import os as os import scikits.audiolab as audlab import cPickle, gzip, sys import numpy as np import math, shutil from spectral import get_mfcc from util_func import parse_arguments, parse_classes arg_elements = [sys.argv[i] for i in range(1, len(sys.argv))] arguments = parse_arguments(arg_elements) name_var = arguments['data_type'] classes = parse_classes(arguments['classes']) # name_var = 'test' window_step = float(arguments['window_step']) window_size = float(arguments['window_size']) highfreq = int(arguments['highfreq']) lowfreq = int(arguments['lowfreq']) size = int(arguments['size']) N = int(arguments['N']) slide = int(arguments['slide']) exp_path = arguments['exp_path'] threshold = int(arguments['threshold']) compute_delta = arguments['deltas'] shutil.copyfile('/home/piero/Documents/Scripts/format_pickle_data.py', os.path.join(exp_path, 'format_pickle_data.py')) N_classes = len(classes) label_dic = {} for k in range(N_classes): label_dic[classes[k]] = k initial_path = '/home/piero/Documents/Speech_databases/DeGIV/29-30-Jan/'\ +name_var+'_labels' # label files
import os as os import scikits.audiolab as audlab import cPickle, gzip, sys import numpy as np import math, shutil from spectral import get_mfcc from util_func import parse_arguments, parse_classes arg_elements = [sys.argv[i] for i in range(1, len(sys.argv))] arguments = parse_arguments(arg_elements) name_var = arguments['data_type'] classes = parse_classes(arguments['classes']) # name_var = 'test' window_step = float(arguments['window_step']) window_size = float(arguments['window_size']) highfreq = int(arguments['highfreq']) lowfreq = int(arguments['lowfreq']) size = int(arguments['size']) N = int(arguments['N']) slide = int(arguments['slide']) exp_path = arguments['exp_path'] threshold = int(arguments['threshold']) compute_delta = arguments['deltas'] shutil.copyfile('/home/piero/Documents/Scripts/format_pickle_data3.py', os.path.join(exp_path,'format_pickle_data3.py')) N_classes = len(classes) label_dic = {} for k in range(N_classes): label_dic[classes[k]] = k initial_path = '/home/piero/Documents/Speech_databases/DeGIV/29-30-Jan/'+name_var+'_labels' # label files target_path = os.path.join(exp_path,'data') os.chdir(initial_path)
import numpy import sys import os import cPickle, gzip import numpy as np import util_func as utils from liblatex import * arg_elements = [sys.argv[i] for i in range(1, len(sys.argv))] arguments = utils.parse_arguments(arg_elements) pred_file = arguments['pred_file'] class_str = arguments['classes'] filepath = arguments['filepath'] datapath = arguments['datapath'] nametex= arguments['nametex'] if '.gz' in pred_file: pred_mat = cPickle.load(gzip.open(pred_file, 'rb')) else: pred_mat = cPickle.load(open(pred_file, 'rb')) # load the testing set to get the labels test_data, test_labels = cPickle.load(gzip.open(datapath+'/test.pickle.gz', 'rb')) test_labels = test_labels.astype(numpy.int32) confusion_matrix = np.zeros((pred_mat.shape[1], pred_mat.shape[1])) # rows represent predicted classes and columns # represent true classes class_occurrence = np.zeros((1,pred_mat.shape[1])) correct_number = 0.0 for i in xrange(pred_mat.shape[0]): p = pred_mat[i,:]