def test_reduce(): start_tensor = torch.rand(50, 40, 30) assert torch.allclose(reduce(start_tensor, 'elementwise_mean'), torch.mean(start_tensor)) assert torch.allclose(reduce(start_tensor, 'sum'), torch.sum(start_tensor)) assert torch.allclose(reduce(start_tensor, 'none'), start_tensor) with pytest.raises(ValueError): reduce(start_tensor, 'error_reduction')
def _psnr_compute( sum_squared_error: Tensor, n_obs: Tensor, data_range: Tensor, base: float = 10.0, reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean", ) -> Tensor: """Computes peak signal-to-noise ratio. Args: sum_squared_error: Sum of square of errors over all observations n_obs: Number of predictions or observations data_range: the range of the data. If None, it is determined from the data (max - min). ``data_range`` must be given when ``dim`` is not None. base: a base of a logarithm to use reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'`` or ``None``: no reduction will be applied Example: >>> preds = torch.tensor([[0.0, 1.0], [2.0, 3.0]]) >>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]]) >>> data_range = target.max() - target.min() >>> sum_squared_error, n_obs = _psnr_update(preds, target) >>> _psnr_compute(sum_squared_error, n_obs, data_range) tensor(2.5527) """ psnr_base_e = 2 * torch.log(data_range) - torch.log( sum_squared_error / n_obs) psnr_vals = psnr_base_e * (10 / torch.log(tensor(base))) return reduce(psnr_vals, reduction=reduction)
def dice_score( pred: torch.Tensor, target: torch.Tensor, bg: bool = False, nan_score: float = 0.0, no_fg_score: float = 0.0, reduction: str = 'elementwise_mean', ) -> torch.Tensor: """ .. deprecated:: Use :func:`torchmetrics.functional.dice_score`. Will be removed in v1.4.0. """ num_classes = pred.shape[1] bg = (1 - int(bool(bg))) scores = torch.zeros(num_classes - bg, device=pred.device, dtype=torch.float32) for i in range(bg, num_classes): if not (target == i).any(): # no foreground class scores[i - bg] += no_fg_score continue tp, fp, tn, fn, sup = stat_scores(pred=pred, target=target, class_index=i) denom = (2 * tp + fp + fn).to(torch.float) # nan result score_cls = (2 * tp).to(torch.float) / denom if torch.is_nonzero( denom) else nan_score scores[i - bg] += score_cls return reduce(scores, reduction=reduction)
def dice_score( pred: torch.Tensor, target: torch.Tensor, bg: bool = False, nan_score: float = 0.0, no_fg_score: float = 0.0, reduction: str = 'elementwise_mean', ) -> torch.Tensor: """ Compute dice score from prediction scores Args: pred: estimated probabilities target: ground-truth labels bg: whether to also compute dice for the background nan_score: score to return, if a NaN occurs during computation no_fg_score: score to return, if no foreground pixel was found in target reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'``: no reduction will be applied Return: Tensor containing dice score Example: >>> from pytorch_lightning.metrics.functional import dice_score >>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05], ... [0.05, 0.85, 0.05, 0.05], ... [0.05, 0.05, 0.85, 0.05], ... [0.05, 0.05, 0.05, 0.85]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> dice_score(pred, target) tensor(0.3333) """ num_classes = pred.shape[1] bg = (1 - int(bool(bg))) scores = torch.zeros(num_classes - bg, device=pred.device, dtype=torch.float32) for i in range(bg, num_classes): if not (target == i).any(): # no foreground class scores[i - bg] += no_fg_score continue tp, fp, tn, fn, sup = stat_scores(pred=pred, target=target, class_index=i) denom = (2 * tp + fp + fn).to(torch.float) # nan result score_cls = (2 * tp).to(torch.float) / denom if torch.is_nonzero( denom) else nan_score scores[i - bg] += score_cls return reduce(scores, reduction=reduction)
def _psnr_compute( sum_squared_error: torch.Tensor, n_obs: torch.Tensor, data_range: torch.Tensor, base: float = 10.0, reduction: str = 'elementwise_mean', ) -> torch.Tensor: psnr_base_e = 2 * torch.log(data_range) - torch.log(sum_squared_error / n_obs) psnr = psnr_base_e * (10 / torch.log(torch.tensor(base))) return reduce(psnr, reduction=reduction)
def _iou_from_confmat( confmat: torch.Tensor, num_classes: int, ignore_index: Optional[int] = None, absent_score: float = 0.0, reduction: str = 'elementwise_mean', ): intersection = torch.diag(confmat) union = confmat.sum(0) + confmat.sum(1) - intersection # If this class is absent in both target AND pred (union == 0), then use the absent_score for this class. scores = intersection.float() / union.float() scores[union == 0] = absent_score # Remove the ignored class index from the scores. if ignore_index is not None and ignore_index >= 0 and ignore_index < num_classes: scores = torch.cat([ scores[:ignore_index], scores[ignore_index + 1:], ]) return reduce(scores, reduction=reduction)
def _ssim_compute( preds: torch.Tensor, target: torch.Tensor, kernel_size: Sequence[int] = (11, 11), sigma: Sequence[float] = (1.5, 1.5), reduction: str = "elementwise_mean", data_range: Optional[float] = None, k1: float = 0.01, k2: float = 0.03, ): if len(kernel_size) != 2 or len(sigma) != 2: raise ValueError( "Expected `kernel_size` and `sigma` to have the length of two." f" Got kernel_size: {len(kernel_size)} and sigma: {len(sigma)}.") if any(x % 2 == 0 or x <= 0 for x in kernel_size): raise ValueError( f"Expected `kernel_size` to have odd positive number. Got {kernel_size}." ) if any(y <= 0 for y in sigma): raise ValueError( f"Expected `sigma` to have positive number. Got {sigma}.") if data_range is None: data_range = max(preds.max() - preds.min(), target.max() - target.min()) c1 = pow(k1 * data_range, 2) c2 = pow(k2 * data_range, 2) device = preds.device channel = preds.size(1) dtype = preds.dtype kernel = _gaussian_kernel(channel, kernel_size, sigma, dtype, device) pad_w = (kernel_size[0] - 1) // 2 pad_h = (kernel_size[1] - 1) // 2 preds = F.pad(preds, (pad_w, pad_w, pad_h, pad_h), mode='reflect') target = F.pad(target, (pad_w, pad_w, pad_h, pad_h), mode='reflect') input_list = torch.cat((preds, target, preds * preds, target * target, preds * target)) # (5 * B, C, H, W) outputs = F.conv2d(input_list, kernel, groups=channel) output_list = [ outputs[x * preds.size(0):(x + 1) * preds.size(0)] for x in range(len(outputs)) ] mu_pred_sq = output_list[0].pow(2) mu_target_sq = output_list[1].pow(2) mu_pred_target = output_list[0] * output_list[1] sigma_pred_sq = output_list[2] - mu_pred_sq sigma_target_sq = output_list[3] - mu_target_sq sigma_pred_target = output_list[4] - mu_pred_target upper = 2 * sigma_pred_target + c2 lower = sigma_pred_sq + sigma_target_sq + c2 ssim_idx = ((2 * mu_pred_target + c1) * upper) / ( (mu_pred_sq + mu_target_sq + c1) * lower) ssim_idx = ssim_idx[..., pad_h:-pad_h, pad_w:-pad_w] return reduce(ssim_idx, reduction)