def __init__(self, store=None, data=None, train_index=None, prep_index=None): """ **Args** store: An instance of `store.Store` or a path. If a path Ramp will default to an `HDFPickleStore` at that path if PyTables is installed, a `PickleStore` otherwise. Defaults to MemoryStore. data: a pandas DataFrame. If all data has been precomputed this may not be required. train_index: a pandas Index specifying the data instances to be used in training. Stored results will be cached against this. If not provided, the entire index of `data` will be used. prep_index: a pandas Index specifying the data instances to be used in prepping ("x" values). Stored results will be cached against this. If not provided, the entire index of `data` will be used. """ if store is None: self.store = MemoryStore() else: self.store = store if isinstance(store, Store) else default_store(store) self.data = data self.train_index = train_index if train_index is not None else self.data.index if self.data is not None else None self.prep_index = prep_index if prep_index is not None else self.data.index if self.data is not None else None
def __init__(self, store=None, data=None, train_index=None, prep_index=None, train_once=False): """ Parameters: ----------- store: string or ramp.store.Store object, default None An instance of `ramp.store.Store` or a path. If a path, Ramp will default to an `HDFPickleStore` at that path if PyTables is installed, a `PickleStore` otherwise. Defaults to MemoryStore. data: Pandas DataFrame, default None Dataframe of data. If all data has been precomputed this may not be required. train_index: Pandas DataFrame Index, default None Pandas Index specifying the data instances to be used in training. Stored results will be cached against this.If not provided, the entire index of the 'data' parameter will be used. prep_index: Pandas DataFrame Index, default None Pandas Index specifying the data instances to be used in prepping ("x" values). Stored results will be cached against this. If not provided, the entire index of `data` keyword arg will be used. train_once: boolean If True, train and predict indexes will not be used as part of key hashes, meaning the values from the first run with this context will be stored permanently. """ if store is None: self.store = MemoryStore() else: self.store = (store if isinstance(store, Store) else default_store(store)) self.data = data if train_index is not None: self.train_index = train_index elif self.data is not None: self.train_index = self.data.index else: self.train_index = None if prep_index is not None: self.prep_index = prep_index elif self.data is not None: self.prep_index = self.data.index else: self.prep_index = None self.train_once = train_once
def __init__(self, store, data=None, train_index=None, prep_index=None): """ **Args** store: An instance of `store.Store` or a path. If a path Ramp will default to an `HDFPickleStore` at that path if PyTables is installed, a `PickleStore` otherwise. data: a pandas DataFrame. If all data has been precomputed this may not be required. train_index: a pandas Index specifying the data instances to be used in training. Stored results will be cached against this. If not provided, the entire index of `data` will be used. prep_index: a pandas Index specifying the data instances to be used in prepping ("x" values). Stored results will be cached against this. If not provided, the entire index of `data` will be used. """ self.store = store if isinstance(store, Store) else default_store(store) self.data = data self.train_index = train_index if train_index is not None else self.data.index if self.data is not None else None self.prep_index = prep_index if prep_index is not None else self.data.index if self.data is not None else None