def test(informal): if torch.cuda.is_available(): device = torch.device('cuda:3') print(f'Using GPU device: {device}') else: device = torch.device('cpu') print(f'GPU is not available, using CPU device {device}') test_config = {'batch_size': 5, 'epoch': 29, 'save_dir': './checkpoints/'} test_dataset = FormalDataset(informal) dataloader = DataLoader(test_dataset, batch_size=test_config['batch_size'], shuffle=False, num_workers=4, drop_last=False) config = DistilBertConfig() model = DistilBertForMaskedLM(config) load_model(test_config['epoch'], model, test_config['save_dir']) model.to(device) model.eval() with torch.no_grad(): for i, batch in tqdm(enumerate(dataloader)): inp = batch['input_ids'].to(device) attn = batch['attention_mask'].to(device) logits = model(input_ids=inp, attention_mask=attn)[0] preds = decode_text(test_dataset.tokenizer, logits) for seq in preds: with open('test_pred.txt', 'a') as res_file: res_file.writelines(seq + '\n')
def create_and_check_distilbert_for_masked_lm( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DistilBertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_distilbert_for_masked_lm( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DistilBertForMaskedLM(config=config) model.to(torch_device) model.eval() loss, prediction_scores = model(input_ids, attention_mask=input_mask, masked_lm_labels=token_labels) result = { "loss": loss, "prediction_scores": prediction_scores, } self.parent.assertListEqual( list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size] ) self.check_loss_output(result)
def main(): parser = argparse.ArgumentParser(description="Training") parser.add_argument( "--dump_path", type=str, required=True, help="The output directory (log, checkpoints, parameters, etc.)") parser.add_argument( "--data_file", type=str, required=True, help= "The binarized file (tokenized + tokens_to_ids) and grouped by sequence." ) parser.add_argument("--token_counts", type=str, required=True, help="The token counts in the data_file for MLM.") parser.add_argument("--force", action='store_true', help="Overwrite dump_path if it already exists.") parser.add_argument("--vocab_size", default=30522, type=int, help="The vocabulary size.") parser.add_argument( "--max_position_embeddings", default=512, type=int, help="Maximum sequence length we can model (including [CLS] and [SEP])." ) parser.add_argument( "--sinusoidal_pos_embds", action='store_false', help= "If true, the position embeddings are simply fixed with sinusoidal embeddings." ) parser.add_argument("--n_layers", default=6, type=int, help="Number of Transformer blocks.") parser.add_argument("--n_heads", default=12, type=int, help="Number of heads in the self-attention module.") parser.add_argument( "--dim", default=768, type=int, help="Dimension through the network. Must be divisible by n_heads") parser.add_argument("--hidden_dim", default=3072, type=int, help="Intermediate dimension in the FFN.") parser.add_argument("--dropout", default=0.1, type=float, help="Dropout.") parser.add_argument("--attention_dropout", default=0.1, type=float, help="Dropout in self-attention.") parser.add_argument("--activation", default='gelu', type=str, help="Activation to use in self-attention") parser.add_argument( "--tie_weights_", action='store_false', help= "If true, we tie the embeddings matrix with the projection over the vocabulary matrix. Default is true." ) parser.add_argument("--from_pretrained_weights", default=None, type=str, help="Load student initialization checkpoint.") parser.add_argument( "--from_pretrained_config", default=None, type=str, help="Load student initialization architecture config.") parser.add_argument("--teacher_type", default="bert", choices=["bert", "roberta"], help="Teacher type (BERT, RoBERTa).") parser.add_argument("--teacher_name", default="bert-base-uncased", type=str, help="The teacher model.") parser.add_argument("--temperature", default=2., type=float, help="Temperature for the softmax temperature.") parser.add_argument( "--alpha_ce", default=0.5, type=float, help="Linear weight for the distillation loss. Must be >=0.") parser.add_argument("--alpha_mlm", default=0.5, type=float, help="Linear weight for the MLM loss. Must be >=0.") parser.add_argument("--alpha_mse", default=0.0, type=float, help="Linear weight of the MSE loss. Must be >=0.") parser.add_argument( "--alpha_cos", default=0.0, type=float, help="Linear weight of the cosine embedding loss. Must be >=0.") parser.add_argument( "--mlm_mask_prop", default=0.15, type=float, help="Proportion of tokens for which we need to make a prediction.") parser.add_argument("--word_mask", default=0.8, type=float, help="Proportion of tokens to mask out.") parser.add_argument("--word_keep", default=0.1, type=float, help="Proportion of tokens to keep.") parser.add_argument("--word_rand", default=0.1, type=float, help="Proportion of tokens to randomly replace.") parser.add_argument( "--mlm_smoothing", default=0.7, type=float, help= "Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." ) parser.add_argument( "--restrict_ce_to_mask", action='store_true', help= "If true, compute the distilation loss only the [MLM] prediction distribution." ) parser.add_argument("--n_epoch", type=int, default=3, help="Number of pass on the whole dataset.") parser.add_argument("--batch_size", type=int, default=5, help="Batch size (for each process).") parser.add_argument( "--tokens_per_batch", type=int, default=-1, help= "If specified, modify the batches so that they have approximately this number of tokens." ) parser.add_argument( "--shuffle", action='store_false', help="If true, shuffle the sequence order. Default is true.") parser.add_argument( "--group_by_size", action='store_false', help= "If true, group sequences that have similar length into the same batch. Default is true." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=50, help="Gradient accumulation for larger training batches.") parser.add_argument("--warmup_prop", default=0.05, type=float, help="Linear warmup proportion.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--learning_rate", default=5e-4, type=float, help="The initial learning rate for Adam.") parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=5.0, type=float, help="Max gradient norm.") parser.add_argument("--initializer_range", default=0.02, type=float, help="Random initialization range.") parser.add_argument( '--fp16', action='store_true', help= "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" ) parser.add_argument( '--fp16_opt_level', type=str, default='O1', help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--n_gpu", type=int, default=1, help="Number of GPUs in the node.") parser.add_argument("--local_rank", type=int, default=-1, help="Distributed training - Local rank") parser.add_argument("--seed", type=int, default=56, help="Random seed") parser.add_argument("--log_interval", type=int, default=500, help="Tensorboard logging interval.") parser.add_argument("--checkpoint_interval", type=int, default=4000, help="Checkpoint interval.") args = parser.parse_args() ## ARGS ## init_gpu_params(args) set_seed(args) if args.is_master: if os.path.exists(args.dump_path): if not args.force: raise ValueError( f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite it' 'Use `--force` if you want to overwrite it') else: shutil.rmtree(args.dump_path) if not os.path.exists(args.dump_path): os.makedirs(args.dump_path) logger.info( f'Experiment will be dumped and logged in {args.dump_path}') ### SAVE PARAMS ### logger.info(f'Param: {args}') with open(os.path.join(args.dump_path, 'parameters.json'), 'w') as f: json.dump(vars(args), f, indent=4) git_log(args.dump_path) assert (args.from_pretrained_weights is None and args.from_pretrained_config is None) or \ (args.from_pretrained_weights is not None and args.from_pretrained_config is not None) ### TOKENIZER ### if args.teacher_type == 'bert': tokenizer = BertTokenizer.from_pretrained(args.teacher_name) elif args.teacher_type == 'roberta': tokenizer = RobertaTokenizer.from_pretrained(args.teacher_name) special_tok_ids = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): idx = tokenizer.all_special_tokens.index(tok_symbol) special_tok_ids[tok_name] = tokenizer.all_special_ids[idx] logger.info(f'Special tokens {special_tok_ids}') args.special_tok_ids = special_tok_ids ## DATA LOADER ## logger.info(f'Loading data from {args.data_file}') with open(args.data_file, 'rb') as fp: data = pickle.load(fp) assert os.path.isfile(args.token_counts) logger.info( f'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts, 'rb') as fp: counts = pickle.load(fp) assert len(counts) == args.vocab_size token_probs = np.maximum(counts, 1)**-args.mlm_smoothing for idx in special_tok_ids.values(): token_probs[idx] = 0. # do not predict special tokens token_probs = torch.from_numpy(token_probs) train_dataloader = Dataset(params=args, data=data) logger.info(f'Data loader created.') ## STUDENT ## if args.from_pretrained_weights is not None: assert os.path.isfile(args.from_pretrained_weights) assert os.path.isfile(args.from_pretrained_config) logger.info( f'Loading pretrained weights from {args.from_pretrained_weights}') logger.info( f'Loading pretrained config from {args.from_pretrained_config}') stu_architecture_config = DistilBertConfig.from_json_file( args.from_pretrained_config) stu_architecture_config.output_hidden_states = True student = DistilBertForMaskedLM.from_pretrained( args.from_pretrained_weights, config=stu_architecture_config) else: args.vocab_size_or_config_json_file = args.vocab_size stu_architecture_config = DistilBertConfig(**vars(args), output_hidden_states=True) student = DistilBertForMaskedLM(stu_architecture_config) if args.n_gpu > 0: student.to(f'cuda:{args.local_rank}') logger.info(f'Student loaded.') ## TEACHER ## if args.teacher_type == 'bert': teacher = BertForMaskedLM.from_pretrained(args.teacher_name, output_hidden_states=True) elif args.teacher_type == 'roberta': teacher = RobertaForMaskedLM.from_pretrained(args.teacher_name, output_hidden_states=True) if args.n_gpu > 0: teacher.to(f'cuda:{args.local_rank}') logger.info(f'Teacher loaded from {args.teacher_name}.') ## DISTILLER ## torch.cuda.empty_cache() distiller = Distiller(params=args, dataloader=train_dataloader, token_probs=token_probs, student=student, teacher=teacher) distiller.train() logger.info("Let's go get some drinks.")