def test_reduce():
    start_tensor = torch.rand(50, 40, 30)

    assert torch.allclose(reduce(start_tensor, 'elementwise_mean'),
                          torch.mean(start_tensor))
    assert torch.allclose(reduce(start_tensor, 'sum'), torch.sum(start_tensor))
    assert torch.allclose(reduce(start_tensor, 'none'), start_tensor)

    with pytest.raises(ValueError):
        reduce(start_tensor, 'error_reduction')
示例#2
0
文件: psnr.py 项目: Borda/metrics
def _psnr_compute(
    sum_squared_error: Tensor,
    n_obs: Tensor,
    data_range: Tensor,
    base: float = 10.0,
    reduction: Literal["elementwise_mean", "sum", "none",
                       None] = "elementwise_mean",
) -> Tensor:
    """Computes peak signal-to-noise ratio.

    Args:
        sum_squared_error: Sum of square of errors over all observations
        n_obs: Number of predictions or observations
        data_range: the range of the data. If None, it is determined from the data (max - min).
           ``data_range`` must be given when ``dim`` is not None.
        base: a base of a logarithm to use
        reduction: a method to reduce metric score over labels.

            - ``'elementwise_mean'``: takes the mean (default)
            - ``'sum'``: takes the sum
            - ``'none'`` or ``None``: no reduction will be applied

    Example:
        >>> preds = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
        >>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
        >>> data_range = target.max() - target.min()
        >>> sum_squared_error, n_obs = _psnr_update(preds, target)
        >>> _psnr_compute(sum_squared_error, n_obs, data_range)
        tensor(2.5527)
    """

    psnr_base_e = 2 * torch.log(data_range) - torch.log(
        sum_squared_error / n_obs)
    psnr_vals = psnr_base_e * (10 / torch.log(tensor(base)))
    return reduce(psnr_vals, reduction=reduction)
示例#3
0
def dice_score(
    pred: torch.Tensor,
    target: torch.Tensor,
    bg: bool = False,
    nan_score: float = 0.0,
    no_fg_score: float = 0.0,
    reduction: str = 'elementwise_mean',
) -> torch.Tensor:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.dice_score`. Will be removed in v1.4.0.
    """
    num_classes = pred.shape[1]
    bg = (1 - int(bool(bg)))
    scores = torch.zeros(num_classes - bg,
                         device=pred.device,
                         dtype=torch.float32)
    for i in range(bg, num_classes):
        if not (target == i).any():
            # no foreground class
            scores[i - bg] += no_fg_score
            continue

        tp, fp, tn, fn, sup = stat_scores(pred=pred,
                                          target=target,
                                          class_index=i)
        denom = (2 * tp + fp + fn).to(torch.float)
        # nan result
        score_cls = (2 * tp).to(torch.float) / denom if torch.is_nonzero(
            denom) else nan_score

        scores[i - bg] += score_cls
    return reduce(scores, reduction=reduction)
示例#4
0
def dice_score(
    pred: torch.Tensor,
    target: torch.Tensor,
    bg: bool = False,
    nan_score: float = 0.0,
    no_fg_score: float = 0.0,
    reduction: str = 'elementwise_mean',
) -> torch.Tensor:
    """
    Compute dice score from prediction scores

    Args:
        pred: estimated probabilities
        target: ground-truth labels
        bg: whether to also compute dice for the background
        nan_score: score to return, if a NaN occurs during computation
        no_fg_score: score to return, if no foreground pixel was found in target
        reduction: a method to reduce metric score over labels.

            - ``'elementwise_mean'``: takes the mean (default)
            - ``'sum'``: takes the sum
            - ``'none'``: no reduction will be applied

    Return:
        Tensor containing dice score

    Example:

        >>> from pytorch_lightning.metrics.functional import dice_score
        >>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
        ...                      [0.05, 0.85, 0.05, 0.05],
        ...                      [0.05, 0.05, 0.85, 0.05],
        ...                      [0.05, 0.05, 0.05, 0.85]])
        >>> target = torch.tensor([0, 1, 3, 2])
        >>> dice_score(pred, target)
        tensor(0.3333)

    """
    num_classes = pred.shape[1]
    bg = (1 - int(bool(bg)))
    scores = torch.zeros(num_classes - bg,
                         device=pred.device,
                         dtype=torch.float32)
    for i in range(bg, num_classes):
        if not (target == i).any():
            # no foreground class
            scores[i - bg] += no_fg_score
            continue

        tp, fp, tn, fn, sup = stat_scores(pred=pred,
                                          target=target,
                                          class_index=i)
        denom = (2 * tp + fp + fn).to(torch.float)
        # nan result
        score_cls = (2 * tp).to(torch.float) / denom if torch.is_nonzero(
            denom) else nan_score

        scores[i - bg] += score_cls
    return reduce(scores, reduction=reduction)
示例#5
0
def _psnr_compute(
    sum_squared_error: torch.Tensor,
    n_obs: torch.Tensor,
    data_range: torch.Tensor,
    base: float = 10.0,
    reduction: str = 'elementwise_mean',
) -> torch.Tensor:
    psnr_base_e = 2 * torch.log(data_range) - torch.log(sum_squared_error / n_obs)
    psnr = psnr_base_e * (10 / torch.log(torch.tensor(base)))
    return reduce(psnr, reduction=reduction)
示例#6
0
def _iou_from_confmat(
    confmat: torch.Tensor,
    num_classes: int,
    ignore_index: Optional[int] = None,
    absent_score: float = 0.0,
    reduction: str = 'elementwise_mean',
):
    intersection = torch.diag(confmat)
    union = confmat.sum(0) + confmat.sum(1) - intersection

    # If this class is absent in both target AND pred (union == 0), then use the absent_score for this class.
    scores = intersection.float() / union.float()
    scores[union == 0] = absent_score

    # Remove the ignored class index from the scores.
    if ignore_index is not None and ignore_index >= 0 and ignore_index < num_classes:
        scores = torch.cat([
            scores[:ignore_index],
            scores[ignore_index + 1:],
        ])
    return reduce(scores, reduction=reduction)
示例#7
0
def _ssim_compute(
    preds: torch.Tensor,
    target: torch.Tensor,
    kernel_size: Sequence[int] = (11, 11),
    sigma: Sequence[float] = (1.5, 1.5),
    reduction: str = "elementwise_mean",
    data_range: Optional[float] = None,
    k1: float = 0.01,
    k2: float = 0.03,
):
    if len(kernel_size) != 2 or len(sigma) != 2:
        raise ValueError(
            "Expected `kernel_size` and `sigma` to have the length of two."
            f" Got kernel_size: {len(kernel_size)} and sigma: {len(sigma)}.")

    if any(x % 2 == 0 or x <= 0 for x in kernel_size):
        raise ValueError(
            f"Expected `kernel_size` to have odd positive number. Got {kernel_size}."
        )

    if any(y <= 0 for y in sigma):
        raise ValueError(
            f"Expected `sigma` to have positive number. Got {sigma}.")

    if data_range is None:
        data_range = max(preds.max() - preds.min(),
                         target.max() - target.min())

    c1 = pow(k1 * data_range, 2)
    c2 = pow(k2 * data_range, 2)
    device = preds.device

    channel = preds.size(1)
    dtype = preds.dtype
    kernel = _gaussian_kernel(channel, kernel_size, sigma, dtype, device)
    pad_w = (kernel_size[0] - 1) // 2
    pad_h = (kernel_size[1] - 1) // 2

    preds = F.pad(preds, (pad_w, pad_w, pad_h, pad_h), mode='reflect')
    target = F.pad(target, (pad_w, pad_w, pad_h, pad_h), mode='reflect')

    input_list = torch.cat((preds, target, preds * preds, target * target,
                            preds * target))  # (5 * B, C, H, W)
    outputs = F.conv2d(input_list, kernel, groups=channel)
    output_list = [
        outputs[x * preds.size(0):(x + 1) * preds.size(0)]
        for x in range(len(outputs))
    ]

    mu_pred_sq = output_list[0].pow(2)
    mu_target_sq = output_list[1].pow(2)
    mu_pred_target = output_list[0] * output_list[1]

    sigma_pred_sq = output_list[2] - mu_pred_sq
    sigma_target_sq = output_list[3] - mu_target_sq
    sigma_pred_target = output_list[4] - mu_pred_target

    upper = 2 * sigma_pred_target + c2
    lower = sigma_pred_sq + sigma_target_sq + c2

    ssim_idx = ((2 * mu_pred_target + c1) * upper) / (
        (mu_pred_sq + mu_target_sq + c1) * lower)
    ssim_idx = ssim_idx[..., pad_h:-pad_h, pad_w:-pad_w]

    return reduce(ssim_idx, reduction)