예제 #1
0
DEVICE = torch.device("cuda")
print(DEVICE)
data = trim_entity_spans(convert_goldparse('data/Resumes.json'))

total = len(data)
train_data, val_data = data[:180], data[180:]

train_d = ResumeDataset(train_data, TOKENIZER, tag2idx, MAX_LEN)
val_d = ResumeDataset(val_data, TOKENIZER, tag2idx, MAX_LEN)

train_sampler = RandomSampler(train_d)
train_dl = DataLoader(train_d, sampler=train_sampler, batch_size=8)

val_dl = DataLoader(val_d, batch_size=4)

#model = BertForTokenClassification.from_pretrained(MODEL_NAME, num_labels=len(tag2idx))
model = LongformerForTokenClassification.from_pretrained(
    MODEL_NAME, num_labels=len(tag2idx))

model.to(DEVICE)
optimizer_grouped_parameters = get_hyperparameters(model, True)
optimizer = Adam(optimizer_grouped_parameters, lr=3e-5)

train_and_val_model(model, TOKENIZER, optimizer, EPOCHS, idx2tag, tag2idx,
                    MAX_GRAD_NORM, DEVICE, train_dl, val_dl)

torch.save(
    {"model_state_dict": model.state_dict()},
    f'{output_path}/model-state.bin',
)
예제 #2
0
                              torch.tensor(train_label))
val_dataset = TensorDataset(torch.tensor(val_ids), torch.tensor(val_mask),
                            torch.tensor(val_label))

train_dataloader = DataLoader(train_dataset, batch_size=2, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=2, shuffle=True)

# Model Setup
config = LongformerConfig.from_pretrained(longformer_pretrained)
config.num_labels = 5

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
print(device)

model = LongformerForTokenClassification.from_pretrained(
    '../models/LF_targeted_sentiment/'
)  # longformer_pretrained, config=config)

model.cuda()

# Model Train

epochs = 20
optimizer = AdamW(model.parameters(), lr=1e-5, eps=1e-6)
bias = [float(i) for i in '1,1,1'.split(',')]
weight = (1 / torch.tensor(bias)).to(device)
softmax = torch.nn.Softmax(dim=1)
total_steps = len(train_dataloader) * epochs
scheduler = get_linear_schedule_with_warmup(optimizer,
                                            num_warmup_steps=1000,
                                            num_training_steps=total_steps)