Пример #1
0
def run_training(sub_id, use_seed, options):
    # Docker Parameters
    if options['--docker-target-name'] == 'Empty':
        docker_target_name = ''
    else:
        docker_target_name = options['--docker-target-name']

    # General parameters
    run_id = options['--run-id']
    num_runs = int(options['--num-runs'])
    seed = int(options['--seed'])
    load_model = options['--load']
    train_model = options['--train']
    save_freq = int(options['--save-freq'])
    env_path = options['<env>']
    keep_checkpoints = int(options['--keep-checkpoints'])
    worker_id = int(options['--worker-id'])
    curriculum_file = str(options['--curriculum'])
    if curriculum_file == "None":
        curriculum_file = None
    lesson = int(options['--lesson'])
    fast_simulation = not bool(options['--slow'])
    no_graphics = options['--no-graphics']

    # Constants
    # Assumption that this yaml is present in same dir as this file
    base_path = os.path.dirname(__file__)
    TRAINER_CONFIG_PATH = os.path.abspath(
        os.path.join(base_path, "trainer_config.yaml"))

    if env_path is None and num_runs > 1:
        raise TrainerError(
            "It is not possible to launch more than one concurrent training session "
            "when training from the editor")

    tc = TrainerController(env_path, run_id + "-" + str(sub_id), save_freq,
                           curriculum_file, fast_simulation, load_model,
                           train_model, worker_id + sub_id, keep_checkpoints,
                           lesson, use_seed, docker_target_name,
                           TRAINER_CONFIG_PATH, no_graphics)
    tc.start_learning()
Пример #2
0
    logger.info(options)
    # Docker Parameters
    if options['--docker-target-name'] == 'Empty':
        docker_target_name = ''
    else:
        docker_target_name = options['--docker-target-name']

    # General parameters
    run_id = options['--run-id']
    seed = int(options['--seed'])
    load_model = options['--load']
    train_model = options['--train']
    save_freq = int(options['--save-freq'])
    env_path = options['<env>']
    keep_checkpoints = int(options['--keep-checkpoints'])
    worker_id = int(options['--worker-id'])
    curriculum_file = str(options['--curriculum'])
    if curriculum_file == "None":
        curriculum_file = None
    lesson = int(options['--lesson'])
    fast_simulation = not bool(options['--slow'])

    # Constants
    # Assumption that this yaml is present in same dir as this file
    base_path = os.path.dirname(__file__)
    TRAINER_CONFIG_PATH = os.path.abspath(os.path.join(base_path, "trainer_config.yaml"))

    tc = TrainerController(env_path, run_id, save_freq, curriculum_file, fast_simulation, load_model, train_model,
                           worker_id, keep_checkpoints, lesson, seed, docker_target_name, TRAINER_CONFIG_PATH)
    tc.start_learning()
Пример #3
0
    if options['--docker-target-name'] == 'Empty':
        docker_target_name = ''
    else:
        docker_target_name = options['--docker-target-name']

    # General parameters
    run_id = options['--run-id']
    seed = int(options['--seed'])
    load_model = options['--load']
    train_model = options['--train']
    save_freq = int(options['--save-freq'])
    env_path = options['<env>']
    keep_checkpoints = int(options['--keep-checkpoints'])
    worker_id = int(options['--worker-id'])
    curriculum_file = str(options['--curriculum'])
    if curriculum_file == "None":
        curriculum_file = None
    lesson = int(options['--lesson'])
    fast_simulation = not bool(options['--slow'])
    no_graphics = options['--no-graphics']

    # Constants
    # Assumption that this yaml is present in same dir as this file
    base_path = os.path.dirname(__file__)
    TRAINER_CONFIG_PATH = os.path.abspath(os.path.join(base_path, "trainer_config.yaml"))

    tc = TrainerController(env_path, run_id, save_freq, curriculum_file, fast_simulation, load_model, train_model,
                           worker_id, keep_checkpoints, lesson, seed, docker_target_name, TRAINER_CONFIG_PATH,
                           no_graphics)
    tc.start_learning()