Пример #1
0
    def _orthonormal_basis(self, ptsord):
        p, q = self._dims
        a, b = 2*(1 + p)/(1 - q) - 1, q

        # Construct an orthonormal basis within a standard triangle
        db = []
        for i in xrange(ptsord):
            tmp = sy.sqrt(2)*sy.jacobi_normalized(i, 0, 0, a)*(1 - b)**i
            tmp = tmp.ratsimp()

            for j in xrange(ptsord - i):
                poly = sy.expand(tmp*sy.jacobi_normalized(j, 2*i + 1, 0, b))
                db.append(poly.evalf(mp.dps))

        return db
 def callback(q, v=0, u = 0, w=0, kind = 0):
     ans = ''
     if kind == 1:
         ans = str(sp.gamma(v))
     elif kind == 2:
         ans = str(sp.gamma(u) * sp.gamma(v) / sp.gamma(u + v))
     elif kind == 3:
         ans = str(functions.Legendre_Polynomials(v))
     elif kind == 4:
         ans = str(sp.assoc_legendre(v, u, x))
     elif kind == 5:
         ans = str(functions.bessel_function_1st(v))
     elif kind == 6:
         ans = str(sp.jacobi(u, v, w, x))
     elif kind == 7:
         ans = str(sp.jacobi_normalized(u, v, w, x))
     elif kind == 8:
         ans = str(sp.gegenbauer(u, v, x))
     elif kind == 9:
         # 1st kind
         ans = str(sp.chebyshevt(u, x))
     elif kind == 10:
         ans = str(sp.chebyshevt_root(u, v))
     elif kind == 11:
         # 2nd kind
         ans = str(sp.chebyshevu(u, x))
     elif kind == 12:
         ans = str(sp.chebyshevu_root(u, v))
     elif kind == 13:
         ans = str(sp.hermite(u, x))
     elif kind == 14:
         ans = str(sp.laguerre(u, x))
     elif kind == 15:
         ans = str(sp.assoc_laguerre(u, v, x))
     q.put(ans)
Пример #3
0
def test_jacobi():
    n = Symbol("n")
    a = Symbol("a")
    b = Symbol("b")

    assert jacobi(0, a, b, x) == 1
    assert jacobi(1, a, b, x) == a/2 - b/2 + x*(a/2 + b/2 + 1)

    assert jacobi(n, a, a, x) == RisingFactorial(
        a + 1, n)*gegenbauer(n, a + S.Half, x)/RisingFactorial(2*a + 1, n)
    assert jacobi(n, a, -a, x) == ((-1)**a*(-x + 1)**(-a/2)*(x + 1)**(a/2)*assoc_legendre(n, a, x)*
                                   factorial(-a + n)*gamma(a + n + 1)/(factorial(a + n)*gamma(n + 1)))
    assert jacobi(n, -b, b, x) == ((-x + 1)**(b/2)*(x + 1)**(-b/2)*assoc_legendre(n, b, x)*
                                   gamma(-b + n + 1)/gamma(n + 1))
    assert jacobi(n, 0, 0, x) == legendre(n, x)
    assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(
        Rational(3, 2), n)*chebyshevu(n, x)/factorial(n + 1)
    assert jacobi(n, Rational(-1, 2), Rational(-1, 2), x) == RisingFactorial(
        S.Half, n)*chebyshevt(n, x)/factorial(n)

    X = jacobi(n, a, b, x)
    assert isinstance(X, jacobi)

    assert jacobi(n, a, b, -x) == (-1)**n*jacobi(n, b, a, x)
    assert jacobi(n, a, b, 0) == 2**(-n)*gamma(a + n + 1)*hyper(
        (-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1))
    assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n)/factorial(n)

    m = Symbol("m", positive=True)
    assert jacobi(m, a, b, oo) == oo*RisingFactorial(a + b + m + 1, m)
    assert unchanged(jacobi, n, a, b, oo)

    assert conjugate(jacobi(m, a, b, x)) == \
        jacobi(m, conjugate(a), conjugate(b), conjugate(x))

    _k = Dummy('k')
    assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n)
    assert diff(jacobi(n, a, b, x), a).dummy_eq(Sum((jacobi(n, a, b, x) +
        (2*_k + a + b + 1)*RisingFactorial(_k + b + 1, -_k + n)*jacobi(_k, a,
        b, x)/((-_k + n)*RisingFactorial(_k + a + b + 1, -_k + n)))/(_k + a
        + b + n + 1), (_k, 0, n - 1)))
    assert diff(jacobi(n, a, b, x), b).dummy_eq(Sum(((-1)**(-_k + n)*(2*_k +
        a + b + 1)*RisingFactorial(_k + a + 1, -_k + n)*jacobi(_k, a, b, x)/
        ((-_k + n)*RisingFactorial(_k + a + b + 1, -_k + n)) + jacobi(n, a,
        b, x))/(_k + a + b + n + 1), (_k, 0, n - 1)))
    assert diff(jacobi(n, a, b, x), x) == \
        (a/2 + b/2 + n/2 + S.Half)*jacobi(n - 1, a + 1, b + 1, x)

    assert jacobi_normalized(n, a, b, x) == \
           (jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)
                                    /((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1))))

    raises(ValueError, lambda: jacobi(-2.1, a, b, x))
    raises(ValueError, lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo))

    assert jacobi(n, a, b, x).rewrite("polynomial").dummy_eq(Sum((S.Half - x/2)
        **_k*RisingFactorial(-n, _k)*RisingFactorial(_k + a + 1, -_k + n)*
        RisingFactorial(a + b + n + 1, _k)/factorial(_k), (_k, 0, n))/factorial(n))
    raises(ArgumentIndexError, lambda: jacobi(n, a, b, x).fdiff(5))
Пример #4
0
def test_jacobi():
    n = Symbol("n")
    a = Symbol("a")
    b = Symbol("b")

    assert jacobi(0, a, b, x) == 1
    assert jacobi(1, a, b, x) == a / 2 - b / 2 + x * (a / 2 + b / 2 + 1)

    assert jacobi(n, a, a, x) == RisingFactorial(a + 1, n) * gegenbauer(
        n, a + S(1) / 2, x) / RisingFactorial(2 * a + 1, n)
    assert jacobi(n, a, -a,
                  x) == ((-1)**a * (-x + 1)**(-a / 2) * (x + 1)**(a / 2) *
                         assoc_legendre(n, a, x) * factorial(-a + n) *
                         gamma(a + n + 1) / (factorial(a + n) * gamma(n + 1)))
    assert jacobi(n, -b, b, x) == ((-x + 1)**(b / 2) * (x + 1)**(-b / 2) *
                                   assoc_legendre(n, b, x) *
                                   gamma(-b + n + 1) / gamma(n + 1))
    assert jacobi(n, 0, 0, x) == legendre(n, x)
    assert jacobi(n, S.Half,
                  S.Half, x) == RisingFactorial(S(3) / 2, n) * chebyshevu(
                      n, x) / factorial(n + 1)
    assert jacobi(
        n, -S.Half, -S.Half,
        x) == RisingFactorial(S(1) / 2, n) * chebyshevt(n, x) / factorial(n)

    X = jacobi(n, a, b, x)
    assert isinstance(X, jacobi)

    assert jacobi(n, a, b, -x) == (-1)**n * jacobi(n, b, a, x)
    assert jacobi(n, a, b, 0) == 2**(-n) * gamma(a + n + 1) * hyper(
        (-b - n, -n), (a + 1, ), -1) / (factorial(n) * gamma(a + 1))
    assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n) / factorial(n)

    m = Symbol("m", positive=True)
    assert jacobi(m, a, b, oo) == oo * RisingFactorial(a + b + m + 1, m)

    assert conjugate(jacobi(m, a, b, x)) == \
        jacobi(m, conjugate(a), conjugate(b), conjugate(x))

    assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n)
    assert diff(jacobi(n, a, b, x), x) == \
        (a/2 + b/2 + n/2 + S(1)/2)*jacobi(n - 1, a + 1, b + 1, x)

    assert jacobi_normalized(n, a, b, x) == \
           (jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)
                                    /((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1))))

    raises(ValueError, lambda: jacobi(-2.1, a, b, x))
    raises(ValueError,
           lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo))
def test_jacobi():
    n = Symbol("n")
    a = Symbol("a")
    b = Symbol("b")

    assert jacobi(0, a, b, x) == 1
    assert jacobi(1, a, b, x) == a/2 - b/2 + x*(a/2 + b/2 + 1)

    assert jacobi(n, a, a, x) == RisingFactorial(
        a + 1, n)*gegenbauer(n, a + S(1)/2, x)/RisingFactorial(2*a + 1, n)
    assert jacobi(n, a, -a, x) == ((-1)**a*(-x + 1)**(-a/2)*(x + 1)**(a/2)*assoc_legendre(n, a, x)*
                                   factorial(-a + n)*gamma(a + n + 1)/(factorial(a + n)*gamma(n + 1)))
    assert jacobi(n, -b, b, x) == ((-x + 1)**(b/2)*(x + 1)**(-b/2)*assoc_legendre(n, b, x)*
                                   gamma(-b + n + 1)/gamma(n + 1))
    assert jacobi(n, 0, 0, x) == legendre(n, x)
    assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(
        S(3)/2, n)*chebyshevu(n, x)/factorial(n + 1)
    assert jacobi(n, -S.Half, -S.Half, x) == RisingFactorial(
        S(1)/2, n)*chebyshevt(n, x)/factorial(n)

    X = jacobi(n, a, b, x)
    assert isinstance(X, jacobi)

    assert jacobi(n, a, b, -x) == (-1)**n*jacobi(n, b, a, x)
    assert jacobi(n, a, b, 0) == 2**(-n)*gamma(a + n + 1)*hyper(
        (-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1))
    assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n)/factorial(n)

    m = Symbol("m", positive=True)
    assert jacobi(m, a, b, oo) == oo*RisingFactorial(a + b + m + 1, m)

    assert conjugate(jacobi(m, a, b, x)) == \
        jacobi(m, conjugate(a), conjugate(b), conjugate(x))

    assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n)
    assert diff(jacobi(n, a, b, x), x) == \
        (a/2 + b/2 + n/2 + S(1)/2)*jacobi(n - 1, a + 1, b + 1, x)

    assert jacobi_normalized(n, a, b, x) == \
           (jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)
                                    /((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1))))

    raises(ValueError, lambda: jacobi(-2.1, a, b, x))
    raises(ValueError, lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo))
Пример #6
0
def jacobi_normalized(x):
    return diffify(sympy.jacobi_normalized(x))