def run_training(sub_id, use_seed, options): # Docker Parameters if options['--docker-target-name'] == 'Empty': docker_target_name = '' else: docker_target_name = options['--docker-target-name'] # General parameters run_id = options['--run-id'] num_runs = int(options['--num-runs']) seed = int(options['--seed']) load_model = options['--load'] train_model = options['--train'] save_freq = int(options['--save-freq']) env_path = options['<env>'] keep_checkpoints = int(options['--keep-checkpoints']) worker_id = int(options['--worker-id']) curriculum_file = str(options['--curriculum']) if curriculum_file == "None": curriculum_file = None lesson = int(options['--lesson']) fast_simulation = not bool(options['--slow']) no_graphics = options['--no-graphics'] # Constants # Assumption that this yaml is present in same dir as this file base_path = os.path.dirname(__file__) TRAINER_CONFIG_PATH = os.path.abspath( os.path.join(base_path, "trainer_config.yaml")) if env_path is None and num_runs > 1: raise TrainerError( "It is not possible to launch more than one concurrent training session " "when training from the editor") tc = TrainerController(env_path, run_id + "-" + str(sub_id), save_freq, curriculum_file, fast_simulation, load_model, train_model, worker_id + sub_id, keep_checkpoints, lesson, use_seed, docker_target_name, TRAINER_CONFIG_PATH, no_graphics) tc.start_learning()
logger.info(options) # Docker Parameters if options['--docker-target-name'] == 'Empty': docker_target_name = '' else: docker_target_name = options['--docker-target-name'] # General parameters run_id = options['--run-id'] seed = int(options['--seed']) load_model = options['--load'] train_model = options['--train'] save_freq = int(options['--save-freq']) env_path = options['<env>'] keep_checkpoints = int(options['--keep-checkpoints']) worker_id = int(options['--worker-id']) curriculum_file = str(options['--curriculum']) if curriculum_file == "None": curriculum_file = None lesson = int(options['--lesson']) fast_simulation = not bool(options['--slow']) # Constants # Assumption that this yaml is present in same dir as this file base_path = os.path.dirname(__file__) TRAINER_CONFIG_PATH = os.path.abspath(os.path.join(base_path, "trainer_config.yaml")) tc = TrainerController(env_path, run_id, save_freq, curriculum_file, fast_simulation, load_model, train_model, worker_id, keep_checkpoints, lesson, seed, docker_target_name, TRAINER_CONFIG_PATH) tc.start_learning()
if options['--docker-target-name'] == 'Empty': docker_target_name = '' else: docker_target_name = options['--docker-target-name'] # General parameters run_id = options['--run-id'] seed = int(options['--seed']) load_model = options['--load'] train_model = options['--train'] save_freq = int(options['--save-freq']) env_path = options['<env>'] keep_checkpoints = int(options['--keep-checkpoints']) worker_id = int(options['--worker-id']) curriculum_file = str(options['--curriculum']) if curriculum_file == "None": curriculum_file = None lesson = int(options['--lesson']) fast_simulation = not bool(options['--slow']) no_graphics = options['--no-graphics'] # Constants # Assumption that this yaml is present in same dir as this file base_path = os.path.dirname(__file__) TRAINER_CONFIG_PATH = os.path.abspath(os.path.join(base_path, "trainer_config.yaml")) tc = TrainerController(env_path, run_id, save_freq, curriculum_file, fast_simulation, load_model, train_model, worker_id, keep_checkpoints, lesson, seed, docker_target_name, TRAINER_CONFIG_PATH, no_graphics) tc.start_learning()