Пример #1
0
    def get_neg_windows(self, num, cls=None, window_params=None, max_overlap=0, max_num_images=250):
        """
    Return array of num windows that can be generated with window_params
    that do not overlap with ground truth by more than max_overlap.
    * If cls is not given, returns ground truth for all classes.
    * If max_num_images is given, samples from at most that many images.
    """
        sw = SlidingWindows(self, self)
        if not window_params:
            window_params = sw.get_default_window_params(cls)
        all_windows = []
        image_inds = self.get_pos_samples_for_class(cls)

        max_num = len(image_inds)
        inds = image_inds
        if max_num_images:
            inds = ut.random_subset(image_inds, max_num_images)
        num_per_image = round(1.0 * num / max_num)
        for ind in inds:
            image = self.images[ind]
            windows = image.get_windows(window_params)
            gts = image.get_ground_truth(cls)
            for gt in gts.arr:
                overlaps = BoundingBox.get_overlap(windows[:, :4], gt[:4])
                windows = windows[overlaps <= max_overlap, :]
            if windows.shape[0] == 0:
                continue
            ind_to_take = ut.random_subset_up_to_N(windows.shape[0], num_per_image)
            all_windows.append(np.hstack((windows[ind_to_take, :], np.tile(ind, (ind_to_take.shape[0], 1)))))
        all_windows = np.concatenate(all_windows, 0)
        return all_windows[:num, :]
Пример #2
0
 def get_pos_windows(self, cls=None, window_params=None, min_overlap=0.7):
     """
 Return array of all ground truth windows for the class, plus windows 
 that can be generated with window_params that overlap with it by more
 than min_overlap.
 * If cls not given, return positive windows for all classes.
 * If window_params not given, use default for the class.
 * Adjust min_overlap to fetch fewer windows.
 """
     sw = SlidingWindows(self, self)
     if not window_params:
         window_params = sw.get_default_window_params(cls)
     overlapping_windows = []
     image_inds = self.get_pos_samples_for_class(cls)
     times = []
     window_nums = []
     for i in image_inds:
         image = self.images[i]
         gts = image.get_ground_truth(cls)
         if gts.arr.shape[0] > 0:
             overlap_wins = gts.arr[:, :4]
             overlap_wins = np.hstack(
                 (overlap_wins, np.tile(i, (overlap_wins.shape[0], 1))))
             overlapping_windows.append(overlap_wins.astype(int))
             windows, time_elapsed = image.get_windows(window_params,
                                                       with_time=True)
             window_nums.append(windows.shape[0])
             times.append(time_elapsed)
             for gt in gts.arr:
                 overlaps = BoundingBox.get_overlap(windows[:, :4], gt[:4])
                 overlap_wins = windows[overlaps >= min_overlap, :]
                 overlap_wins = np.hstack(
                     (overlap_wins, np.tile(i, (overlap_wins.shape[0], 1))))
                 overlapping_windows.append(overlap_wins.astype(int))
                 windows = windows[overlaps < min_overlap, :]
     overlapping_windows = np.concatenate(overlapping_windows, 0)
     print(
         "Windows generated per image: %d +/- %.3f, in %.3f +/- %.3f sec" %
         (np.mean(window_nums), np.std(window_nums), np.mean(times),
          np.std(times)))
     return overlapping_windows
Пример #3
0
    def get_neg_windows(self,
                        num,
                        cls=None,
                        window_params=None,
                        max_overlap=0,
                        max_num_images=250):
        """
    Return array of num windows that can be generated with window_params
    that do not overlap with ground truth by more than max_overlap.
    * If cls is not given, returns ground truth for all classes.
    * If max_num_images is given, samples from at most that many images.
    """
        sw = SlidingWindows(self, self)
        if not window_params:
            window_params = sw.get_default_window_params(cls)
        all_windows = []
        image_inds = self.get_pos_samples_for_class(cls)

        max_num = len(image_inds)
        inds = image_inds
        if max_num_images:
            inds = ut.random_subset(image_inds, max_num_images)
        num_per_image = round(1. * num / max_num)
        for ind in inds:
            image = self.images[ind]
            windows = image.get_windows(window_params)
            gts = image.get_ground_truth(cls)
            for gt in gts.arr:
                overlaps = BoundingBox.get_overlap(windows[:, :4], gt[:4])
                windows = windows[overlaps <= max_overlap, :]
            if windows.shape[0] == 0:
                continue
            ind_to_take = ut.random_subset_up_to_N(windows.shape[0],
                                                   num_per_image)
            all_windows.append(
                np.hstack((windows[ind_to_take, :],
                           np.tile(ind, (ind_to_take.shape[0], 1)))))
        all_windows = np.concatenate(all_windows, 0)
        return all_windows[:num, :]
Пример #4
0
 def get_pos_windows(self, cls=None, window_params=None, min_overlap=0.7):
     """
 Return array of all ground truth windows for the class, plus windows 
 that can be generated with window_params that overlap with it by more
 than min_overlap.
 * If cls not given, return positive windows for all classes.
 * If window_params not given, use default for the class.
 * Adjust min_overlap to fetch fewer windows.
 """
     sw = SlidingWindows(self, self)
     if not window_params:
         window_params = sw.get_default_window_params(cls)
     overlapping_windows = []
     image_inds = self.get_pos_samples_for_class(cls)
     times = []
     window_nums = []
     for i in image_inds:
         image = self.images[i]
         gts = image.get_ground_truth(cls)
         if gts.arr.shape[0] > 0:
             overlap_wins = gts.arr[:, :4]
             overlap_wins = np.hstack((overlap_wins, np.tile(i, (overlap_wins.shape[0], 1))))
             overlapping_windows.append(overlap_wins.astype(int))
             windows, time_elapsed = image.get_windows(window_params, with_time=True)
             window_nums.append(windows.shape[0])
             times.append(time_elapsed)
             for gt in gts.arr:
                 overlaps = BoundingBox.get_overlap(windows[:, :4], gt[:4])
                 overlap_wins = windows[overlaps >= min_overlap, :]
                 overlap_wins = np.hstack((overlap_wins, np.tile(i, (overlap_wins.shape[0], 1))))
                 overlapping_windows.append(overlap_wins.astype(int))
                 windows = windows[overlaps < min_overlap, :]
     overlapping_windows = np.concatenate(overlapping_windows, 0)
     print(
         "Windows generated per image: %d +/- %.3f, in %.3f +/- %.3f sec"
         % (np.mean(window_nums), np.std(window_nums), np.mean(times), np.std(times))
     )
     return overlapping_windows
Пример #5
0
 def get_windows(self, window_params, with_time=False):
     "Return all windows that can be generated with given params."
     return SlidingWindows.get_windows(self, None, window_params, with_time)
Пример #6
0
def main():
  parser = argparse.ArgumentParser(description='Execute different functions of our system')
  parser.add_argument('mode',
    choices=[
      'window_stats', 'evaluate_metaparams', 'evaluate_jw',
      'evaluate_get_pos_windows', 'train_svm',
      'extract_sift','extract_assignments','extract_codebook',
      'evaluate_jw_grid', 'final_metaparams',
      'assemble_dpm_dets','ctfdet','assemble_ctf_dets'
      ])
  parser.add_argument('--test_dataset', choices=['val','test','train'],
      default='test', help='dataset to use for testing. the training dataset \
      is automatically inferred (val->train and test->trainval).')
  parser.add_argument('--first_n', type=int,
      help='only take the first N images in the datasets')
  parser.add_argument('--bounds', type=str,
      help='the start_time and deadline_time for the ImagePolicy and corresponding evaluation. ex: (1,5)')
  parser.add_argument('--name', help='name for this run')
  parser.add_argument('--priors', default='random', help= \
      "list of choice for the policy for selecting the next action. choose from random, oracle,fixed_order, no_smooth, backoff. ex: --priors=random,oracle,no_smooth")
  parser.add_argument('--compare_evals', action='store_true', 
      default=False, help='plot all the priors modes given on same plot'),
  parser.add_argument('--detector', choices=['perfect','perfect_with_noise', 'dpm','ctf'],
      default='perfect', help='detector type')
  parser.add_argument('--force', action='store_true', 
      default=False, help='force overwrite')
  parser.add_argument('--gist', action='store_true', 
      default=False, help='use GIST as one of the actions')
  parser.add_argument('--clear_tmp', action='store_true', 
      default=False, help='clear the cached windows folder before running'),
  parser.add_argument('--feature_type', choices=['sift','dsift'], 
      default='dsift', help='use this feature type'),
  parser.add_argument('--kernel', choices=['chi2','rbf'], 
      default='chi2', help='kernel to train svm on'),
      
  args = parser.parse_args()
  if args.priors:
    args.priors = args.priors.split(',')
  if args.bounds:
    args.bounds = [float(x) for x in re.findall(r'\d+', args.bounds)]
    assert(len(args.bounds)==2)
  print(args)

  # Load the dataset
  dataset = Dataset('full_pascal_'+args.test_dataset)
  if args.first_n:
    dataset.images = dataset.images[:args.first_n]

  # Infer train_dataset
  if args.test_dataset=='test':
    train_dataset = Dataset('full_pascal_trainval')
  elif args.test_dataset=='val':
    train_dataset = Dataset('full_pascal_train')
  else:
    print("Impossible, setting train_dataset to dataset")
    train_dataset = dataset
  
  # Create window generator
  sw = SlidingWindows(dataset,train_dataset)

  if args.clear_tmp:
    dirname = config.get_sliding_windows_cached_dir(train_dataset.get_name())
    shutil.rmtree(dirname)
    dirname = config.get_sliding_windows_cached_dir(dataset.get_name())
    shutil.rmtree(dirname)

  if args.mode=='assemble_dpm_dets':
    policy = DatasetPolicy(dataset,train_dataset,sw)
    dets = policy.load_ext_detections(dataset,suffix='dpm_may25')

  if args.mode=='assemble_ctf_dets':
    policy = DatasetPolicy(dataset,train_dataset,sw)
    dets = policy.load_ext_detections(dataset,'ctf','ctf_default')
    dets = policy.load_ext_detections(dataset,'ctf','ctf_nohal')
    dets = policy.load_ext_detections(dataset,'ctf', 'ctf_halfsize')

  if args.mode=='evaluate_get_pos_windows':
    evaluate_get_pos_windows(train_dataset)
    return

  if args.mode=='window_stats':
    "Compute and plot the statistics of ground truth window parameters."
    results = SlidingWindows.get_dataset_window_stats(train_dataset,plot=True)

  if args.mode=='ctfdet':
    """Run Pedersoli's detector on the dataset and assemble into one Table."""
    run_pedersoli(dataset)

  if args.mode=='evaluate_jw':
    """
    Evaluate the jumping window approach by producing plots of recall vs.
    #windows.
    """
    # TODO hack: both sw and jw should subclass something like WindowGenerator
    jw = JumpingWindowsDetector(use_scale=True)
    sw.jw = jw
    #classes = dataset.classes
    classes = ['car']
#    classes = ['bicycle' ,'car','horse', 'sofa',\
#               'bird',  'chair',     'motorbike', 'train',\
#               'boat',  'cow',       'person',    'tvmonitor',\
#               'bottle','diningtable',  'pottedplant',\
#               'bus','dog'     ,'sheep']
    for cls_idx in range(comm_rank, len(classes), comm_size):
    #for cls in dataset.classes:
      cls = classes[cls_idx]
      dirname = config.get_jumping_windows_dir(dataset.get_name())
      filename = os.path.join(dirname,'%s'%cls)
      sw.evaluate_recall(cls, filename, metaparams=None, mode='jw', plot=True)
  
  if args.mode=='evaluate_jw_grid':
    """
    Evaluate the jumping window approach by producing plots of recall vs.
    #windows.
    """
    sw = SlidingWindows(dataset,train_dataset)
    jw = JumpingWindowsDetectorGrid()
    sw.jw = jw
    for cls in dataset.classes:
      dirname = config.get_jumping_windows_dir(dataset.get_name())
      filename = os.path.join(dirname,'%s'%cls)
      if os.path.isfile(config.data_dir + 'JumpingWindows/'+cls):
        sw.evaluate_recall(cls, filename, metaparams=None, mode='jw', plot=True)

  if args.mode=='train_svm':
    randomize = not os.path.exists('/home/tobibaum')
    
    d = Dataset('full_pascal_train')
    dtest = Dataset('full_pascal_val')  
    e = Extractor()  
    classes = config.pascal_classes  
    num_words = 3000
    iters = 5
    feature_type = 'dsift'
    codebook_samples = 15
    num_pos = 'max'
    testsize = 'max'
    if args.first_n:
      num_pos = args.first_n
      testsize = 1.5*num_pos
     
    kernel = args.kernel
    
    if comm_rank == 0:
      ut.makedirs(config.data_dir + 'features/' + feature_type + '/times/')
      ut.makedirs(config.data_dir + 'features/' + feature_type + '/codebooks/times/')
      ut.makedirs(config.data_dir + 'features/' + feature_type + '/svms/train_times/')
      
    for cls_idx in range(comm_rank, len(classes), comm_size): 
    #for cls in classes:
      cls = classes[cls_idx]
      codebook = e.get_codebook(d, feature_type)
      pos_arr = d.get_pos_windows(cls)
      
      neg_arr = d.get_neg_windows(pos_arr.shape[0], cls, max_overlap=0)
      
      if not num_pos == 'max':    
        if not randomize:
          pos_arr = pos_arr[:num_pos]
          neg_arr = pos_arr[:num_pos]
        else:
          rand = np.random.random_integers(0, pos_arr.shape[0] - 1, size=num_pos)
          pos_arr = pos_arr[rand]
          rand = np.random.random_integers(0, neg_arr.shape[0] - 1, size=num_pos)
          neg_arr = neg_arr[rand]     
      pos_table = Table(pos_arr, ['x','y','w','h','img_ind'])
      neg_table = Table(neg_arr, pos_table.cols)      
      train_with_hard_negatives(d, dtest,  num_words,codebook_samples,codebook,\
                                cls, pos_table, neg_table,feature_type, \
                                iterations=iters, kernel=kernel, L=2, \
                                testsize=testsize,randomize=randomize)

  if args.mode=='evaluate_metaparams':
    """
    Grid search over metaparams values for get_windows_new, with the AUC of
    recall vs. # windows evaluation.
    """
    sw.grid_search_over_metaparams()
    return

  if args.mode=='final_metaparams':
    dirname = config.get_sliding_windows_metaparams_dir(train_dataset.get_name())
    # currently these are the best auc/complexity params
    best_params_for_classes = [
        (62,15,12,'importance',0), #aeroplane
        (83,15,12,'importance',0), #bicycle
        (62,15,12,'importance',0), #bird
        (62,15,12,'importance',0), #boat
        (125,12,12,'importance',0), #bottle
        (83,12,9,'importance',0), #bus
        (125,15,9,'importance',0), #car
        (125,12,12,'linear',0), #cat
        (125,15,9,'importance',0), #chair
        (125,9,6,'importance',0), #cow
        (125,15,6,'linear',0), #diningtable
        (62,15,12,'importance',0), #dog
        (83,15,6,'importance',0), #horse
        (83,12,6,'importance',0), #motorbike
        (83,15,12,'importance',0), #person
        (83,15,6,'importance',0), #pottedplant
        (83,15,12,'importance',0), #sheep
        (83,9,6,'importance',0), #sofa
        (62,12,6,'importance',0), #train
        (62,12,12,'importance',0), #tvmonitor
        (125,9,12,'importance',0) #all
        ]
    # ACTUALLY THEY ARE ALL THE SAME!
    cheap_params = (62, 9, 6, 'importance', 0)
    for i in range(comm_rank,dataset.num_classes(),comm_size):
      cls = dataset.classes[i]
      best_params = best_params_for_classes[i]
      #samples,num_scales,num_ratios,mode,priority,cls = cheap_params

      metaparams = {
        'samples_per_500px': samples,
        'num_scales': num_scales,
        'num_ratios': num_ratios,
        'mode': mode,
        'priority': 0 }
      filename = '%s_%d_%d_%d_%s_%d'%(
          cls,
          metaparams['samples_per_500px'],
          metaparams['num_scales'],
          metaparams['num_ratios'],
          metaparams['mode'],
          metaparams['priority'])
      filename = os.path.join(dirname,filename)

      tables = sw.evaluate_recall(cls,filename,metaparams,'sw',plot=True,force=False)

      metaparams = {
        'samples_per_500px': samples,
        'num_scales': num_scales,
        'num_ratios': num_ratios,
        'mode': mode,
        'priority': 1 }
      filename = '%s_%d_%d_%d_%s_%d'%(
          cls,
          metaparams['samples_per_500px'],
          metaparams['num_scales'],
          metaparams['num_ratios'],
          metaparams['mode'],
          metaparams['priority'])
      filename = os.path.join(dirname,filename)

      tables = sw.evaluate_recall(cls,filename,metaparams,'sw',plot=True,force=False)
    return

  if args.mode=='extract_sift':
    e=Extractor()
    e.extract_all(['sift'], ['full_pascal_trainval','full_pascal_test'], 0, 0) 
    
  if args.mode=='extract_assignments':
    e=Extractor()
    feature_type = 'sift'
    for image_set in ['full_pascal_trainval','full_pascal_test']:
      d = Dataset(image_set)
      codebook = e.get_codebook(d, feature_type)  
      print 'codebook loaded'
      
      for img_ind in range(comm_rank,len(d.images),comm_size):
        img = d.images[img_ind]
      #for img in d.images:
        e.get_assignments(np.array([0,0,img.size[0],img.size[1]]), feature_type, \
                          codebook, img)

  if args.mode=='extract_codebook':
    d = Dataset('full_pascal_trainval')
    e = Extractor()
    codebook = e.get_codebook(d, args.feature_type)
Пример #7
0
 def get_windows(self,window_params,with_time=False):
   "Return all windows that can be generated with given params."
   return SlidingWindows.get_windows(self,None,window_params,with_time)