Exemplo n.º 1
0
def test(informal):
    if torch.cuda.is_available():
        device = torch.device('cuda:3')
        print(f'Using GPU device: {device}')
    else:
        device = torch.device('cpu')
        print(f'GPU is not available, using CPU device {device}')

    test_config = {'batch_size': 5, 'epoch': 29, 'save_dir': './checkpoints/'}

    test_dataset = FormalDataset(informal)
    dataloader = DataLoader(test_dataset,
                            batch_size=test_config['batch_size'],
                            shuffle=False,
                            num_workers=4,
                            drop_last=False)
    config = DistilBertConfig()
    model = DistilBertForMaskedLM(config)
    load_model(test_config['epoch'], model, test_config['save_dir'])
    model.to(device)
    model.eval()
    with torch.no_grad():
        for i, batch in tqdm(enumerate(dataloader)):
            inp = batch['input_ids'].to(device)
            attn = batch['attention_mask'].to(device)
            logits = model(input_ids=inp, attention_mask=attn)[0]
            preds = decode_text(test_dataset.tokenizer, logits)
            for seq in preds:
                with open('test_pred.txt', 'a') as res_file:
                    res_file.writelines(seq + '\n')
Exemplo n.º 2
0
 def create_and_check_distilbert_for_masked_lm(
     self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
 ):
     model = DistilBertForMaskedLM(config=config)
     model.to(torch_device)
     model.eval()
     result = model(input_ids, attention_mask=input_mask, labels=token_labels)
     self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
 def create_and_check_distilbert_for_masked_lm(
     self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
 ):
     model = DistilBertForMaskedLM(config=config)
     model.to(torch_device)
     model.eval()
     loss, prediction_scores = model(input_ids, attention_mask=input_mask, masked_lm_labels=token_labels)
     result = {
         "loss": loss,
         "prediction_scores": prediction_scores,
     }
     self.parent.assertListEqual(
         list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
     )
     self.check_loss_output(result)
Exemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser(description="Training")

    parser.add_argument(
        "--dump_path",
        type=str,
        required=True,
        help="The output directory (log, checkpoints, parameters, etc.)")
    parser.add_argument(
        "--data_file",
        type=str,
        required=True,
        help=
        "The binarized file (tokenized + tokens_to_ids) and grouped by sequence."
    )
    parser.add_argument("--token_counts",
                        type=str,
                        required=True,
                        help="The token counts in the data_file for MLM.")
    parser.add_argument("--force",
                        action='store_true',
                        help="Overwrite dump_path if it already exists.")

    parser.add_argument("--vocab_size",
                        default=30522,
                        type=int,
                        help="The vocabulary size.")
    parser.add_argument(
        "--max_position_embeddings",
        default=512,
        type=int,
        help="Maximum sequence length we can model (including [CLS] and [SEP])."
    )
    parser.add_argument(
        "--sinusoidal_pos_embds",
        action='store_false',
        help=
        "If true, the position embeddings are simply fixed with sinusoidal embeddings."
    )
    parser.add_argument("--n_layers",
                        default=6,
                        type=int,
                        help="Number of Transformer blocks.")
    parser.add_argument("--n_heads",
                        default=12,
                        type=int,
                        help="Number of heads in the self-attention module.")
    parser.add_argument(
        "--dim",
        default=768,
        type=int,
        help="Dimension through the network. Must be divisible by n_heads")
    parser.add_argument("--hidden_dim",
                        default=3072,
                        type=int,
                        help="Intermediate dimension in the FFN.")
    parser.add_argument("--dropout", default=0.1, type=float, help="Dropout.")
    parser.add_argument("--attention_dropout",
                        default=0.1,
                        type=float,
                        help="Dropout in self-attention.")
    parser.add_argument("--activation",
                        default='gelu',
                        type=str,
                        help="Activation to use in self-attention")
    parser.add_argument(
        "--tie_weights_",
        action='store_false',
        help=
        "If true, we tie the embeddings matrix with the projection over the vocabulary matrix. Default is true."
    )

    parser.add_argument("--from_pretrained_weights",
                        default=None,
                        type=str,
                        help="Load student initialization checkpoint.")
    parser.add_argument(
        "--from_pretrained_config",
        default=None,
        type=str,
        help="Load student initialization architecture config.")
    parser.add_argument("--teacher_type",
                        default="bert",
                        choices=["bert", "roberta"],
                        help="Teacher type (BERT, RoBERTa).")
    parser.add_argument("--teacher_name",
                        default="bert-base-uncased",
                        type=str,
                        help="The teacher model.")

    parser.add_argument("--temperature",
                        default=2.,
                        type=float,
                        help="Temperature for the softmax temperature.")
    parser.add_argument(
        "--alpha_ce",
        default=0.5,
        type=float,
        help="Linear weight for the distillation loss. Must be >=0.")
    parser.add_argument("--alpha_mlm",
                        default=0.5,
                        type=float,
                        help="Linear weight for the MLM loss. Must be >=0.")
    parser.add_argument("--alpha_mse",
                        default=0.0,
                        type=float,
                        help="Linear weight of the MSE loss. Must be >=0.")
    parser.add_argument(
        "--alpha_cos",
        default=0.0,
        type=float,
        help="Linear weight of the cosine embedding loss. Must be >=0.")
    parser.add_argument(
        "--mlm_mask_prop",
        default=0.15,
        type=float,
        help="Proportion of tokens for which we need to make a prediction.")
    parser.add_argument("--word_mask",
                        default=0.8,
                        type=float,
                        help="Proportion of tokens to mask out.")
    parser.add_argument("--word_keep",
                        default=0.1,
                        type=float,
                        help="Proportion of tokens to keep.")
    parser.add_argument("--word_rand",
                        default=0.1,
                        type=float,
                        help="Proportion of tokens to randomly replace.")
    parser.add_argument(
        "--mlm_smoothing",
        default=0.7,
        type=float,
        help=
        "Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)."
    )
    parser.add_argument(
        "--restrict_ce_to_mask",
        action='store_true',
        help=
        "If true, compute the distilation loss only the [MLM] prediction distribution."
    )

    parser.add_argument("--n_epoch",
                        type=int,
                        default=3,
                        help="Number of pass on the whole dataset.")
    parser.add_argument("--batch_size",
                        type=int,
                        default=5,
                        help="Batch size (for each process).")
    parser.add_argument(
        "--tokens_per_batch",
        type=int,
        default=-1,
        help=
        "If specified, modify the batches so that they have approximately this number of tokens."
    )
    parser.add_argument(
        "--shuffle",
        action='store_false',
        help="If true, shuffle the sequence order. Default is true.")
    parser.add_argument(
        "--group_by_size",
        action='store_false',
        help=
        "If true, group sequences that have similar length into the same batch. Default is true."
    )

    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=50,
        help="Gradient accumulation for larger training batches.")
    parser.add_argument("--warmup_prop",
                        default=0.05,
                        type=float,
                        help="Linear warmup proportion.")
    parser.add_argument("--weight_decay",
                        default=0.0,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--learning_rate",
                        default=5e-4,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--adam_epsilon",
                        default=1e-6,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=5.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--initializer_range",
                        default=0.02,
                        type=float,
                        help="Random initialization range.")

    parser.add_argument(
        '--fp16',
        action='store_true',
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--n_gpu",
                        type=int,
                        default=1,
                        help="Number of GPUs in the node.")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="Distributed training - Local rank")
    parser.add_argument("--seed", type=int, default=56, help="Random seed")

    parser.add_argument("--log_interval",
                        type=int,
                        default=500,
                        help="Tensorboard logging interval.")
    parser.add_argument("--checkpoint_interval",
                        type=int,
                        default=4000,
                        help="Checkpoint interval.")
    args = parser.parse_args()

    ## ARGS ##
    init_gpu_params(args)
    set_seed(args)
    if args.is_master:
        if os.path.exists(args.dump_path):
            if not args.force:
                raise ValueError(
                    f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite it'
                    'Use `--force` if you want to overwrite it')
            else:
                shutil.rmtree(args.dump_path)

        if not os.path.exists(args.dump_path):
            os.makedirs(args.dump_path)
        logger.info(
            f'Experiment will be dumped and logged in {args.dump_path}')

        ### SAVE PARAMS ###
        logger.info(f'Param: {args}')
        with open(os.path.join(args.dump_path, 'parameters.json'), 'w') as f:
            json.dump(vars(args), f, indent=4)
        git_log(args.dump_path)
    assert (args.from_pretrained_weights is None and args.from_pretrained_config is None) or \
           (args.from_pretrained_weights is not None and args.from_pretrained_config is not None)

    ### TOKENIZER ###
    if args.teacher_type == 'bert':
        tokenizer = BertTokenizer.from_pretrained(args.teacher_name)
    elif args.teacher_type == 'roberta':
        tokenizer = RobertaTokenizer.from_pretrained(args.teacher_name)
    special_tok_ids = {}
    for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
        idx = tokenizer.all_special_tokens.index(tok_symbol)
        special_tok_ids[tok_name] = tokenizer.all_special_ids[idx]
    logger.info(f'Special tokens {special_tok_ids}')
    args.special_tok_ids = special_tok_ids

    ## DATA LOADER ##
    logger.info(f'Loading data from {args.data_file}')
    with open(args.data_file, 'rb') as fp:
        data = pickle.load(fp)

    assert os.path.isfile(args.token_counts)
    logger.info(
        f'Loading token counts from {args.token_counts} (already pre-computed)'
    )
    with open(args.token_counts, 'rb') as fp:
        counts = pickle.load(fp)
        assert len(counts) == args.vocab_size
    token_probs = np.maximum(counts, 1)**-args.mlm_smoothing
    for idx in special_tok_ids.values():
        token_probs[idx] = 0.  # do not predict special tokens
    token_probs = torch.from_numpy(token_probs)

    train_dataloader = Dataset(params=args, data=data)
    logger.info(f'Data loader created.')

    ## STUDENT ##
    if args.from_pretrained_weights is not None:
        assert os.path.isfile(args.from_pretrained_weights)
        assert os.path.isfile(args.from_pretrained_config)
        logger.info(
            f'Loading pretrained weights from {args.from_pretrained_weights}')
        logger.info(
            f'Loading pretrained config from {args.from_pretrained_config}')
        stu_architecture_config = DistilBertConfig.from_json_file(
            args.from_pretrained_config)
        stu_architecture_config.output_hidden_states = True
        student = DistilBertForMaskedLM.from_pretrained(
            args.from_pretrained_weights, config=stu_architecture_config)
    else:
        args.vocab_size_or_config_json_file = args.vocab_size
        stu_architecture_config = DistilBertConfig(**vars(args),
                                                   output_hidden_states=True)
        student = DistilBertForMaskedLM(stu_architecture_config)

    if args.n_gpu > 0:
        student.to(f'cuda:{args.local_rank}')
    logger.info(f'Student loaded.')

    ## TEACHER ##
    if args.teacher_type == 'bert':
        teacher = BertForMaskedLM.from_pretrained(args.teacher_name,
                                                  output_hidden_states=True)
    elif args.teacher_type == 'roberta':
        teacher = RobertaForMaskedLM.from_pretrained(args.teacher_name,
                                                     output_hidden_states=True)
    if args.n_gpu > 0:
        teacher.to(f'cuda:{args.local_rank}')
    logger.info(f'Teacher loaded from {args.teacher_name}.')

    ## DISTILLER ##
    torch.cuda.empty_cache()
    distiller = Distiller(params=args,
                          dataloader=train_dataloader,
                          token_probs=token_probs,
                          student=student,
                          teacher=teacher)
    distiller.train()
    logger.info("Let's go get some drinks.")