def _orthonormal_basis(self, ptsord): p, q = self._dims a, b = 2*(1 + p)/(1 - q) - 1, q # Construct an orthonormal basis within a standard triangle db = [] for i in xrange(ptsord): tmp = sy.sqrt(2)*sy.jacobi_normalized(i, 0, 0, a)*(1 - b)**i tmp = tmp.ratsimp() for j in xrange(ptsord - i): poly = sy.expand(tmp*sy.jacobi_normalized(j, 2*i + 1, 0, b)) db.append(poly.evalf(mp.dps)) return db
def callback(q, v=0, u = 0, w=0, kind = 0): ans = '' if kind == 1: ans = str(sp.gamma(v)) elif kind == 2: ans = str(sp.gamma(u) * sp.gamma(v) / sp.gamma(u + v)) elif kind == 3: ans = str(functions.Legendre_Polynomials(v)) elif kind == 4: ans = str(sp.assoc_legendre(v, u, x)) elif kind == 5: ans = str(functions.bessel_function_1st(v)) elif kind == 6: ans = str(sp.jacobi(u, v, w, x)) elif kind == 7: ans = str(sp.jacobi_normalized(u, v, w, x)) elif kind == 8: ans = str(sp.gegenbauer(u, v, x)) elif kind == 9: # 1st kind ans = str(sp.chebyshevt(u, x)) elif kind == 10: ans = str(sp.chebyshevt_root(u, v)) elif kind == 11: # 2nd kind ans = str(sp.chebyshevu(u, x)) elif kind == 12: ans = str(sp.chebyshevu_root(u, v)) elif kind == 13: ans = str(sp.hermite(u, x)) elif kind == 14: ans = str(sp.laguerre(u, x)) elif kind == 15: ans = str(sp.assoc_laguerre(u, v, x)) q.put(ans)
def test_jacobi(): n = Symbol("n") a = Symbol("a") b = Symbol("b") assert jacobi(0, a, b, x) == 1 assert jacobi(1, a, b, x) == a/2 - b/2 + x*(a/2 + b/2 + 1) assert jacobi(n, a, a, x) == RisingFactorial( a + 1, n)*gegenbauer(n, a + S.Half, x)/RisingFactorial(2*a + 1, n) assert jacobi(n, a, -a, x) == ((-1)**a*(-x + 1)**(-a/2)*(x + 1)**(a/2)*assoc_legendre(n, a, x)* factorial(-a + n)*gamma(a + n + 1)/(factorial(a + n)*gamma(n + 1))) assert jacobi(n, -b, b, x) == ((-x + 1)**(b/2)*(x + 1)**(-b/2)*assoc_legendre(n, b, x)* gamma(-b + n + 1)/gamma(n + 1)) assert jacobi(n, 0, 0, x) == legendre(n, x) assert jacobi(n, S.Half, S.Half, x) == RisingFactorial( Rational(3, 2), n)*chebyshevu(n, x)/factorial(n + 1) assert jacobi(n, Rational(-1, 2), Rational(-1, 2), x) == RisingFactorial( S.Half, n)*chebyshevt(n, x)/factorial(n) X = jacobi(n, a, b, x) assert isinstance(X, jacobi) assert jacobi(n, a, b, -x) == (-1)**n*jacobi(n, b, a, x) assert jacobi(n, a, b, 0) == 2**(-n)*gamma(a + n + 1)*hyper( (-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1)) assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n)/factorial(n) m = Symbol("m", positive=True) assert jacobi(m, a, b, oo) == oo*RisingFactorial(a + b + m + 1, m) assert unchanged(jacobi, n, a, b, oo) assert conjugate(jacobi(m, a, b, x)) == \ jacobi(m, conjugate(a), conjugate(b), conjugate(x)) _k = Dummy('k') assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n) assert diff(jacobi(n, a, b, x), a).dummy_eq(Sum((jacobi(n, a, b, x) + (2*_k + a + b + 1)*RisingFactorial(_k + b + 1, -_k + n)*jacobi(_k, a, b, x)/((-_k + n)*RisingFactorial(_k + a + b + 1, -_k + n)))/(_k + a + b + n + 1), (_k, 0, n - 1))) assert diff(jacobi(n, a, b, x), b).dummy_eq(Sum(((-1)**(-_k + n)*(2*_k + a + b + 1)*RisingFactorial(_k + a + 1, -_k + n)*jacobi(_k, a, b, x)/ ((-_k + n)*RisingFactorial(_k + a + b + 1, -_k + n)) + jacobi(n, a, b, x))/(_k + a + b + n + 1), (_k, 0, n - 1))) assert diff(jacobi(n, a, b, x), x) == \ (a/2 + b/2 + n/2 + S.Half)*jacobi(n - 1, a + 1, b + 1, x) assert jacobi_normalized(n, a, b, x) == \ (jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1) /((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1)))) raises(ValueError, lambda: jacobi(-2.1, a, b, x)) raises(ValueError, lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo)) assert jacobi(n, a, b, x).rewrite("polynomial").dummy_eq(Sum((S.Half - x/2) **_k*RisingFactorial(-n, _k)*RisingFactorial(_k + a + 1, -_k + n)* RisingFactorial(a + b + n + 1, _k)/factorial(_k), (_k, 0, n))/factorial(n)) raises(ArgumentIndexError, lambda: jacobi(n, a, b, x).fdiff(5))
def test_jacobi(): n = Symbol("n") a = Symbol("a") b = Symbol("b") assert jacobi(0, a, b, x) == 1 assert jacobi(1, a, b, x) == a / 2 - b / 2 + x * (a / 2 + b / 2 + 1) assert jacobi(n, a, a, x) == RisingFactorial(a + 1, n) * gegenbauer( n, a + S(1) / 2, x) / RisingFactorial(2 * a + 1, n) assert jacobi(n, a, -a, x) == ((-1)**a * (-x + 1)**(-a / 2) * (x + 1)**(a / 2) * assoc_legendre(n, a, x) * factorial(-a + n) * gamma(a + n + 1) / (factorial(a + n) * gamma(n + 1))) assert jacobi(n, -b, b, x) == ((-x + 1)**(b / 2) * (x + 1)**(-b / 2) * assoc_legendre(n, b, x) * gamma(-b + n + 1) / gamma(n + 1)) assert jacobi(n, 0, 0, x) == legendre(n, x) assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(S(3) / 2, n) * chebyshevu( n, x) / factorial(n + 1) assert jacobi( n, -S.Half, -S.Half, x) == RisingFactorial(S(1) / 2, n) * chebyshevt(n, x) / factorial(n) X = jacobi(n, a, b, x) assert isinstance(X, jacobi) assert jacobi(n, a, b, -x) == (-1)**n * jacobi(n, b, a, x) assert jacobi(n, a, b, 0) == 2**(-n) * gamma(a + n + 1) * hyper( (-b - n, -n), (a + 1, ), -1) / (factorial(n) * gamma(a + 1)) assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n) / factorial(n) m = Symbol("m", positive=True) assert jacobi(m, a, b, oo) == oo * RisingFactorial(a + b + m + 1, m) assert conjugate(jacobi(m, a, b, x)) == \ jacobi(m, conjugate(a), conjugate(b), conjugate(x)) assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n) assert diff(jacobi(n, a, b, x), x) == \ (a/2 + b/2 + n/2 + S(1)/2)*jacobi(n - 1, a + 1, b + 1, x) assert jacobi_normalized(n, a, b, x) == \ (jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1) /((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1)))) raises(ValueError, lambda: jacobi(-2.1, a, b, x)) raises(ValueError, lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo))
def test_jacobi(): n = Symbol("n") a = Symbol("a") b = Symbol("b") assert jacobi(0, a, b, x) == 1 assert jacobi(1, a, b, x) == a/2 - b/2 + x*(a/2 + b/2 + 1) assert jacobi(n, a, a, x) == RisingFactorial( a + 1, n)*gegenbauer(n, a + S(1)/2, x)/RisingFactorial(2*a + 1, n) assert jacobi(n, a, -a, x) == ((-1)**a*(-x + 1)**(-a/2)*(x + 1)**(a/2)*assoc_legendre(n, a, x)* factorial(-a + n)*gamma(a + n + 1)/(factorial(a + n)*gamma(n + 1))) assert jacobi(n, -b, b, x) == ((-x + 1)**(b/2)*(x + 1)**(-b/2)*assoc_legendre(n, b, x)* gamma(-b + n + 1)/gamma(n + 1)) assert jacobi(n, 0, 0, x) == legendre(n, x) assert jacobi(n, S.Half, S.Half, x) == RisingFactorial( S(3)/2, n)*chebyshevu(n, x)/factorial(n + 1) assert jacobi(n, -S.Half, -S.Half, x) == RisingFactorial( S(1)/2, n)*chebyshevt(n, x)/factorial(n) X = jacobi(n, a, b, x) assert isinstance(X, jacobi) assert jacobi(n, a, b, -x) == (-1)**n*jacobi(n, b, a, x) assert jacobi(n, a, b, 0) == 2**(-n)*gamma(a + n + 1)*hyper( (-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1)) assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n)/factorial(n) m = Symbol("m", positive=True) assert jacobi(m, a, b, oo) == oo*RisingFactorial(a + b + m + 1, m) assert conjugate(jacobi(m, a, b, x)) == \ jacobi(m, conjugate(a), conjugate(b), conjugate(x)) assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n) assert diff(jacobi(n, a, b, x), x) == \ (a/2 + b/2 + n/2 + S(1)/2)*jacobi(n - 1, a + 1, b + 1, x) assert jacobi_normalized(n, a, b, x) == \ (jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1) /((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1)))) raises(ValueError, lambda: jacobi(-2.1, a, b, x)) raises(ValueError, lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo))
def jacobi_normalized(x): return diffify(sympy.jacobi_normalized(x))