def find_nvecs_old(self): N = self.N track = self.cline nvecs = [] # new_track.append(track[0, :]) nvec = lib.theta_to_xy(np.pi/2 + lib.get_bearing(track[0, :], track[1, :])) nvecs.append(nvec) for i in range(1, len(track)-1): pt1 = track[i-1] pt2 = track[min((i, N)), :] pt3 = track[min((i+1, N-1)), :] th1 = lib.get_bearing(pt1, pt2) th2 = lib.get_bearing(pt2, pt3) if th1 == th2: th = th1 else: dth = lib.sub_angles_complex(th1, th2) / 2 th = lib.add_angles_complex(th2, dth) new_th = th + np.pi/2 nvec = lib.theta_to_xy(new_th) nvecs.append(nvec) nvec = lib.theta_to_xy(np.pi/2 + lib.get_bearing(track[-2, :], track[-1, :])) nvecs.append(nvec) self.nvecs = np.array(nvecs)
def convert_pts_s_th(pts): N = len(pts) s_i = np.zeros(N-1) th_i = np.zeros(N-1) for i in range(N-1): s_i[i] = lib.get_distance(pts[i], pts[i+1]) th_i[i] = lib.get_bearing(pts[i], pts[i+1]) return s_i, th_i
def cth_reward(self, s_p): pt_i, pt_ii, d_i, d_ii = find_closest_pt(s_p[0:2], self.wpts) d = lib.get_distance(pt_i, pt_ii) d_c = get_tiangle_h(d_i, d_ii, d) / self.dis_scale th_ref = lib.get_bearing(pt_i, pt_ii) th = s_p[2] d_th = abs(lib.sub_angles_complex(th_ref, th)) v_scale = s_p[3] / self.max_v r = self.mh * np.cos(d_th) * v_scale - self.md * d_c return r
def transform_obs(self, obs): cur_v = [obs[3] / self.max_v] cur_d = [obs[4] / self.max_d] th_target = lib.get_bearing(obs[0:2], self.env_map.end) alpha = lib.sub_angles_complex(th_target, obs[2]) th_scale = [(alpha) * 2 / np.pi] scan = self.scan_sim.get_scan(obs[0], obs[1], obs[2]) nn_obs = np.concatenate([cur_v, cur_d, th_scale, scan]) return nn_obs
def find_centerline(self, show=True): dt = self.dt d_search = 0.8 n_search = 11 dth = (np.pi * 4/5) / (n_search-1) # makes a list of search locations search_list = [] for i in range(n_search): th = -np.pi/2 + dth * i x = -np.sin(th) * d_search y = np.cos(th) * d_search loc = [x, y] search_list.append(loc) pt = start = np.array([self.conf.sx, self.conf.sy]) self.cline = [pt] th = self.stheta while (lib.get_distance(pt, start) > d_search/2 or len(self.cline) < 10) and len(self.cline) < 500: vals = [] self.search_space = [] for i in range(n_search): d_loc = lib.transform_coords(search_list[i], -th) search_loc = lib.add_locations(pt, d_loc) self.search_space.append(search_loc) x, y = self.xy_to_row_column(search_loc) val = dt[y, x] vals.append(val) ind = np.argmax(vals) d_loc = lib.transform_coords(search_list[ind], -th) pt = lib.add_locations(pt, d_loc) self.cline.append(pt) if show: self.plot_raceline_finding() th = lib.get_bearing(self.cline[-2], pt) print(f"Adding pt: {pt}") self.cline = np.array(self.cline) self.N = len(self.cline) print(f"Raceline found --> n: {len(self.cline)}") if show: self.plot_raceline_finding(True) self.plot_raceline_finding(False)
def get_curvature(pos_history): n = len(pos_history) ths = [ lib.get_bearing(pos_history[i], pos_history[i + 1]) for i in range(n - 1) ] dth = [ abs(lib.sub_angles_complex(ths[i], ths[i + 1])) for i in range(n - 2) ] total_curve = np.sum(dth) avg_curve = np.mean(dth) print(f"Total Curvatue: {total_curve}, Avg: {avg_curve}") return total_curve
def __call__(self, s, a, s_p, r, dev): if r == -1: return r else: pt_i, pt_ii, d_i, d_ii = find_closest_pt(s_p[0:2], self.wpts) d = lib.get_distance(pt_i, pt_ii) d_c = get_tiangle_h(d_i, d_ii, d) / self.dis_scale th_ref = lib.get_bearing(pt_i, pt_ii) th = s_p[2] d_th = abs(lib.sub_angles_complex(th_ref, th)) v_scale = s_p[3] / self.max_v new_r = self.mh * np.cos(d_th) * v_scale - self.md * d_c return new_r + r
def MinCurvatureTrajectory(pts, nvecs, ws): """ This function uses optimisation to minimise the curvature of the path """ w_min = - ws[:, 0] * 0.9 w_max = ws[:, 1] * 0.9 th_ns = [lib.get_bearing([0, 0], nvecs[i, 0:2]) for i in range(len(nvecs))] N = len(pts) n_f_a = ca.MX.sym('n_f', N) n_f = ca.MX.sym('n_f', N-1) th_f = ca.MX.sym('n_f', N-1) x0_f = ca.MX.sym('x0_f', N-1) x1_f = ca.MX.sym('x1_f', N-1) y0_f = ca.MX.sym('y0_f', N-1) y1_f = ca.MX.sym('y1_f', N-1) th1_f = ca.MX.sym('y1_f', N-1) th2_f = ca.MX.sym('y1_f', N-1) th1_f1 = ca.MX.sym('y1_f', N-2) th2_f1 = ca.MX.sym('y1_f', N-2) o_x_s = ca.Function('o_x', [n_f], [pts[:-1, 0] + nvecs[:-1, 0] * n_f]) o_y_s = ca.Function('o_y', [n_f], [pts[:-1, 1] + nvecs[:-1, 1] * n_f]) o_x_e = ca.Function('o_x', [n_f], [pts[1:, 0] + nvecs[1:, 0] * n_f]) o_y_e = ca.Function('o_y', [n_f], [pts[1:, 1] + nvecs[1:, 1] * n_f]) dis = ca.Function('dis', [x0_f, x1_f, y0_f, y1_f], [ca.sqrt((x1_f-x0_f)**2 + (y1_f-y0_f)**2)]) track_length = ca.Function('length', [n_f_a], [dis(o_x_s(n_f_a[:-1]), o_x_e(n_f_a[1:]), o_y_s(n_f_a[:-1]), o_y_e(n_f_a[1:]))]) real = ca.Function('real', [th1_f, th2_f], [ca.cos(th1_f)*ca.cos(th2_f) + ca.sin(th1_f)*ca.sin(th2_f)]) im = ca.Function('im', [th1_f, th2_f], [-ca.cos(th1_f)*ca.sin(th2_f) + ca.sin(th1_f)*ca.cos(th2_f)]) sub_cmplx = ca.Function('a_cpx', [th1_f, th2_f], [ca.atan2(im(th1_f, th2_f),real(th1_f, th2_f))]) get_th_n = ca.Function('gth', [th_f], [sub_cmplx(ca.pi*np.ones(N-1), sub_cmplx(th_f, th_ns[:-1]))]) d_n = ca.Function('d_n', [n_f_a, th_f], [track_length(n_f_a)/ca.tan(get_th_n(th_f))]) # objective real1 = ca.Function('real1', [th1_f1, th2_f1], [ca.cos(th1_f1)*ca.cos(th2_f1) + ca.sin(th1_f1)*ca.sin(th2_f1)]) im1 = ca.Function('im1', [th1_f1, th2_f1], [-ca.cos(th1_f1)*ca.sin(th2_f1) + ca.sin(th1_f1)*ca.cos(th2_f1)]) sub_cmplx1 = ca.Function('a_cpx1', [th1_f1, th2_f1], [ca.atan2(im1(th1_f1, th2_f1),real1(th1_f1, th2_f1))]) # define symbols n = ca.MX.sym('n', N) th = ca.MX.sym('th', N-1) nlp = {\ 'x': ca.vertcat(n, th), 'f': ca.sumsqr(sub_cmplx1(th[1:], th[:-1])), # 'f': ca.sumsqr(track_length(n)), 'g': ca.vertcat( # dynamic constraints n[1:] - (n[:-1] + d_n(n, th)), # boundary constraints n[0], #th[0], n[-1], #th[-1], ) \ } # S = ca.nlpsol('S', 'ipopt', nlp, {'ipopt':{'print_level':5}}) S = ca.nlpsol('S', 'ipopt', nlp, {'ipopt':{'print_level':0}}) ones = np.ones(N) n0 = ones*0 th0 = [] for i in range(N-1): th_00 = lib.get_bearing(pts[i, 0:2], pts[i+1, 0:2]) th0.append(th_00) th0 = np.array(th0) x0 = ca.vertcat(n0, th0) lbx = list(w_min) + [-np.pi]*(N-1) ubx = list(w_max) + [np.pi]*(N-1) r = S(x0=x0, lbg=0, ubg=0, lbx=lbx, ubx=ubx) x_opt = r['x'] n_set = np.array(x_opt[:N]) # thetas = np.array(x_opt[1*N:2*(N-1)]) return n_set