예제 #1
0
def intersect(
    vdf: vDataFrame, index: str, gid: str, g: str = "", x: str = "", y: str = "",
):
    """
---------------------------------------------------------------------------
Spatially intersects a point or points with a set of polygons.

Parameters
----------
vdf: vDataFrame
    vDataFrame to use to compute the spatial join.
index: str
    Name of the index.
gid: str
    An integer column or integer that uniquely identifies the spatial object(s) 
    of g or x and y.
g: str, optional
    A geometry or geography (WGS84) column that contains points. 
    The g column can contain only point geometries or geographies.
x: str, optional
    x-coordinate or longitude.
y: str, optional
    y-coordinate or latitude.

Returns
-------
vDataFrame
    object containing the result of the intersection.
    """
    check_types(
        [
            ("vdf", vdf, [vDataFrame],),
            ("gid", gid, [str],),
            ("g", g, [str],),
            ("x", x, [str],),
            ("y", y, [str],),
            ("index", index, [str],),
        ]
    )
    table = vdf.__genSQL__()
    columns_check([gid], vdf)
    if g:
        columns_check([g], vdf)
        g = vdf_columns_names([g], vdf)[0]
        query = f"(SELECT STV_Intersect({gid}, {g} USING PARAMETERS index='{index}') OVER (PARTITION BEST) AS (point_id, polygon_gid) FROM {table}) x"
    elif x and y:
        columns_check([x, y], vdf)
        x, y = vdf_columns_names([x, y], vdf)
        query = f"(SELECT STV_Intersect({gid}, {x}, {y} USING PARAMETERS index='{index}') OVER (PARTITION BEST) AS (point_id, polygon_gid) FROM {table}) x"
    else:
        raise ParameterError("Either 'x' and 'y' or 'g' must not be empty.")
    return vdf_from_relation(query, cursor=vdf._VERTICAPY_VARIABLES_["cursor"])
예제 #2
0
def durbin_watson(
    vdf: vDataFrame, eps: str, ts: str, by: list = [],
):
    """
---------------------------------------------------------------------------
Durbin Watson test (residuals autocorrelation).

Parameters
----------
vdf: vDataFrame
    Input vDataFrame.
eps: str
    Input residual vcolumn.
ts: str
    vcolumn used as timeline. It will be to use to order the data. It can be
    a numerical or type date like (date, datetime, timestamp...) vcolumn.
by: list, optional
    vcolumns used in the partition.

Returns
-------
float
    Durbin Watson statistic
    """
    check_types(
        [
            ("ts", ts, [str],),
            ("eps", eps, [str],),
            ("by", by, [list],),
            ("vdf", vdf, [vDataFrame, str,],),
        ],
    )
    columns_check([eps] + [ts] + by, vdf)
    eps = vdf_columns_names([eps], vdf)[0]
    ts = vdf_columns_names([ts], vdf)[0]
    by = vdf_columns_names(by, vdf)
    query = "(SELECT et, LAG(et) OVER({}ORDER BY {}) AS lag_et FROM (SELECT {} AS et, {}{} FROM {}) VERTICAPY_SUBTABLE) VERTICAPY_SUBTABLE".format(
        "PARTITION BY {} ".format(", ".join(by)) if (by) else "",
        ts,
        eps,
        ts,
        (", " + ", ".join(by)) if (by) else "",
        vdf.__genSQL__(),
    )
    vdf.__executeSQL__(
        "SELECT SUM(POWER(et - lag_et, 2)) / SUM(POWER(et, 2)) FROM {}".format(query),
        title="Computes the Durbin Watson d.",
    )
    d = vdf._VERTICAPY_VARIABLES_["cursor"].fetchone()[0]
    return d
예제 #3
0
파일: geo.py 프로젝트: Learn-Live/VerticaPy
def create_index(
    vdf: vDataFrame,
    gid: str,
    g: str,
    index: str,
    overwrite: bool = False,
    max_mem_mb: int = 256,
    skip_nonindexable_polygons: bool = False,
):
    """
---------------------------------------------------------------------------
Creates a spatial index on a set of polygons to speed up spatial intersection 
with a set of points.

Parameters
----------
vdf: vDataFrame
    vDataFrame to use to compute the spatial join.
gid: str
    Name of an integer column that uniquely identifies the polygon. The gid 
    cannot be NULL.
g: str
    Name of a geometry or geography (WGS84) column or expression that contains 
    polygons and multipolygons. Only polygon and multipolygon can be indexed. 
    Other shape types are excluded from the index.
index: str
    Name of the index.
overwrite: bool, optional
    BOOLEAN value that specifies whether to overwrite the index, if an index exists.
max_mem_mb: int, optional
    A positive integer that assigns a limit to the amount of memory in megabytes 
    that create_index can allocate during index construction.
skip_nonindexable_polygons: bool, optional
    In rare cases, intricate polygons (for instance, with too high resolution or 
    anomalous spikes) cannot be indexed. These polygons are considered non-indexable. 
    When set to False, non-indexable polygons cause the index creation to fail. 
    When set to True, index creation can succeed by excluding non-indexable polygons 
    from the index.

Returns
-------
vDataFrame
    object result of the join.
    """
    check_types([
        (
            "vdf",
            vdf,
            [vDataFrame],
        ),
        (
            "gid",
            gid,
            [str],
        ),
        (
            "index",
            index,
            [str],
        ),
        (
            "g",
            g,
            [str],
        ),
        (
            "overwrite",
            overwrite,
            [bool],
        ),
        (
            "max_mem_mb",
            max_mem_mb,
            [int],
        ),
        (
            "skip_nonindexable_polygons",
            skip_nonindexable_polygons,
            [bool],
        ),
    ])
    columns_check([gid, g], vdf)
    gid, g = vdf_columns_names([gid, g], vdf)
    query = "SELECT STV_Create_Index({}, {} USING PARAMETERS index='{}', overwrite={} , max_mem_mb={}, skip_nonindexable_polygons={}) OVER() FROM {}"
    query = query.format(gid, g, index, overwrite, max_mem_mb,
                         skip_nonindexable_polygons, vdf.__genSQL__())
    return to_tablesample(query, vdf._VERTICAPY_VARIABLES_["cursor"])
예제 #4
0
def het_white(
    vdf: vDataFrame, eps: str, X: list,
):
    """
---------------------------------------------------------------------------
White’s Lagrange Multiplier Test for heteroscedasticity.

Parameters
----------
vdf: vDataFrame
    Input vDataFrame.
eps: str
    Input residual vcolumn.
X: str
    Exogenous Variables to test the heteroscedasticity on.

Returns
-------
tablesample
    An object containing the result. For more information, see
    utilities.tablesample.
    """
    check_types(
        [("eps", eps, [str],), ("X", X, [list],), ("vdf", vdf, [vDataFrame, str,],),],
    )
    columns_check([eps] + X, vdf)
    eps = vdf_columns_names([eps], vdf)[0]
    X = vdf_columns_names(X, vdf)
    X_0 = ["1"] + X
    variables = []
    variables_names = []
    for i in range(len(X_0)):
        for j in range(i, len(X_0)):
            if i != 0 or j != 0:
                variables += ["{} * {} AS var_{}_{}".format(X_0[i], X_0[j], i, j)]
                variables_names += ["var_{}_{}".format(i, j)]
    query = "(SELECT {}, POWER({}, 2) AS VERTICAPY_TEMP_eps2 FROM {}) VERTICAPY_SUBTABLE".format(
        ", ".join(variables), eps, vdf.__genSQL__()
    )
    vdf_white = vdf_from_relation(query, cursor=vdf._VERTICAPY_VARIABLES_["cursor"])

    from verticapy.learn.linear_model import LinearRegression

    schema_writing = vdf._VERTICAPY_VARIABLES_["schema_writing"]
    if not (schema_writing):
        schema_writing = "public"
    name = schema_writing + ".VERTICAPY_TEMP_MODEL_LINEAR_REGRESSION_{}".format(
        get_session(vdf._VERTICAPY_VARIABLES_["cursor"])
    )
    model = LinearRegression(name, cursor=vdf._VERTICAPY_VARIABLES_["cursor"])
    try:
        model.fit(vdf_white, variables_names, "VERTICAPY_TEMP_eps2")
        R2 = model.score("r2")
        model.drop()
    except:
        try:
            model.set_params({"solver": "bfgs"})
            model.fit(vdf_white, variables_names, "VERTICAPY_TEMP_eps2")
            R2 = model.score("r2")
            model.drop()
        except:
            model.drop()
            raise
    n = vdf.shape()[0]
    if len(X) > 1:
        k = 2 * len(X) + math.factorial(len(X)) / 2 / (math.factorial(len(X) - 2))
    else:
        k = 1
    LM = n * R2
    lm_pvalue = chi2.sf(LM, k)
    F = (n - k - 1) * R2 / (1 - R2) / k
    f_pvalue = f.sf(F, k, n - k - 1)
    result = tablesample(
        {
            "index": [
                "Lagrange Multiplier Statistic",
                "lm_p_value",
                "F Value",
                "f_p_value",
            ],
            "value": [LM, lm_pvalue, F, f_pvalue],
        }
    )
    return result
예제 #5
0
def adfuller(
    vdf: vDataFrame,
    column: str,
    ts: str,
    by: list = [],
    p: int = 1,
    with_trend: bool = False,
    regresults: bool = False,
):
    """
---------------------------------------------------------------------------
Augmented Dickey Fuller test (Time Series stationarity).

Parameters
----------
vdf: vDataFrame
    Input vDataFrame.
column: str
    Input vcolumn to test.
ts: str
    vcolumn used as timeline. It will be to use to order the data. It can be
    a numerical or type date like (date, datetime, timestamp...) vcolumn.
by: list, optional
    vcolumns used in the partition.
p: int, optional
    Number of lags to consider in the test.
with_trend: bool, optional
    Adds a trend in the Regression.
regresults: bool, optional
    If True, the full regression results are returned.

Returns
-------
tablesample
    An object containing the result. For more information, see
    utilities.tablesample.
    """

    def critical_value(alpha, N, with_trend):
        if not (with_trend):
            if N <= 25:
                if alpha == 0.01:
                    return -3.75
                elif alpha == 0.10:
                    return -2.62
                elif alpha == 0.025:
                    return -3.33
                else:
                    return -3.00
            elif N <= 50:
                if alpha == 0.01:
                    return -3.58
                elif alpha == 0.10:
                    return -2.60
                elif alpha == 0.025:
                    return -3.22
                else:
                    return -2.93
            elif N <= 100:
                if alpha == 0.01:
                    return -3.51
                elif alpha == 0.10:
                    return -2.58
                elif alpha == 0.025:
                    return -3.17
                else:
                    return -2.89
            elif N <= 250:
                if alpha == 0.01:
                    return -3.46
                elif alpha == 0.10:
                    return -2.57
                elif alpha == 0.025:
                    return -3.14
                else:
                    return -2.88
            elif N <= 500:
                if alpha == 0.01:
                    return -3.44
                elif alpha == 0.10:
                    return -2.57
                elif alpha == 0.025:
                    return -3.13
                else:
                    return -2.87
            else:
                if alpha == 0.01:
                    return -3.43
                elif alpha == 0.10:
                    return -2.57
                elif alpha == 0.025:
                    return -3.12
                else:
                    return -2.86
        else:
            if N <= 25:
                if alpha == 0.01:
                    return -4.38
                elif alpha == 0.10:
                    return -3.24
                elif alpha == 0.025:
                    return -3.95
                else:
                    return -3.60
            elif N <= 50:
                if alpha == 0.01:
                    return -4.15
                elif alpha == 0.10:
                    return -3.18
                elif alpha == 0.025:
                    return -3.80
                else:
                    return -3.50
            elif N <= 100:
                if alpha == 0.01:
                    return -4.04
                elif alpha == 0.10:
                    return -3.15
                elif alpha == 0.025:
                    return -3.73
                else:
                    return -5.45
            elif N <= 250:
                if alpha == 0.01:
                    return -3.99
                elif alpha == 0.10:
                    return -3.13
                elif alpha == 0.025:
                    return -3.69
                else:
                    return -3.43
            elif N <= 500:
                if alpha == 0.01:
                    return 3.98
                elif alpha == 0.10:
                    return -3.13
                elif alpha == 0.025:
                    return -3.68
                else:
                    return -3.42
            else:
                if alpha == 0.01:
                    return -3.96
                elif alpha == 0.10:
                    return -3.12
                elif alpha == 0.025:
                    return -3.66
                else:
                    return -3.41

    check_types(
        [
            ("ts", ts, [str],),
            ("column", column, [str],),
            ("p", p, [int, float],),
            ("by", by, [list],),
            ("with_trend", with_trend, [bool],),
            ("regresults", regresults, [bool],),
            ("vdf", vdf, [vDataFrame,],),
        ],
    )
    columns_check([ts, column] + by, vdf)
    ts = vdf_columns_names([ts], vdf)[0]
    column = vdf_columns_names([column], vdf)[0]
    by = vdf_columns_names(by, vdf)
    schema = vdf._VERTICAPY_VARIABLES_["schema_writing"]
    if not (schema):
        schema = "public"
    name = "{}.VERTICAPY_TEMP_MODEL_LINEAR_REGRESSION_{}".format(
        schema, gen_name([column]).upper()
    )
    relation_name = "{}.VERTICAPY_TEMP_MODEL_LINEAR_REGRESSION_VIEW_{}".format(
        schema, gen_name([column]).upper()
    )
    try:
        vdf._VERTICAPY_VARIABLES_["cursor"].execute(
            "DROP MODEL IF EXISTS {}".format(name)
        )
        vdf._VERTICAPY_VARIABLES_["cursor"].execute(
            "DROP VIEW IF EXISTS {}".format(relation_name)
        )
    except:
        pass
    lag = [
        "LAG({}, 1) OVER ({}ORDER BY {}) AS lag1".format(
            column, "PARTITION BY {}".format(", ".join(by)) if (by) else "", ts
        )
    ]
    lag += [
        "LAG({}, {}) OVER ({}ORDER BY {}) - LAG({}, {}) OVER ({}ORDER BY {}) AS delta{}".format(
            column,
            i,
            "PARTITION BY {}".format(", ".join(by)) if (by) else "",
            ts,
            column,
            i + 1,
            "PARTITION BY {}".format(", ".join(by)) if (by) else "",
            ts,
            i,
        )
        for i in range(1, p + 1)
    ]
    lag += [
        "{} - LAG({}, 1) OVER ({}ORDER BY {}) AS delta".format(
            column, column, "PARTITION BY {}".format(", ".join(by)) if (by) else "", ts
        )
    ]
    query = "CREATE VIEW {} AS SELECT {}, {} AS ts FROM {}".format(
        relation_name,
        ", ".join(lag),
        "TIMESTAMPDIFF(SECOND, {}, MIN({}) OVER ())".format(ts, ts)
        if vdf[ts].isdate()
        else ts,
        vdf.__genSQL__(),
    )
    vdf._VERTICAPY_VARIABLES_["cursor"].execute(query)
    model = LinearRegression(
        name, vdf._VERTICAPY_VARIABLES_["cursor"], solver="Newton", max_iter=1000
    )
    predictors = ["lag1"] + ["delta{}".format(i) for i in range(1, p + 1)]
    if with_trend:
        predictors += ["ts"]
    model.fit(
        relation_name, predictors, "delta",
    )
    coef = model.coef_
    vdf._VERTICAPY_VARIABLES_["cursor"].execute("DROP MODEL IF EXISTS {}".format(name))
    vdf._VERTICAPY_VARIABLES_["cursor"].execute(
        "DROP VIEW IF EXISTS {}".format(relation_name)
    )
    if regresults:
        return coef
    coef = coef.transpose()
    DF = coef.values["lag1"][0] / (max(coef.values["lag1"][1], 1e-99))
    p_value = coef.values["lag1"][3]
    count = vdf.shape()[0]
    result = tablesample(
        {
            "index": [
                "ADF Test Statistic",
                "p_value",
                "# Lags used",
                "# Observations Used",
                "Critical Value (1%)",
                "Critical Value (2.5%)",
                "Critical Value (5%)",
                "Critical Value (10%)",
                "Stationarity (alpha = 1%)",
            ],
            "value": [
                DF,
                p_value,
                p,
                count,
                critical_value(0.01, count, with_trend),
                critical_value(0.025, count, with_trend),
                critical_value(0.05, count, with_trend),
                critical_value(0.10, count, with_trend),
                DF < critical_value(0.01, count, with_trend) and p_value < 0.01,
            ],
        }
    )
    return result
예제 #6
0
def het_arch(
    vdf: vDataFrame, eps: str, ts: str, by: list = [], p: int = 1,
):
    """
---------------------------------------------------------------------------
Engle’s Test for Autoregressive Conditional Heteroscedasticity (ARCH).

Parameters
----------
vdf: vDataFrame
    Input vDataFrame.
eps: str
    Input residual vcolumn.
ts: str
    vcolumn used as timeline. It will be to use to order the data. It can be
    a numerical or type date like (date, datetime, timestamp...) vcolumn.
by: list, optional
    vcolumns used in the partition.
p: int, optional
    Number of lags to consider in the test.

Returns
-------
tablesample
    An object containing the result. For more information, see
    utilities.tablesample.
    """
    check_types(
        [
            ("eps", eps, [str],),
            ("ts", ts, [str],),
            ("p", p, [int, float],),
            ("vdf", vdf, [vDataFrame, str,],),
        ],
    )
    columns_check([eps, ts] + by, vdf)
    eps = vdf_columns_names([eps], vdf)[0]
    ts = vdf_columns_names([ts], vdf)[0]
    by = vdf_columns_names(by, vdf)
    X = []
    X_names = []
    for i in range(0, p + 1):
        X += [
            "LAG(POWER({}, 2), {}) OVER({}ORDER BY {}) AS lag_{}".format(
                eps, i, ("PARTITION BY " + ", ".join(by)) if (by) else "", ts, i
            )
        ]
        X_names += ["lag_{}".format(i)]
    query = "(SELECT {} FROM {}) VERTICAPY_SUBTABLE".format(
        ", ".join(X), vdf.__genSQL__()
    )
    vdf_lags = vdf_from_relation(query, cursor=vdf._VERTICAPY_VARIABLES_["cursor"])
    from verticapy.learn.linear_model import LinearRegression

    schema_writing = vdf._VERTICAPY_VARIABLES_["schema_writing"]
    if not (schema_writing):
        schema_writing = "public"
    name = schema_writing + ".VERTICAPY_TEMP_MODEL_LINEAR_REGRESSION_{}".format(
        get_session(vdf._VERTICAPY_VARIABLES_["cursor"])
    )
    model = LinearRegression(name, cursor=vdf._VERTICAPY_VARIABLES_["cursor"])
    try:
        model.fit(vdf_lags, X_names[1:], X_names[0])
        R2 = model.score("r2")
        model.drop()
    except:
        try:
            model.set_params({"solver": "bfgs"})
            model.fit(vdf_lags, X_names[1:], X_names[0])
            R2 = model.score("r2")
            model.drop()
        except:
            model.drop()
            raise
    n = vdf.shape()[0]
    k = len(X)
    LM = (n - p) * R2
    lm_pvalue = chi2.sf(LM, p)
    F = (n - 2 * p - 1) * R2 / (1 - R2) / p
    f_pvalue = f.sf(F, p, n - 2 * p - 1)
    result = tablesample(
        {
            "index": [
                "Lagrange Multiplier Statistic",
                "lm_p_value",
                "F Value",
                "f_p_value",
            ],
            "value": [LM, lm_pvalue, F, f_pvalue],
        }
    )
    return result
예제 #7
0
def mkt(vdf: vDataFrame, column: str, ts: str, alpha: float = 0.05):
    """
---------------------------------------------------------------------------
Mann Kendall test (Time Series trend).

\u26A0 Warning : This Test is computationally expensive. It is using a CROSS 
                 JOIN during the computation. The complexity is O(n * k), n 
                 being the total count of the vDataFrame and k the number
                 of rows to use to do the test.

Parameters
----------
vdf: vDataFrame
    Input vDataFrame.
column: str
    Input vcolumn to test.
ts: str
    vcolumn used as timeline. It will be to use to order the data. It can be
    a numerical or type date like (date, datetime, timestamp...) vcolumn.
alpha: float, optional
    Significance Level. Probability to accept H0.

Returns
-------
tablesample
    An object containing the result. For more information, see
    utilities.tablesample.
    """
    check_types(
        [
            ("ts", ts, [str],),
            ("column", column, [str],),
            ("alpha", alpha, [int, float],),
            ("vdf", vdf, [vDataFrame,],),
        ],
    )
    columns_check([column, ts], vdf)
    column = vdf_columns_names([column], vdf)[0]
    ts = vdf_columns_names([ts], vdf)[0]
    table = "(SELECT {}, {} FROM {})".format(column, ts, vdf.__genSQL__())
    query = "SELECT SUM(SIGN(y.{} - x.{})) FROM {} x CROSS JOIN {} y WHERE y.{} > x.{}".format(
        column, column, table, table, ts, ts
    )
    vdf.__executeSQL__(query, title="Computes the Mann Kendall S.")
    S = vdf._VERTICAPY_VARIABLES_["cursor"].fetchone()[0]
    try:
        S = float(S)
    except:
        S = None
    n = vdf[column].count()
    query = "SELECT SQRT(({} * ({} - 1) * (2 * {} + 5) - SUM(row * (row - 1) * (2 * row + 5))) / 18) FROM (SELECT row FROM (SELECT ROW_NUMBER() OVER (PARTITION BY {}) AS row FROM {}) VERTICAPY_SUBTABLE GROUP BY row) VERTICAPY_SUBTABLE".format(
        n, n, n, column, vdf.__genSQL__()
    )
    vdf.__executeSQL__(query, title="Computes the Mann Kendall S standard deviation.")
    STDS = vdf._VERTICAPY_VARIABLES_["cursor"].fetchone()[0]
    try:
        STDS = float(STDS)
    except:
        STDS = None
    if STDS in (None, 0) or S == None:
        return None
    if S > 0:
        ZMK = (S - 1) / STDS
        trend = "increasing"
    elif S < 0:
        ZMK = (S + 1) / STDS
        trend = "decreasing"
    else:
        ZMK = 0
        trend = "no trend"
    pvalue = 2 * norm.sf(abs(ZMK))
    result = (
        True
        if (ZMK <= 0 and pvalue < alpha) or (ZMK >= 0 and pvalue < alpha)
        else False
    )
    if not (result):
        trend = "no trend"
    result = tablesample(
        {
            "index": [
                "Mann Kendall Test Statistic",
                "S",
                "STDS",
                "p_value",
                "Monotonic Trend",
                "Trend",
            ],
            "value": [ZMK, S, STDS, pvalue, result, trend],
        }
    )
    return result