] } number_of_naips = 175 extract_type = 'highway' bands = [1, 1, 1, 1] tile_size = 64 pixels_to_fatten_roads = 3 tile_overlap = 1 naip_extent = None # WMIV 3/31/17 neural_net = 'two_layer_relu_conv' number_of_epochs = 10 randomize_naips = False for state in naip_states: filenames = naip_states[state] raster_data_paths = download_and_serialize( number_of_naips, randomize_naips, state, naip_year, naip_extent, extract_type, bands, tile_size, pixels_to_fatten_roads, filenames, tile_overlap) model = train_on_cached_data(neural_net, number_of_epochs) with open(METADATA_FILE, 'r') as infile: training_info = pickle.load(infile) post_findings_to_s3(raster_data_paths, model, training_info, training_info['bands'], False) requests.get('http://www.deeposm.org/refresh_findings/')