def update(self, data, config): ts = sorted(zip(data['dates'], data['values'])) self.current.SetLabel('{0}'.format(ts[-1][1])) min = timeseries.min(ts)[0] self.min_val.SetLabel('{0} ({1})'. format(min[1], min[0].strftime('%Y-%m-%d'))) max = timeseries.max(ts)[0] self.max_val.SetLabel('{0} ({1})'. format(max[1], max[0].strftime('%Y-%m-%d'))) self.ave.SetLabel('{0:.2f}'.format(timeseries.mean(ts)[0][1])) self.sd.SetLabel('{0:.2f}'.format(timeseries.sd(ts)[0][1])) self.zscore.SetLabel('{0:.2f}'. format(timeseries.zscore(ts)[0][1]))
def test_min(self): ts = [ (datetime.datetime(2013, 10, 31), 4.53), (datetime.datetime(2013, 11, 1), 3.87), (datetime.datetime(2013, 11, 4), -2.89), (datetime.datetime(2013, 11, 5), -0.18), (datetime.datetime(2013, 11, 6), 1.36), (datetime.datetime(2013, 11, 7), 6.32), (datetime.datetime(2013, 11, 8), 0.51), (datetime.datetime(2013, 11, 11), -5.98), (datetime.datetime(2013, 11, 12), -6.30), (datetime.datetime(2013, 11, 13), 0.51), ] ts_min = timeseries.min(ts) expected_result = [(datetime.datetime(2013, 11, 12), -6.30)] self.assertEqual(ts_min, expected_result)