def show_output(self): """ 运行对应算法,返回深度值矩阵,将图片保存到根目录;再将图片加载到深度图帆布中;所有功能用一个函数搞定 :return: None """ self.depth = get_depth(self.tool_depth_cbb1.get(), self.input_path) self.line.get_depth(self.depth) # 将深度矩阵传入Line类 plt.imsave('pred.jpg', self.depth) # 保存深度图片 self.show_image('pred.jpg', self.work_output_cv) # 将生成图加载到深度图帆布中 self.result = True # 深度图已生成,可以保存 return
def read(humfile, sonpath, cs2cs_args, c, draft, doplot, t, bedpick, flip_lr, model, calc_bearing, filt_bearing, chunk): #cog = 1, ''' Read a .DAT and associated set of .SON files recorded by a Humminbird(R) instrument. Parse the data into a set of memory mapped files that will subsequently be used by the other functions of the PyHum module. Export time-series data and metadata in other formats. Create a kml file for visualising boat track Syntax ---------- [] = PyHum.read(humfile, sonpath, cs2cs_args, c, draft, doplot, t, bedpick, flip_lr, chunksize, model, calc_bearing, filt_bearing, chunk) Parameters ------------ humfile : str path to the .DAT file sonpath : str path where the *.SON files are cs2cs_args : int, *optional* [Default="epsg:26949"] arguments to create coordinates in a projected coordinate system this argument gets given to pyproj to turn wgs84 (lat/lon) coordinates into any projection supported by the proj.4 libraries c : float, *optional* [Default=1450.0] speed of sound in water (m/s). Defaults to a value of freshwater draft : float, *optional* [Default=0.3] draft from water surface to transducer face (m) doplot : float, *optional* [Default=1] if 1, plots will be made t : float, *optional* [Default=0.108] length of transducer array (m). Default value is that of the 998 series Humminbird(R) bedpick : int, *optional* [Default=1] if 1, bedpicking with be carried out automatically if 0, user will be prompted to pick the bed location on screen flip_lr : int, *optional* [Default=0] if 1, port and starboard scans will be flipped (for situations where the transducer is flipped 180 degrees) model: int, *optional* [Default=998] A 3 or 4 number code indicating the model number Examples: 998, 997, 1198, 1199 calc_bearing : float, *optional* [Default=0] if 1, bearing will be calculated from coordinates filt_bearing : float, *optional* [Default=0] if 1, bearing will be filtered chunk : str, *optional* [Default='d100' (distance, 100 m)] letter, followed by a number. There are the following letter options: 'd' - parse chunks based on distance, then number which is distance in m 'p' - parse chunks based on number of pings, then number which is number of pings 'h' - parse chunks based on change in heading, then number which is the change in heading in degrees '1' - process just 1 chunk Returns --------- sonpath+base+'_data_port.dat': memory-mapped file contains the raw echogram from the port side sidescan sonar (where present) sonpath+base+'_data_port.dat': memory-mapped file contains the raw echogram from the starboard side sidescan sonar (where present) sonpath+base+'_data_dwnhi.dat': memory-mapped file contains the raw echogram from the high-frequency echosounder (where present) sonpath+base+'_data_dwnlow.dat': memory-mapped file contains the raw echogram from the low-frequency echosounder (where present) sonpath+base+"trackline.kml": google-earth kml file contains the trackline of the vessel during data acquisition sonpath+base+'rawdat.csv': comma separated value file contains time-series data. columns corresponding to longitude latitude easting (m) northing (m) depth to bed (m) alongtrack cumulative distance (m) vessel heading (deg.) sonpath+base+'meta.mat': .mat file matlab format file containing a dictionary object holding metadata information. Fields are: e : ndarray, easting (m) n : ndarray, northing (m) es : ndarray, low-pass filtered easting (m) ns : ndarray, low-pass filtered northing (m) lat : ndarray, latitude lon : ndarray, longitude shape_port : tuple, shape of port scans in memory mapped file shape_star : tuple, shape of starboard scans in memory mapped file shape_hi : tuple, shape of high-freq. scans in memory mapped file shape_low : tuple, shape of low-freq. scans in memory mapped file dep_m : ndarray, depth to bed (m) dist_m : ndarray, distance along track (m) heading : ndarray, heading of vessel (deg. N) pix_m: float, size of 1 pixel in across-track dimension (m) bed : ndarray, depth to bed (m) c : float, speed of sound in water (m/s) t : length of sidescan transducer array (m) spd : ndarray, vessel speed (m/s) time_s : ndarray, time elapsed (s) caltime : ndarray, unix epoch time (s) ''' # prompt user to supply file if no input file given if not humfile: print('An input file is required!!!!!!') Tk().withdraw( ) # we don't want a full GUI, so keep the root window from appearing humfile = askopenfilename(filetypes=[("DAT files", "*.DAT")]) # prompt user to supply directory if no input sonpath is given if not sonpath: print('A *.SON directory is required!!!!!!') Tk().withdraw( ) # we don't want a full GUI, so keep the root window from appearing sonpath = askdirectory() # print given arguments to screen and convert data type where necessary if humfile: print('Input file is %s' % (humfile)) if sonpath: print('Son files are in %s' % (sonpath)) if cs2cs_args: print('cs2cs arguments are %s' % (cs2cs_args)) if draft: draft = float(draft) print('Draft: %s' % (str(draft))) if c: c = float(c) print('Celerity of sound: %s m/s' % (str(c))) if doplot: doplot = int(doplot) if doplot == 0: print("Plots will not be made") if flip_lr: flip_lr = int(flip_lr) if flip_lr == 1: print("Port and starboard will be flipped") if t: t = np.asarray(t, float) print('Transducer length is %s m' % (str(t))) if bedpick: bedpick = np.asarray(bedpick, int) if bedpick == 1: print('Bed picking is auto') elif bedpick == 0: print('Bed picking is manual') else: print('User will be prompted per chunk about bed picking method') if chunk: chunk = str(chunk) if chunk[0] == 'd': chunkmode = 1 chunkval = int(chunk[1:]) print('Chunks based on distance of %s m' % (str(chunkval))) elif chunk[0] == 'p': chunkmode = 2 chunkval = int(chunk[1:]) print('Chunks based on %s pings' % (str(chunkval))) elif chunk[0] == 'h': chunkmode = 3 chunkval = int(chunk[1:]) print('Chunks based on heading devation of %s degrees' % (str(chunkval))) elif chunk[0] == '1': chunkmode = 4 chunkval = 1 print('Only 1 chunk will be produced') else: print( "Chunk mode not understood - should be 'd', 'p', or 'h' - using defaults" ) chunkmode = 1 chunkval = 100 print('Chunks based on distance of %s m' % (str(chunkval))) if model: try: model = int(model) print("Data is from the %s series" % (str(model))) except: if model == 'onix': model = 0 print("Data is from the ONIX series") elif model == 'helix': model = 1 print("Data is from the HELIX series") elif model == 'mega': model = 2 print("Data is from the MEGA series") # if cog: # cog = int(cog) # if cog==1: # print "Heading based on course-over-ground" if calc_bearing: calc_bearing = int(calc_bearing) if calc_bearing == 1: print("Bearing will be calculated from coordinates") if filt_bearing: filt_bearing = int(filt_bearing) if filt_bearing == 1: print("Bearing will be filtered") ## for debugging #humfile = r"test.DAT"; sonpath = "test_data" #cs2cs_args = "epsg:26949"; doplot = 1; draft = 0 #c=1450; bedpick=1; fliplr=1; chunk = 'd100' #model=998; cog=1; calc_bearing=0; filt_bearing=0 #if model==2: # f = 1000 #else: f = 455 try: print( "Checking the epsg code you have chosen for compatibility with Basemap ... " ) from mpl_toolkits.basemap import Basemap m = Basemap(projection='merc', epsg=cs2cs_args.split(':')[1], resolution='i', llcrnrlon=10, llcrnrlat=10, urcrnrlon=30, urcrnrlat=30) del m print("... epsg code compatible") except (ValueError): print( "Error: the epsg code you have chosen is not compatible with Basemap" ) print( "please choose a different epsg code (http://spatialreference.org/)" ) print("program will now close") sys.exit() # start timer if os.name == 'posix': # true if linux/mac or cygwin on windows start = time.time() else: # windows start = time.clock() # if son path name supplied has no separator at end, put one on if sonpath[-1] != os.sep: sonpath = sonpath + os.sep # get the SON files from this directory sonfiles = glob.glob(sonpath + '*.SON') if not sonfiles: sonfiles = glob.glob(os.getcwd() + os.sep + sonpath + '*.SON') base = humfile.split('.DAT') # get base of file name for output base = base[0].split(os.sep)[-1] # remove underscores, negatives and spaces from basename base = humutils.strip_base(base) print("WARNING: Because files have to be read in byte by byte,") print("this could take a very long time ...") #reading each sonfile in parallel should be faster ... try: o = Parallel(n_jobs=np.min([len(sonfiles), cpu_count()]), verbose=0)( delayed(getscans)(sonfiles[k], humfile, c, model, cs2cs_args) for k in range(len(sonfiles))) X, Y, A, B = zip(*o) for k in range(len(Y)): if Y[k] == 'sidescan_port': dat = A[k] #data.gethumdat() metadat = B[k] #data.getmetadata() if flip_lr == 0: data_port = X[k].astype('int16') else: data_star = X[k].astype('int16') elif Y[k] == 'sidescan_starboard': if flip_lr == 0: data_star = X[k].astype('int16') else: data_port = X[k].astype('int16') elif Y[k] == 'down_lowfreq': data_dwnlow = X[k].astype('int16') elif Y[k] == 'down_highfreq': data_dwnhi = X[k].astype('int16') elif Y[k] == 'down_vhighfreq': #hopefully this only applies to mega systems data_dwnhi = X[k].astype('int16') del X, Y, A, B, o old_pyread = 0 if 'data_port' not in locals(): data_port = '' print("portside scan not available") if 'data_star' not in locals(): data_star = '' print("starboardside scan not available") if 'data_dwnhi' not in locals(): data_dwnlow = '' print("high-frq. downward scan not available") if 'data_dwnlow' not in locals(): data_dwnlow = '' print("low-frq. downward scan not available") except: # revert back to older version if paralleleised version fails print( "something went wrong with the parallelised version of pyread ...") try: import pyread except: from . import pyread data = pyread.pyread(sonfiles, humfile, c, model, cs2cs_args) dat = data.gethumdat() metadat = data.getmetadata() old_pyread = 1 nrec = len(metadat['n']) metadat['instr_heading'] = metadat['heading'][:nrec] #metadat['heading'] = humutils.get_bearing(calc_bearing, filt_bearing, cog, metadat['lat'], metadat['lon'], metadat['instr_heading']) try: es = humutils.runningMeanFast(metadat['e'][:nrec], len(metadat['e'][:nrec]) / 100) ns = humutils.runningMeanFast(metadat['n'][:nrec], len(metadat['n'][:nrec]) / 100) except: es = metadat['e'][:nrec] ns = metadat['n'][:nrec] metadat['es'] = es metadat['ns'] = ns try: trans = pyproj.Proj(init=cs2cs_args) except: trans = pyproj.Proj(cs2cs_args.lstrip(), inverse=True) lon, lat = trans(es, ns, inverse=True) metadat['lon'] = lon metadat['lat'] = lat metadat['heading'] = humutils.get_bearing(calc_bearing, filt_bearing, metadat['lat'], metadat['lon'], metadat['instr_heading']) #cog dist_m = humutils.get_dist(lat, lon) metadat['dist_m'] = dist_m if calc_bearing == 1: # recalculate speed, m/s ds = np.gradient(np.squeeze(metadat['time_s'])) dx = np.gradient(np.squeeze(metadat['dist_m'])) metadat['spd'] = dx[:nrec] / ds[:nrec] # theta at 3dB in the horizontal theta3dB = np.arcsin(c / (t * (f * 1000))) #resolution of 1 sidescan pixel to nadir ft = (np.pi / 2) * (1 / theta3dB) #/ (f/455) dep_m = humutils.get_depth(metadat['dep_m'][:nrec]) if old_pyread == 1: #older pyread version # port scan try: if flip_lr == 0: data_port = data.getportscans().astype('int16') else: data_port = data.getstarscans().astype('int16') except: data_port = '' print("portside scan not available") if data_port != '': Zt, ind_port = makechunks_scan(chunkmode, chunkval, metadat, data_port, 0) del data_port ## create memory mapped file for Z shape_port = io.set_mmap_data(sonpath, base, '_data_port.dat', 'int16', Zt) ##we are only going to access the portion of memory required port_fp = io.get_mmap_data(sonpath, base, '_data_port.dat', 'int16', shape_port) if old_pyread == 1: #older pyread version # starboard scan try: if flip_lr == 0: data_star = data.getstarscans().astype('int16') else: data_star = data.getportscans().astype('int16') except: data_star = '' print("starboardside scan not available") if data_star != '': Zt, ind_star = makechunks_scan(chunkmode, chunkval, metadat, data_star, 1) del data_star # create memory mapped file for Z shape_star = io.set_mmap_data(sonpath, base, '_data_star.dat', 'int16', Zt) star_fp = io.get_mmap_data(sonpath, base, '_data_star.dat', 'int16', shape_star) if 'star_fp' in locals() and 'port_fp' in locals(): # check that port and starboard are same size # and trim if not if np.shape(star_fp) != np.shape(port_fp): print( "port and starboard scans are different sizes ... rectifying") if np.shape(port_fp[0])[1] > np.shape(star_fp[0])[1]: tmp = port_fp.copy() tmp2 = np.empty_like(star_fp) for k in range(len(tmp)): tmp2[k] = tmp[k][:, :np.shape(star_fp[k])[1]] del tmp # create memory mapped file for Z shape_port = io.set_mmap_data(sonpath, base, '_data_port2.dat', 'int16', tmp2) #shape_star = shape_port.copy() shape_star = tuple(np.asarray(shape_port).copy()) ##we are only going to access the portion of memory required port_fp = io.get_mmap_data(sonpath, base, '_data_port2.dat', 'int16', shape_port) ind_port = list(ind_port) ind_port[-1] = np.shape(star_fp[0])[1] ind_port = tuple(ind_port) elif np.shape(port_fp[0])[1] < np.shape(star_fp[0])[1]: tmp = star_fp.copy() tmp2 = np.empty_like(port_fp) for k in range(len(tmp)): tmp2[k] = tmp[k][:, :np.shape(port_fp[k])[1]] del tmp # create memory mapped file for Z shape_port = io.set_mmap_data(sonpath, base, '_data_star2.dat', 'int16', tmp2) #shape_star = shape_port.copy() shape_star = tuple(np.asarray(shape_port).copy()) #we are only going to access the portion of memory required star_fp = io.get_mmap_data(sonpath, base, '_data_star2.dat', 'int16', shape_star) ind_star = list(ind_star) ind_star[-1] = np.shape(port_fp[0])[1] ind_star = tuple(ind_star) if old_pyread == 1: #older pyread version # low-freq. sonar try: data_dwnlow = data.getlowscans().astype('int16') except: data_dwnlow = '' print("low-freq. scan not available") if data_dwnlow != '': Zt, ind_low = makechunks_scan(chunkmode, chunkval, metadat, data_dwnlow, 2) del data_dwnlow # create memory mapped file for Z shape_low = io.set_mmap_data(sonpath, base, '_data_dwnlow.dat', 'int16', Zt) ##we are only going to access the portion of memory required dwnlow_fp = io.get_mmap_data(sonpath, base, '_data_dwnlow.dat', 'int16', shape_low) if old_pyread == 1: #older pyread version # hi-freq. sonar try: data_dwnhi = data.gethiscans().astype('int16') except: data_dwnhi = '' print("high-freq. scan not available") if data_dwnhi != '': Zt, ind_hi = makechunks_scan(chunkmode, chunkval, metadat, data_dwnhi, 3) del data_dwnhi # create memory mapped file for Z shape_hi = io.set_mmap_data(sonpath, base, '_data_dwnhi.dat', 'int16', Zt) dwnhi_fp = io.get_mmap_data(sonpath, base, '_data_dwnhi.dat', 'int16', shape_hi) if 'dwnhi_fp' in locals() and 'dwnlow_fp' in locals(): # check that low and high are same size # and trim if not if (np.shape(dwnhi_fp) != np.shape(dwnlow_fp)) and (chunkmode != 4): print("dwnhi and dwnlow are different sizes ... rectifying") if np.shape(dwnhi_fp[0])[1] > np.shape(dwnlow_fp[0])[1]: tmp = dwnhi_fp.copy() tmp2 = np.empty_like(dwnlow_fp) for k in range(len(tmp)): tmp2[k] = tmp[k][:, :np.shape(dwnlow_fp[k])[1]] del tmp # create memory mapped file for Z shape_low = io.set_mmap_data(sonpath, base, '_data_dwnhi2.dat', 'int16', tmp2) #shape_hi = shape_low.copy() shape_hi = tuple(np.asarray(shape_low).copy()) ##we are only going to access the portion of memory required dwnhi_fp = io.get_mmap_data(sonpath, base, '_data_dwnhi2.dat', 'int16', shape_hi) ind_hi = list(ind_hi) ind_hi[-1] = np.shape(dwnlow_fp[0])[1] ind_hi = tuple(ind_hi) elif np.shape(dwnhi_fp[0])[1] < np.shape(dwnlow_fp[0])[1]: tmp = dwnlow_fp.copy() tmp2 = np.empty_like(dwnhi_fp) for k in range(len(tmp)): tmp2[k] = tmp[k][:, :np.shape(dwnhi_fp[k])[1]] del tmp # create memory mapped file for Z shape_low = io.set_mmap_data(sonpath, base, '_data_dwnlow2.dat', 'int16', tmp2) #shape_hi = shape_low.copy() shape_hi = tuple(np.asarray(shape_low).copy()) ##we are only going to access the portion of memory required dwnlow_fp = io.get_mmap_data(sonpath, base, '_data_dwnlow2.dat', 'int16', shape_low) ind_low = list(ind_low) ind_low[-1] = np.shape(dwnhi_fp[0])[1] ind_low = tuple(ind_low) if old_pyread == 1: #older pyread version del data if ('shape_port' in locals()) and (chunkmode != 4): metadat['shape_port'] = shape_port nrec = metadat['shape_port'][0] * metadat['shape_port'][2] elif ('shape_port' in locals()) and (chunkmode == 4): metadat['shape_port'] = shape_port nrec = metadat['shape_port'][1] else: metadat['shape_port'] = '' if ('shape_star' in locals()) and (chunkmode != 4): metadat['shape_star'] = shape_star nrec = metadat['shape_star'][0] * metadat['shape_star'][2] elif ('shape_star' in locals()) and (chunkmode == 4): metadat['shape_star'] = shape_star nrec = metadat['shape_star'][1] else: metadat['shape_star'] = '' if ('shape_hi' in locals()) and (chunkmode != 4): metadat['shape_hi'] = shape_hi #nrec = metadat['shape_hi'][0] * metadat['shape_hi'][2] * 2 elif ('shape_hi' in locals()) and (chunkmode == 4): metadat['shape_hi'] = shape_hi else: metadat['shape_hi'] = '' if ('shape_low' in locals()) and (chunkmode != 4): metadat['shape_low'] = shape_low #nrec = metadat['shape_low'][0] * metadat['shape_low'][2] * 2 elif ('shape_low' in locals()) and (chunkmode == 4): metadat['shape_low'] = shape_low else: metadat['shape_low'] = '' #make kml boat trackline humutils.make_trackline(lon, lat, sonpath, base) if 'port_fp' in locals() and 'star_fp' in locals(): #if not os.path.isfile(os.path.normpath(os.path.join(sonpath,base+'meta.mat'))): if 2 > 1: if bedpick == 1: # auto x, bed = humutils.auto_bedpick(ft, dep_m, chunkmode, port_fp, c) if len(dist_m) < len(bed): dist_m = np.append( dist_m, dist_m[-1] * np.ones(len(bed) - len(dist_m))) if doplot == 1: if chunkmode != 4: for k in range(len(star_fp)): plot_2bedpicks( port_fp[k], star_fp[k], bed[ind_port[-1] * k:ind_port[-1] * (k + 1)], dist_m[ind_port[-1] * k:ind_port[-1] * (k + 1)], x[ind_port[-1] * k:ind_port[-1] * (k + 1)], ft, shape_port, sonpath, k, chunkmode) else: plot_2bedpicks(port_fp, star_fp, bed, dist_m, x, ft, shape_port, sonpath, 0, chunkmode) # 'real' bed is estimated to be the minimum of the two bed = np.min(np.vstack((bed[:nrec], np.squeeze(x[:nrec]))), axis=0) bed = humutils.runningMeanFast(bed, 3) elif bedpick > 1: # user prompt x, bed = humutils.auto_bedpick(ft, dep_m, chunkmode, port_fp, c) if len(dist_m) < len(bed): dist_m = np.append( dist_m, dist_m[-1] * np.ones(len(bed) - len(dist_m))) # 'real' bed is estimated to be the minimum of the two bed = np.min(np.vstack((bed[:nrec], np.squeeze(x[:nrec]))), axis=0) bed = humutils.runningMeanFast(bed, 3) # manually intervene fig = plt.figure() ax = plt.gca() if chunkmode != 4: im = ax.imshow(np.hstack(port_fp), cmap='gray', origin='upper') else: im = ax.imshow(port_fp, cmap='gray', origin='upper') plt.plot(bed, 'r') plt.axis('normal') plt.axis('tight') pts1 = plt.ginput( n=300, timeout=30) # it will wait for 200 clicks or 60 seconds x1 = map(lambda x: x[0], pts1) # map applies the function passed as y1 = map(lambda x: x[1], pts1) # first parameter to each element of pts plt.close() del fig if x1 != []: # if x1 is not empty tree = KDTree(zip(np.arange(1, len(bed)), bed)) try: dist, inds = tree.query(zip(x1, y1), k=100, eps=5, n_jobs=-1) except: dist, inds = tree.query(zip(x1, y1), k=100, eps=5) b = np.interp(inds, x1, y1) bed2 = bed.copy() bed2[inds] = b bed = bed2 if doplot == 1: if chunkmode != 4: for k in range(len(star_fp)): plot_2bedpicks( port_fp[k], star_fp[k], bed[ind_port[-1] * k:ind_port[-1] * (k + 1)], dist_m[ind_port[-1] * k:ind_port[-1] * (k + 1)], x[ind_port[-1] * k:ind_port[-1] * (k + 1)], ft, shape_port, sonpath, k, chunkmode) else: plot_2bedpicks(port_fp, star_fp, bed, dist_m, x, ft, shape_port, sonpath, 0, chunkmode) else: #manual beds = [] if chunkmode != 4: for k in range(len(port_fp)): raw_input( "Bed picking " + str(k + 1) + " of " + str(len(port_fp)) + ", are you ready? 30 seconds. Press Enter to continue..." ) bed = {} fig = plt.figure() ax = plt.gca() im = ax.imshow(port_fp[k], cmap='gray', origin='upper') pts1 = plt.ginput( n=300, timeout=30 ) # it will wait for 200 clicks or 60 seconds x1 = map(lambda x: x[0], pts1) # map applies the function passed as y1 = map( lambda x: x[1], pts1) # first parameter to each element of pts bed = np.interp(np.r_[:ind_port[-1]], x1, y1) plt.close() del fig beds.append(bed) extent = np.shape(port_fp[k])[0] bed = np.asarray(np.hstack(beds), 'float') else: raw_input( "Bed picking - are you ready? 30 seconds. Press Enter to continue..." ) bed = {} fig = plt.figure() ax = plt.gca() im = ax.imshow(port_fp, cmap='gray', origin='upper') pts1 = plt.ginput( n=300, timeout=30 ) # it will wait for 200 clicks or 60 seconds x1 = map(lambda x: x[0], pts1) # map applies the function passed as y1 = map(lambda x: x[1], pts1) # first parameter to each element of pts bed = np.interp(np.r_[:ind_port[-1]], x1, y1) plt.close() del fig beds.append(bed) extent = np.shape(port_fp)[1] bed = np.asarray(np.hstack(beds), 'float') # now revise the depth in metres dep_m = (1 / ft) * bed if doplot == 1: if chunkmode != 4: for k in range(len(star_fp)): plot_bedpick( port_fp[k], star_fp[k], (1 / ft) * bed[ind_port[-1] * k:ind_port[-1] * (k + 1)], dist_m[ind_port[-1] * k:ind_port[-1] * (k + 1)], ft, shape_port, sonpath, k, chunkmode) else: plot_bedpick(port_fp, star_fp, (1 / ft) * bed, dist_m, ft, shape_port, sonpath, 0, chunkmode) metadat['bed'] = bed[:nrec] else: metadat['bed'] = dep_m[:nrec] * ft metadat['heading'] = metadat['heading'][:nrec] metadat['lon'] = lon[:nrec] metadat['lat'] = lat[:nrec] metadat['dist_m'] = dist_m[:nrec] metadat['dep_m'] = dep_m[:nrec] metadat['pix_m'] = 1 / ft metadat['bed'] = metadat['bed'][:nrec] metadat['c'] = c metadat['t'] = t if model == 2: metadat['f'] = f * 2 else: metadat['f'] = f metadat['spd'] = metadat['spd'][:nrec] metadat['time_s'] = metadat['time_s'][:nrec] metadat['e'] = metadat['e'][:nrec] metadat['n'] = metadat['n'][:nrec] metadat['es'] = metadat['es'][:nrec] metadat['ns'] = metadat['ns'][:nrec] try: metadat['caltime'] = metadat['caltime'][:nrec] except: metadat['caltime'] = metadat['caltime'] savemat(os.path.normpath(os.path.join(sonpath, base + 'meta.mat')), metadat, oned_as='row') f = open(os.path.normpath(os.path.join(sonpath, base + 'rawdat.csv')), 'wt') writer = csv.writer(f) writer.writerow( ('longitude', 'latitude', 'easting', 'northing', 'depth (m)', 'distance (m)', 'instr. heading (deg)', 'heading (deg.)')) for i in range(0, nrec): writer.writerow( (float(lon[i]), float(lat[i]), float(es[i]), float(ns[i]), float(dep_m[i]), float(dist_m[i]), float(metadat['instr_heading'][i]), float(metadat['heading'][i]))) f.close() del lat, lon, dep_m #, dist_m if doplot == 1: plot_pos(sonpath, metadat, es, ns) if 'dwnlow_fp' in locals(): plot_dwnlow(dwnlow_fp, chunkmode, sonpath) if 'dwnhi_fp' in locals(): plot_dwnhi(dwnhi_fp, chunkmode, sonpath) if os.name == 'posix': # true if linux/mac elapsed = (time.time() - start) else: # windows elapsed = (time.clock() - start) print("Processing took " + str(elapsed) + "seconds to analyse") print("Done!") print("===================================================")
# ---------------------------------------------------------------------------- # | | 200-epoch | Orig Paper| 200-epoch | Orig Paper| sec/epoch # Model | n | ResNet v1 | ResNet v1 | ResNet v2 | ResNet v2 | GTX1080Ti # |v1(v2)| %Accuracy | %Accuracy | %Accuracy | %Accuracy | v1 (v2) # ---------------------------------------------------------------------------- # ResNet20 | 3 (2)| 92.16 | 91.25 | ----- | ----- | 35 (---) # ResNet32 | 5(NA)| 92.46 | 92.49 | NA | NA | 50 ( NA) # ResNet44 | 7(NA)| 92.50 | 92.83 | NA | NA | 70 ( NA) # ResNet56 | 9 (6)| 92.71 | 93.03 | 93.01 | NA | 90 (100) # ResNet110 |18(12)| 92.65 | 93.39+-.16| 93.15 | 93.63 | 165(180) # ResNet164 |27(18)| ----- | 94.07 | ----- | 94.54 | ---(---) # ResNet1001| (111)| ----- | 92.39 | ----- | 95.08+-.14| ---(---) # --------------------------------------------------------------------------- # Model name, depth and version depth = get_depth(version=args.version, model_depth_param=args.model_depth_param) model_type = 'ResNet%dv%d' % (depth, args.version) # Subtracting pixel mean improves accuracy subtract_pixel_mean = True # Data train_data, test_data, input_shape = get_data(subtract_pixel_mean, args.num_classes) # Score trained model. model = get_model(version=args.version, input_shape=input_shape, depth=depth) train(model, model_type, train_data['x'], train_data['y'], test_data['x'], test_data['y'], args.data_augmentation, args.batch_size, args.epochs) scores = model.evaluate(test_data['x'], test_data['y'], verbose=1)
GRASS_TERRAIN = "grass" CONCRETE_TERRAIN = "concrete" if __name__ == "__main__": if not os.path.exists(os.path.join(CORPUS_PATH)): os.mkdir(CORPUS_PATH) if not os.path.exists(os.path.join(CORPUS_PATH, CONCRETE_TERRAIN)): os.mkdir(os.path.join(CORPUS_PATH, CONCRETE_TERRAIN)) while 1: # get a frame from RGB camera frame = get_video() # get a frame from depth sensor depth = get_depth() cv2.imwrite( os.path.join(CORPUS_PATH, CONCRETE_TERRAIN, "{}.png".format(uuid.uuid4())), frame) img = frame gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # display RGB image cv2.imshow('RGB image', frame) # display depth image cv2.imshow('Depth image', depth) # quit program when 'esc' key is pressed k = cv2.waitKey(5) & 0xFF