def get_neg_windows(self, num, cls=None, window_params=None, max_overlap=0, max_num_images=250): """ Return array of num windows that can be generated with window_params that do not overlap with ground truth by more than max_overlap. * If cls is not given, returns ground truth for all classes. * If max_num_images is given, samples from at most that many images. """ sw = SlidingWindows(self, self) if not window_params: window_params = sw.get_default_window_params(cls) all_windows = [] image_inds = self.get_pos_samples_for_class(cls) max_num = len(image_inds) inds = image_inds if max_num_images: inds = ut.random_subset(image_inds, max_num_images) num_per_image = round(1.0 * num / max_num) for ind in inds: image = self.images[ind] windows = image.get_windows(window_params) gts = image.get_ground_truth(cls) for gt in gts.arr: overlaps = BoundingBox.get_overlap(windows[:, :4], gt[:4]) windows = windows[overlaps <= max_overlap, :] if windows.shape[0] == 0: continue ind_to_take = ut.random_subset_up_to_N(windows.shape[0], num_per_image) all_windows.append(np.hstack((windows[ind_to_take, :], np.tile(ind, (ind_to_take.shape[0], 1))))) all_windows = np.concatenate(all_windows, 0) return all_windows[:num, :]
def get_pos_windows(self, cls=None, window_params=None, min_overlap=0.7): """ Return array of all ground truth windows for the class, plus windows that can be generated with window_params that overlap with it by more than min_overlap. * If cls not given, return positive windows for all classes. * If window_params not given, use default for the class. * Adjust min_overlap to fetch fewer windows. """ sw = SlidingWindows(self, self) if not window_params: window_params = sw.get_default_window_params(cls) overlapping_windows = [] image_inds = self.get_pos_samples_for_class(cls) times = [] window_nums = [] for i in image_inds: image = self.images[i] gts = image.get_ground_truth(cls) if gts.arr.shape[0] > 0: overlap_wins = gts.arr[:, :4] overlap_wins = np.hstack( (overlap_wins, np.tile(i, (overlap_wins.shape[0], 1)))) overlapping_windows.append(overlap_wins.astype(int)) windows, time_elapsed = image.get_windows(window_params, with_time=True) window_nums.append(windows.shape[0]) times.append(time_elapsed) for gt in gts.arr: overlaps = BoundingBox.get_overlap(windows[:, :4], gt[:4]) overlap_wins = windows[overlaps >= min_overlap, :] overlap_wins = np.hstack( (overlap_wins, np.tile(i, (overlap_wins.shape[0], 1)))) overlapping_windows.append(overlap_wins.astype(int)) windows = windows[overlaps < min_overlap, :] overlapping_windows = np.concatenate(overlapping_windows, 0) print( "Windows generated per image: %d +/- %.3f, in %.3f +/- %.3f sec" % (np.mean(window_nums), np.std(window_nums), np.mean(times), np.std(times))) return overlapping_windows
def get_neg_windows(self, num, cls=None, window_params=None, max_overlap=0, max_num_images=250): """ Return array of num windows that can be generated with window_params that do not overlap with ground truth by more than max_overlap. * If cls is not given, returns ground truth for all classes. * If max_num_images is given, samples from at most that many images. """ sw = SlidingWindows(self, self) if not window_params: window_params = sw.get_default_window_params(cls) all_windows = [] image_inds = self.get_pos_samples_for_class(cls) max_num = len(image_inds) inds = image_inds if max_num_images: inds = ut.random_subset(image_inds, max_num_images) num_per_image = round(1. * num / max_num) for ind in inds: image = self.images[ind] windows = image.get_windows(window_params) gts = image.get_ground_truth(cls) for gt in gts.arr: overlaps = BoundingBox.get_overlap(windows[:, :4], gt[:4]) windows = windows[overlaps <= max_overlap, :] if windows.shape[0] == 0: continue ind_to_take = ut.random_subset_up_to_N(windows.shape[0], num_per_image) all_windows.append( np.hstack((windows[ind_to_take, :], np.tile(ind, (ind_to_take.shape[0], 1))))) all_windows = np.concatenate(all_windows, 0) return all_windows[:num, :]
def get_pos_windows(self, cls=None, window_params=None, min_overlap=0.7): """ Return array of all ground truth windows for the class, plus windows that can be generated with window_params that overlap with it by more than min_overlap. * If cls not given, return positive windows for all classes. * If window_params not given, use default for the class. * Adjust min_overlap to fetch fewer windows. """ sw = SlidingWindows(self, self) if not window_params: window_params = sw.get_default_window_params(cls) overlapping_windows = [] image_inds = self.get_pos_samples_for_class(cls) times = [] window_nums = [] for i in image_inds: image = self.images[i] gts = image.get_ground_truth(cls) if gts.arr.shape[0] > 0: overlap_wins = gts.arr[:, :4] overlap_wins = np.hstack((overlap_wins, np.tile(i, (overlap_wins.shape[0], 1)))) overlapping_windows.append(overlap_wins.astype(int)) windows, time_elapsed = image.get_windows(window_params, with_time=True) window_nums.append(windows.shape[0]) times.append(time_elapsed) for gt in gts.arr: overlaps = BoundingBox.get_overlap(windows[:, :4], gt[:4]) overlap_wins = windows[overlaps >= min_overlap, :] overlap_wins = np.hstack((overlap_wins, np.tile(i, (overlap_wins.shape[0], 1)))) overlapping_windows.append(overlap_wins.astype(int)) windows = windows[overlaps < min_overlap, :] overlapping_windows = np.concatenate(overlapping_windows, 0) print( "Windows generated per image: %d +/- %.3f, in %.3f +/- %.3f sec" % (np.mean(window_nums), np.std(window_nums), np.mean(times), np.std(times)) ) return overlapping_windows
def get_windows(self, window_params, with_time=False): "Return all windows that can be generated with given params." return SlidingWindows.get_windows(self, None, window_params, with_time)
def main(): parser = argparse.ArgumentParser(description='Execute different functions of our system') parser.add_argument('mode', choices=[ 'window_stats', 'evaluate_metaparams', 'evaluate_jw', 'evaluate_get_pos_windows', 'train_svm', 'extract_sift','extract_assignments','extract_codebook', 'evaluate_jw_grid', 'final_metaparams', 'assemble_dpm_dets','ctfdet','assemble_ctf_dets' ]) parser.add_argument('--test_dataset', choices=['val','test','train'], default='test', help='dataset to use for testing. the training dataset \ is automatically inferred (val->train and test->trainval).') parser.add_argument('--first_n', type=int, help='only take the first N images in the datasets') parser.add_argument('--bounds', type=str, help='the start_time and deadline_time for the ImagePolicy and corresponding evaluation. ex: (1,5)') parser.add_argument('--name', help='name for this run') parser.add_argument('--priors', default='random', help= \ "list of choice for the policy for selecting the next action. choose from random, oracle,fixed_order, no_smooth, backoff. ex: --priors=random,oracle,no_smooth") parser.add_argument('--compare_evals', action='store_true', default=False, help='plot all the priors modes given on same plot'), parser.add_argument('--detector', choices=['perfect','perfect_with_noise', 'dpm','ctf'], default='perfect', help='detector type') parser.add_argument('--force', action='store_true', default=False, help='force overwrite') parser.add_argument('--gist', action='store_true', default=False, help='use GIST as one of the actions') parser.add_argument('--clear_tmp', action='store_true', default=False, help='clear the cached windows folder before running'), parser.add_argument('--feature_type', choices=['sift','dsift'], default='dsift', help='use this feature type'), parser.add_argument('--kernel', choices=['chi2','rbf'], default='chi2', help='kernel to train svm on'), args = parser.parse_args() if args.priors: args.priors = args.priors.split(',') if args.bounds: args.bounds = [float(x) for x in re.findall(r'\d+', args.bounds)] assert(len(args.bounds)==2) print(args) # Load the dataset dataset = Dataset('full_pascal_'+args.test_dataset) if args.first_n: dataset.images = dataset.images[:args.first_n] # Infer train_dataset if args.test_dataset=='test': train_dataset = Dataset('full_pascal_trainval') elif args.test_dataset=='val': train_dataset = Dataset('full_pascal_train') else: print("Impossible, setting train_dataset to dataset") train_dataset = dataset # Create window generator sw = SlidingWindows(dataset,train_dataset) if args.clear_tmp: dirname = config.get_sliding_windows_cached_dir(train_dataset.get_name()) shutil.rmtree(dirname) dirname = config.get_sliding_windows_cached_dir(dataset.get_name()) shutil.rmtree(dirname) if args.mode=='assemble_dpm_dets': policy = DatasetPolicy(dataset,train_dataset,sw) dets = policy.load_ext_detections(dataset,suffix='dpm_may25') if args.mode=='assemble_ctf_dets': policy = DatasetPolicy(dataset,train_dataset,sw) dets = policy.load_ext_detections(dataset,'ctf','ctf_default') dets = policy.load_ext_detections(dataset,'ctf','ctf_nohal') dets = policy.load_ext_detections(dataset,'ctf', 'ctf_halfsize') if args.mode=='evaluate_get_pos_windows': evaluate_get_pos_windows(train_dataset) return if args.mode=='window_stats': "Compute and plot the statistics of ground truth window parameters." results = SlidingWindows.get_dataset_window_stats(train_dataset,plot=True) if args.mode=='ctfdet': """Run Pedersoli's detector on the dataset and assemble into one Table.""" run_pedersoli(dataset) if args.mode=='evaluate_jw': """ Evaluate the jumping window approach by producing plots of recall vs. #windows. """ # TODO hack: both sw and jw should subclass something like WindowGenerator jw = JumpingWindowsDetector(use_scale=True) sw.jw = jw #classes = dataset.classes classes = ['car'] # classes = ['bicycle' ,'car','horse', 'sofa',\ # 'bird', 'chair', 'motorbike', 'train',\ # 'boat', 'cow', 'person', 'tvmonitor',\ # 'bottle','diningtable', 'pottedplant',\ # 'bus','dog' ,'sheep'] for cls_idx in range(comm_rank, len(classes), comm_size): #for cls in dataset.classes: cls = classes[cls_idx] dirname = config.get_jumping_windows_dir(dataset.get_name()) filename = os.path.join(dirname,'%s'%cls) sw.evaluate_recall(cls, filename, metaparams=None, mode='jw', plot=True) if args.mode=='evaluate_jw_grid': """ Evaluate the jumping window approach by producing plots of recall vs. #windows. """ sw = SlidingWindows(dataset,train_dataset) jw = JumpingWindowsDetectorGrid() sw.jw = jw for cls in dataset.classes: dirname = config.get_jumping_windows_dir(dataset.get_name()) filename = os.path.join(dirname,'%s'%cls) if os.path.isfile(config.data_dir + 'JumpingWindows/'+cls): sw.evaluate_recall(cls, filename, metaparams=None, mode='jw', plot=True) if args.mode=='train_svm': randomize = not os.path.exists('/home/tobibaum') d = Dataset('full_pascal_train') dtest = Dataset('full_pascal_val') e = Extractor() classes = config.pascal_classes num_words = 3000 iters = 5 feature_type = 'dsift' codebook_samples = 15 num_pos = 'max' testsize = 'max' if args.first_n: num_pos = args.first_n testsize = 1.5*num_pos kernel = args.kernel if comm_rank == 0: ut.makedirs(config.data_dir + 'features/' + feature_type + '/times/') ut.makedirs(config.data_dir + 'features/' + feature_type + '/codebooks/times/') ut.makedirs(config.data_dir + 'features/' + feature_type + '/svms/train_times/') for cls_idx in range(comm_rank, len(classes), comm_size): #for cls in classes: cls = classes[cls_idx] codebook = e.get_codebook(d, feature_type) pos_arr = d.get_pos_windows(cls) neg_arr = d.get_neg_windows(pos_arr.shape[0], cls, max_overlap=0) if not num_pos == 'max': if not randomize: pos_arr = pos_arr[:num_pos] neg_arr = pos_arr[:num_pos] else: rand = np.random.random_integers(0, pos_arr.shape[0] - 1, size=num_pos) pos_arr = pos_arr[rand] rand = np.random.random_integers(0, neg_arr.shape[0] - 1, size=num_pos) neg_arr = neg_arr[rand] pos_table = Table(pos_arr, ['x','y','w','h','img_ind']) neg_table = Table(neg_arr, pos_table.cols) train_with_hard_negatives(d, dtest, num_words,codebook_samples,codebook,\ cls, pos_table, neg_table,feature_type, \ iterations=iters, kernel=kernel, L=2, \ testsize=testsize,randomize=randomize) if args.mode=='evaluate_metaparams': """ Grid search over metaparams values for get_windows_new, with the AUC of recall vs. # windows evaluation. """ sw.grid_search_over_metaparams() return if args.mode=='final_metaparams': dirname = config.get_sliding_windows_metaparams_dir(train_dataset.get_name()) # currently these are the best auc/complexity params best_params_for_classes = [ (62,15,12,'importance',0), #aeroplane (83,15,12,'importance',0), #bicycle (62,15,12,'importance',0), #bird (62,15,12,'importance',0), #boat (125,12,12,'importance',0), #bottle (83,12,9,'importance',0), #bus (125,15,9,'importance',0), #car (125,12,12,'linear',0), #cat (125,15,9,'importance',0), #chair (125,9,6,'importance',0), #cow (125,15,6,'linear',0), #diningtable (62,15,12,'importance',0), #dog (83,15,6,'importance',0), #horse (83,12,6,'importance',0), #motorbike (83,15,12,'importance',0), #person (83,15,6,'importance',0), #pottedplant (83,15,12,'importance',0), #sheep (83,9,6,'importance',0), #sofa (62,12,6,'importance',0), #train (62,12,12,'importance',0), #tvmonitor (125,9,12,'importance',0) #all ] # ACTUALLY THEY ARE ALL THE SAME! cheap_params = (62, 9, 6, 'importance', 0) for i in range(comm_rank,dataset.num_classes(),comm_size): cls = dataset.classes[i] best_params = best_params_for_classes[i] #samples,num_scales,num_ratios,mode,priority,cls = cheap_params metaparams = { 'samples_per_500px': samples, 'num_scales': num_scales, 'num_ratios': num_ratios, 'mode': mode, 'priority': 0 } filename = '%s_%d_%d_%d_%s_%d'%( cls, metaparams['samples_per_500px'], metaparams['num_scales'], metaparams['num_ratios'], metaparams['mode'], metaparams['priority']) filename = os.path.join(dirname,filename) tables = sw.evaluate_recall(cls,filename,metaparams,'sw',plot=True,force=False) metaparams = { 'samples_per_500px': samples, 'num_scales': num_scales, 'num_ratios': num_ratios, 'mode': mode, 'priority': 1 } filename = '%s_%d_%d_%d_%s_%d'%( cls, metaparams['samples_per_500px'], metaparams['num_scales'], metaparams['num_ratios'], metaparams['mode'], metaparams['priority']) filename = os.path.join(dirname,filename) tables = sw.evaluate_recall(cls,filename,metaparams,'sw',plot=True,force=False) return if args.mode=='extract_sift': e=Extractor() e.extract_all(['sift'], ['full_pascal_trainval','full_pascal_test'], 0, 0) if args.mode=='extract_assignments': e=Extractor() feature_type = 'sift' for image_set in ['full_pascal_trainval','full_pascal_test']: d = Dataset(image_set) codebook = e.get_codebook(d, feature_type) print 'codebook loaded' for img_ind in range(comm_rank,len(d.images),comm_size): img = d.images[img_ind] #for img in d.images: e.get_assignments(np.array([0,0,img.size[0],img.size[1]]), feature_type, \ codebook, img) if args.mode=='extract_codebook': d = Dataset('full_pascal_trainval') e = Extractor() codebook = e.get_codebook(d, args.feature_type)
def get_windows(self,window_params,with_time=False): "Return all windows that can be generated with given params." return SlidingWindows.get_windows(self,None,window_params,with_time)