예제 #1
0
def start():
    app = Flask(__name__)
    display = Display()
    viz = visualize.Visualizer()

    @app.route('/display/<string:name>', methods=['POST'])
    def show(name):
        img = cv2.imdecode(numpy.frombuffer(request.get_data(), dtype='uint8'), cv2.IMREAD_COLOR)
        display.push((name, img))
        return flask.make_response("", HTTPStatus.NO_CONTENT)

    @app.route('/display', methods=['POST'])
    def show_root():
        img = cv2.imdecode(numpy.frombuffer(request.get_data(), dtype='uint8'), cv2.IMREAD_COLOR)
        display.push(('', img))
        return flask.make_response("", HTTPStatus.NO_CONTENT)

    @app.route('/visualize/<string:name>', methods=['POST'])
    def visualize_face(name):
        data = json.loads(request.form['result'])
        img_buf = request.files['image']
        img = cv2.imdecode(numpy.frombuffer(img_buf.read(), dtype='uint8'), cv2.IMREAD_COLOR)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        viz.add(name, video_width=img.shape[1], video_height=img.shape[0]*1.5, panel_count=3)
        viz.push_data(name, image=img, info=data)
        return flask.make_response("", HTTPStatus.NO_CONTENT)

    @app.route('/static/<path:path>')
    def serve_static(path):
        return flask.send_from_directory('static', path)

    app.run(host='0.0.0.0', port=9555)
예제 #2
0
def visualizeRun(boardingStrategy):
    # strategies = ['random', 'backFirst', 'frontFirst']
    p = {
        'planeType': Plane,
        'passengerType': DefaultPassenger,
        'boardingStrategy': boardingStrategy
    }
    sim = Simulator(params=p)
    viz = visualize.Visualizer(sim)
    res = sim.run()
    # print(res)
    print('time needed for {} strategy was {}:{}'.format(
        boardingStrategy, *toMinutesAndSeconds(res)))
예제 #3
0
    def saveDotFile(self, queryName, rootID, blackSet, redSet=None):
        # Create DOT-file
        visualizer = visualize.Visualizer(self.connector, self.noDetails)
        dotFile = visualizer.generateDotFile(blackSet, redSet)

        # Print DOT-file to user defined file
        if self.filename is not None:
            query = open(self.filename + str(rootID) + queryName + ".dot", "w")
            query.write(dotFile)
            query.close()

        # Print DOT-file to std-out
        else:
            print(dotFile)
예제 #4
0
 def watch(self, repeat_count=1):
     self.robot.x = self.initial_state[0]
     self.human.x = self.initial_state[1]
     if self.viewer is None:
         self.viewer = visualize.Visualizer(0.1, magnify=1.2)
         self.viewer.main_car = self.robot
         self.viewer.use_world(self.world)
         self.viewer.paused = True
     for _ in range(repeat_count):
         self.viewer.run_modified(
             history_x=[self.robot_history_x, self.human_history_x],
             history_u=[self.robot_history_u, self.human_history_u])
     self.viewer.window.close()
     self.viewer = None
예제 #5
0
                mode='markers')
t4 = go.Scatter(x=test.df[ratio_mask].index,
                y=test.df[ratio_mask]['GHI'],
                name='NN',
                mode='markers')
t5 = go.Scatter(x=test.df[both_mask].index,
                y=test.df[both_mask]['GHI'],
                name='Both',
                mode='markers')

iplot([t1, t2, t3, t4, t5])

# In[64]:

cm = metrics.confusion_matrix(test.df['sky_status'], pred)
vis = visualize.Visualizer()
vis.plot_confusion_matrix(cm, labels=['cloudy', 'clear'])

# In[ ]:

ground = cs_detection.ClearskyDetection.read_pickle('abq_ground_1.pkl.gz',
                                                    'MST')
# ground.df.index = ground.df.index.tz_convert('MST')
test = cs_detection.ClearskyDetection(ground.df, 'MST')

# In[ ]:

test.df['tfn'].plot()

# In[71]:
예제 #6
0
th.config.allow_gc = False

if __name__ == '__main__':
    name = sys.argv[1]
    if len(sys.argv) > 2 and sys.argv[2] == 'fast':
        th.config.optimizer = 'fast_compile'
    if len(sys.argv) > 2 and sys.argv[2] == 'FAST':
        th.config.mode = 'FAST_COMPILE'
    world_to_use = getattr(world, name)()
    if len(sys.argv) > 3 or (len(sys.argv) > 2
                             and sys.argv[2] not in ['fast', 'FAST']):
        ctrl = eval(sys.argv[-1])
        for car in world.cars:
            if isinstance(car, UserControlledCar):
                print 'User Car'
                car.fix_control(ctrl)
    vis = visualize.Visualizer(0.1, name=name)
    vis.use_world(world_to_use)
    vis.main_car = world_to_use.cars[0]
    vis.run()
    del vis
    del world_to_use
    #gc.collect()
    print("HERE!")
    world_to_use = getattr(world, name)()
    vis = visualize.Visualizer(0.1, name=name)
    vis.use_world(world_to_use)
    vis.main_car = world_to_use.cars[0]
    vis.run()
    print("HERE AGAIN!")
예제 #7
0
if __name__ == "__main__":
    field_size = (30, 30)
    generation_size = 10
    surviver_count = 5  #the amount of fittest selected to breed the next generation
    child_per_survivor = generation_size // surviver_count
    mutation = 1

    generation = 1
    generations = []
    for i in range(generation_size):
        game = snake.Game(
            field_size, snake.Snake(snake.Vector(14, 14), snake.Vector.UP, 3))
        model = ai.create_model(field_size)
        generations.append((model, game))

    vis = visualize.Visualizer((600, 450), "Snake", 5, (255, 0, 0),
                               (0, 255, 0))

    last_update = 0
    update_frequency = 200
    max_ticks = 50
    tick_count = 0
    dead = 0

    while vis.running:
        vis.begin_frame()
        for i in range(len(generations)):  #display fields
            x = i % 4
            y = i // 4
            vis.draw_field(generations[i][1].field,
                           (x * field_size[0] * 5, y * field_size[1] * 5))
        vis.end_frame()
예제 #8
0
        frame_dir_suffix += '/'
        if args.save_interaction_data_dir is not None:
            frame_dir = (constants.INTERACTION_DATA_DIR +
                            args.save_interaction_data_dir + frame_dir_suffix)
        elif args.load_interaction_data_dir is not None:
            frame_dir = (constants.INTERACTION_DATA_DIR +
                            args.load_interaction_data_dir + frame_dir_suffix)

    # create visualizer
    vis = visualize.Visualizer(this_world,
            dt=constants.DT,
            name=this_world.name,
            iters=iters,
            save_interaction_data=save_interaction_data_dir is not None,
            save_interaction_data_dir=save_interaction_data_dir,
            save_frames=args.save_frames,
            frame_dir=frame_dir,
            manual=args.manual,
            plan_show=args.plan,
            heatmap_show=args.heatmap is not None,
            heatmap_name=args.heatmap,
            heat_val_show=args.heat_val_show)
    vis.main_car = this_world.main_human_car

    # Start the simulation
    if args.no_vis:
        print('Starting simulation without visualization.')
        cont = True # if True, continue the control loop
        while cont:
            cont = vis.control_loop()
    else:
예제 #9
0
    world.cars.append(
        car.Car(dyn, [0., 0.1, math.pi / 2. + math.pi / 5, 0.],
                color='yellow'))
    world.cars.append(
        car.Car(dyn, [-0.13, 0.2, math.pi / 2. - math.pi / 5, 0.],
                color='yellow'))
    world.cars.append(
        car.Car(dyn, [0.13, -0.2, math.pi / 2., 0.], color='yellow'))
    #world.cars.append(car.NestedOptimizerCar(dyn, [0.0, 0.5, math.pi/2., 0.3], color='yellow'))
    return world


if __name__ == '__main__':
    world = playground()
    #world.cars = world.cars[:0]
    vis = visualize.Visualizer(0.1, magnify=1.2)
    vis.main_car = None
    vis.use_world(world)
    vis.paused = True

    @feature.feature
    def zero(t, x, u):
        return 0.

    r = zero
    #for lane in world.lanes:
    #    r = r+lane.gaussian()
    #for fence in world.fences:
    #    r = r-3.*fence.gaussian()
    r = r - world.cars[0].linear.gaussian()
    #vis.visible_cars = [world.cars[0]]
예제 #10
0
clf = ensemble.RandomForestClassifier(**these_params, n_jobs=-1)


# In[109]:


clf.fit(X_train, y_train)


# # Test on ground data

# ## SRRL
ground = cs_detection.ClearskyDetection.read_pickle('srrl_ground_1.pkl.gz')ground.df.index = ground.df.index.tz_convert('MST')ground.trim_dates('10-01-2011', '10-08-2011')ground.scale_model('GHI', 'Clearsky GHI pvlib', 'sky_status pvlib')ground.time_from_solar_noon('Clearsky GHI pvlib', 'tfn')
ground.scale_by_irrad('Clearsky GHI pvlib')test = groundpred = test.iter_predict_daily(feature_cols, 'GHI', 'Clearsky GHI pvlib', clf, 61, by_day=True, multiproc=True)
pred = pred.astype(bool)vis = visualize.Visualizer()vis.add_line_ser(test.df['GHI'], 'GHI')
vis.add_line_ser(test.df['Clearsky GHI pvlib'], 'GHI_cs')
vis.add_circle_ser(test.df[(test.df['sky_status pvlib'] == 0) & (pred)]['GHI'], 'ML clear only')
vis.add_circle_ser(test.df[(test.df['sky_status pvlib'] == 1) & (~pred)]['GHI'], 'PVLib clear only')
vis.add_circle_ser(test.df[(test.df['sky_status pvlib'] == 1) & (pred)]['GHI'], 'ML+PVLib clear only')
# vis.add_line_ser(test.df['abs_ideal_ratio_diff'] * 100)vis.show()probas = clf.predict_proba(test.df[feature_cols].values)
test.df['probas'] = 0
test.df['probas'] = probas[:, 1]
visualize.plot_ts_slider_highligther(test.df, prob='probas')
# In[64]:


ground = cs_detection.ClearskyDetection.read_pickle('srrl_ground_1.pkl.gz')


# In[65]:
train.df['sky_status_km'] = 0
train.df['sky_status_km'] = kmeans.labels_
pd.unique(train.df['sky_status_km'])train.df['sky_status_km'] = (train.df['sky_status_km'] == 0) | (train.df['sky_status_km'] == 0)
x = train.df.index
trace1 = go.Scatter(x=x, y=train.df['GHI'])
trace2 = go.Scatter(x=x, y=train.df['Clearsky GHI pvlib'])
# trace3 = go.Scatter(x=train.df[train.df['sky_status']].index, 
#                     y=train.df[train.df['sky_status']]['GHI'], name='NSRBD', mode='markers')
trace3 = go.Scatter(x=train.df[train.df['sky_status'] & ~train.df['sky_status_km']].index, 
                    y=train.df[train.df['sky_status'] & ~train.df['sky_status_km']]['GHI'], name='NSRBD', mode='markers')
trace4 = go.Scatter(x=train.df[~train.df['sky_status'] & train.df['sky_status_km']].index, 
                    y=train.df[~train.df['sky_status'] & train.df['sky_status_km']]['GHI'], name='km', mode='markers')
trace5 = go.Scatter(x=train.df[train.df['sky_status'] & train.df['sky_status_km']].index, 
                    y=train.df[train.df['sky_status'] & train.df['sky_status_km']]['GHI'], name='both', mode='markers')
iplot([trace1, trace2, trace3, trace4, trace5])vis = visualize.Visualizer()
vis.plot_corr_matrix(train.df[feature_cols].corr(), feature_cols)
# In[9]:


train = cs_detection.ClearskyDetection(nsrdb.df, scale_col=None)
train.trim_dates(None, '01-01-2015')
test = cs_detection.ClearskyDetection(nsrdb.df, scale_col=None)
test.trim_dates('01-01-2015', None)


# In[10]:


utils.calc_all_window_metrics(train.df, 3, meas_col='GHI', model_col='Clearsky GHI pvlib', overwrite=True)
clf.fit(train.df[feature_cols].values, train.df[target_cols].values.flatten())
예제 #12
0
def main():
    args = parse_args()

    # Set the GPU to use
    torch.cuda.set_device(args.gpu)

    transform = transforms.Compose([
        transforms.Resize(256),
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])
    vqa_loader = dataset.get_train_dataloader(osp.expanduser(args.annotations),
                                              osp.expanduser(args.questions),
                                              args.images,
                                              args,
                                              raw_images=args.raw_images,
                                              transforms=transform)
    # We always use the vocab from the training set
    vocab = vqa_loader.dataset.vocab

    maps = {
        "vocab": vocab,
        "word_to_wid": vqa_loader.dataset.word_to_wid,
        "wid_to_word": vqa_loader.dataset.wid_to_word,
        "ans_to_aid": vqa_loader.dataset.ans_to_aid,
        "aid_to_ans": vqa_loader.dataset.aid_to_ans,
    }
    val_transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])
    val_loader = dataset.get_val_dataloader(osp.expanduser(
        args.val_annotations),
                                            osp.expanduser(args.val_questions),
                                            args.val_images,
                                            args,
                                            raw_images=args.raw_images,
                                            maps=maps,
                                            vocab=vocab,
                                            shuffle=False,
                                            transforms=val_transform)

    arch = Models[args.arch].value
    model = arch(len(vocab),
                 output_dim=args.top_answer_limit,
                 raw_images=args.raw_images)

    if args.resume:
        state = torch.load(args.resume)
        model.load_state_dict(state["model"])

    model.cuda()

    criterion = nn.CrossEntropyLoss().cuda()
    optimizer = optim.Adam(model.parameters(),
                           lr=args.lr,
                           betas=tuple(args.betas),
                           weight_decay=args.weight_decay)
    scheduler = lr_scheduler.StepLR(optimizer,
                                    step_size=args.decay_interval,
                                    gamma=args.lr_decay)

    if args.visualize:
        vis = visualize.Visualizer(args.port)
    else:
        vis = None

    print("Beginning training")
    print("#" * 80)

    for epoch in range(args.start_epoch, args.epochs):
        scheduler.step()

        trainer.train(model,
                      vqa_loader,
                      criterion,
                      optimizer,
                      epoch,
                      args,
                      vis=vis)
        trainer.evaluate(model, val_loader, criterion, epoch, args, vis=vis)

    print("Training complete!")
예제 #13
0

model = fcnn.build(val_ds.num_classes)

stream = fake_stream()

if not os.path.exists("model.h5"):
    model.fit_generator(stream, steps_per_epoch=200, epochs=1)

    model.save_weights("model.h5")
else:
    model.load_weights("model.h5")

x, y = next(stream)
pred = model.predict(x)
vis = visualize.Visualizer(val_ds.num_classes)
for xx, yy, pp in zip(x, y, pred):
    image = cv2.cvtColor((xx * 255).astype("uint8"), cv2.COLOR_BGR2RGB)

    gt = vis.colorify_mask(xx, yy)
    dt = vis.colorify_mask(xx, pp)

    fig, (l, r) = plt.subplots(1, 2, figsize=(9, 6))
    l.imshow(image)
    l.imshow(gt, alpha=0.5)

    r.imshow(image)
    r.imshow(dt, alpha=0.5)

    l.set_title("Ground Truth")
    r.set_title("Detection")
예제 #14
0
                                by_day=False)
pred = train.iter_predict_daily(feature_cols,
                                'GHI',
                                'Clearsky GHI pvlib',
                                clf,
                                3,
                                multiproc=True,
                                by_day=True)

# In[35]:

probas = clf.predict_proba(train.df[feature_cols].values)

# In[36]:

vis = visualize.Visualizer()
vis.add_line_ser(train.df['GHI'])
vis.add_line_ser(train.df['Clearsky GHI pvlib'])
vis.add_circle_ser(train.df[pred]['GHI'])
vis.add_line(train.df.index, probas[:, 1] * 1000, label='prob')
vis.show()

# In[37]:

test_pred = test.iter_predict_daily(feature_cols,
                                    'GHI',
                                    'Clearsky GHI pvlib',
                                    clf,
                                    3,
                                    multiproc=True,
                                    by_day=True).astype(bool)
예제 #15
0
    name = "world6"
    name = "world_kex"
    #name = "irl_ground"
    #name = sys.argv[1]
    # if len(sys.argv)>2 and sys.argv[2]=='fast':
    #   th.config.optimizer = 'fast_compile'
    # if len(sys.argv)>2 and sys.argv[2]=='FAST':
    #   th.config.mode = 'FAST_COMPILE'
    world = getattr(world, name)()
    # if len(sys.argv)>3 or (len(sys.argv)>2 and sys.argv[2] not in ['fast', 'FAST']):
    #     ctrl = eval(sys.argv[-1])
    #     for car in world.cars:
    #         if isinstance(car, UserControlledCar):
    #             print 'User Car'
    #             car.fix_control(ctrl)
    vis = visualize.Visualizer(1.0, name=name)
    vis.use_world(world)
    vis.main_car = world.cars[0]
    vis.run()

if __name__ == '__main__1':
    name = sys.argv[1]
    if len(sys.argv) > 2 and sys.argv[2] == 'fast':
        th.config.optimizer = 'fast_compile'
    if len(sys.argv) > 2 and sys.argv[2] == 'FAST':
        th.config.mode = 'FAST_COMPILE'
    world = getattr(world, name)()
    if len(sys.argv) > 3 or (len(sys.argv) > 2
                             and sys.argv[2] not in ['fast', 'FAST']):
        ctrl = eval(sys.argv[-1])
        for car in world.cars:
예제 #16
0
def main():
    args = parse_args()

    # Set the GPU to use
    torch.cuda.set_device(args.gpu)

    annotations = osp.expanduser(args.annotations)
    questions = osp.expanduser(args.questions)

    vqa_loader = dataset.get_train_dataloader(annotations, questions,
                                              args.images, args)
    # We always use the vocab from the training set
    vocab = vqa_loader.dataset.vocab

    maps = {
        "word_to_wid": vqa_loader.dataset.word_to_wid,
        "wid_to_word": vqa_loader.dataset.wid_to_word,
        "ans_to_aid": vqa_loader.dataset.ans_to_aid,
        "aid_to_ans": vqa_loader.dataset.aid_to_ans,
    }
    val_loader = dataset.get_val_dataloader(osp.expanduser(
        args.val_annotations),
                                            osp.expanduser(args.val_questions),
                                            args.val_images,
                                            args,
                                            maps=maps,
                                            vocab=vocab,
                                            shuffle=False)

    arch = Models[args.arch].value
    model = arch(len(vocab), output_dim=args.top_answer_limit)

    if torch.cuda.is_available():
        model.cuda()

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(),
                           lr=args.lr,
                           betas=tuple(args.betas),
                           weight_decay=args.weight_decay)
    scheduler = lr_scheduler.StepLR(optimizer,
                                    step_size=args.decay_interval,
                                    gamma=args.lr_decay)

    vis = visualize.Visualizer(args.port)

    print("Beginning training")
    print("#" * 80)

    for epoch in range(args.start_epoch, args.epochs):
        scheduler.step()

        trainer.train(model,
                      vqa_loader,
                      criterion,
                      optimizer,
                      epoch,
                      args,
                      vis=vis)
        trainer.evaluate(model, val_loader, criterion, epoch, args, vis=vis)

    print("Training complete!")
예제 #17
0
    def __init__(self,
                 music_path,
                 sample_rate,
                 frame_rate,
                 least_energy,
                 pin_list,
                 response_time,
                 speed=2,
                 on_tft=False,
                 screen=None):
        keyboard.key_initiate(pin_list)
        self.pin_list = pin_list
        self.frame_rate = frame_rate
        self.time_interval = 1.0 / frame_rate
        self.least_energy = least_energy
        self.sample_rate = sample_rate
        self.music_path = music_path
        self.visualizer = visualize.Visualizer(
            music_path, int(speed * frame_rate * response_time), speed, on_tft,
            screen)

        stats_file = "{}.npz".format(os.path.splitext(music_path)[0])
        # if the music has not been processed before
        if not os.path.isfile(stats_file):
            print("Loading Essentia module...")
            import essentia.standard as ess_std

            print("Loading music...")
            loader = ess_std.MonoLoader(filename=music_path)
            audio = loader()

            pool = multiprocessing.Pool()
            num_process = multiprocessing.cpu_count()
            segment_length = int(len(audio) / num_process) / 1024 * 1024

            onset_collector = []
            self.num_frames = len(audio)

            print("Calculating onsets...")
            processing_start = time()

            results = [None] * num_process
            for i in range(num_process):
                results[i] = pool.apply_async(
                    detect_onset,
                    args=(audio[segment_length *
                                i:min(segment_length * (i + 1), len(audio))],
                          i))
            pool.close()
            pool.join()

            for i in range(num_process):
                onsets = results[i].get(
                ) + i * float(segment_length) / self.sample_rate
                onset_collector += onsets.tolist()

            onset_collector.append(
                np.finfo(float).max
            )  # so that read_onset will never reach len(self.onsets)
            self.onsets = np.array(onset_collector)

            print("Onset detection finished. Elapsed time: {:.2f}s".format(
                time() - processing_start))
            np.savez(os.path.splitext(music_path)[0],
                     num_frames=np.array([self.num_frames]),
                     onsets=self.onsets)

        else:
            stats = np.load(stats_file)
            self.num_frames = stats["num_frames"][0]
            self.onsets = stats["onsets"]
            print("Pre-processing skipped")
예제 #18
0

clf.fit(train.df[feature_cols], train.df[target_cols])


# In[11]:


pred = clf.predict(test.df[feature_cols]).flatten()


# In[12]:


cm = metrics.confusion_matrix(test.df['sky_status'].values, pred)
vis = visualize.Visualizer()
vis.plot_confusion_matrix(cm, labels=['cloudy', 'clear'])


# In[13]:


vis = visualize.Visualizer()


# In[14]:


vis.add_line_ser(test.df['GHI'], 'GHI')
vis.add_line_ser(test.df['Clearsky GHI'], 'GHI_cs')
vis.add_circle_ser(test.df[(test.df['sky_status'] == 1) & (~pred)]['GHI'], 'NSRDB only')
예제 #19
0

# In[5]:


ground.trim_dates('01-01-2009', '02-01-2009')


# # Measured vs modeled values

# ## NSRDB

# In[6]:


vis = visualize.Visualizer()


# In[7]:


vis.add_line_ser(nsrdb.df['GHI'], 'GHI')
vis.add_line_ser(nsrdb.df['Clearsky GHI'], 'Clearsky GHI')
vis.add_line_ser(nsrdb.df['Clearsky GHI pvlib'], 'Clearsky GHI pvlib')
# vis.add_line_ser(nsrdb.df['Clearsky GHI stat'], 'Clearsky GHI stat')
vis.add_circle_ser(nsrdb.df[nsrdb.df['sky_status'] == 1]['GHI'], 'NSRDB clear')


# In[8]:

예제 #20
0
파일: net.py 프로젝트: jianantian/ThinkDSP
    lr_decay_epoch = set(config.lr_decay_epoch)
    lr_decay = config.lr_decay

    epoch = config.epoch
    batch_size = config.batch_size

    use_cuda = net.use_cuda
    if use_cuda:
        net = net.cuda()

    learning_rate = 0.01

    optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9)

    visualizer = visualize.Visualizer('AudioNet')

    prev_loss_list = PrevLoss()
    prev_loss = float('inf')
    for e in range(epoch):
        need_save = False
        start_time = time.time()
        net.train()
        train_dataset = utils.Dataset(root,
                                      train_df,
                                      input_length,
                                      num_class=num_class,
                                      label_dct=label_dct)
        test_dataset = utils.Dataset(root,
                                     test_df,
                                     input_length,
예제 #21
0
        for tx in range(T):
            for sx in range(S):
                image = visualizer.getImageAt(tx,sx)
                saveBinaryImage(image,patient_id,original_dir,sx,tx)
        print "Saved all binary images for patient: {}".format(patient_id)
        
    # Details
    if event.key == 'd':
        print "Slice, Time : ({},{})".format(s,t)


array_img = getBinaryImages(patient_id, original_dir)

print "Patient: {}".format(patient_id)

visualizer = vz.Visualizer(array_img)
    
visualizer.connect('motion_notify_event',cursor)
visualizer.connect('button_press_event',click)
visualizer.connect('key_press_event',press)

visualizer.show()