def Calculate(Basin, P_Product, ET_Product, Inflow_Text_Files, Reservoirs_Lakes_Calculations, Startdate, Enddate, Simulation): ''' This functions consists of the following sections: 1. Set General Parameters 2. Download Data 3. Convert the RAW data to NETCDF files 4. Create Mask based on LU map 5. Calculate Runoff based on Budyko 6. Add inflow in Runoff 7. Calculate River flow 7.1 Route Runoff 7.2 Add Reservoirs 7.3 Add surface water withdrawals ''' # import General modules import os import gdal import numpy as np import pandas as pd import copy # import WA plus modules from wa.General import raster_conversions as RC from wa.General import data_conversions as DC import wa.Functions.Five as Five import wa.Functions.Start as Start ######################### 1. Set General Parameters ############################## # Get environmental variable for the Home folder WA_env_paths = os.environ["WA_HOME"].split(';') Dir_Home = WA_env_paths[0] # Create the Basin folder Dir_Basin = os.path.join(Dir_Home, Basin) if not os.path.exists(Dir_Basin): os.makedirs(Dir_Basin) # Get the boundaries of the basin based on the shapefile of the watershed # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin) Boundaries, LU_dataset = Start.Boundaries.Determine_LU_Based(Basin) LU_data = RC.Open_tiff_array(LU_dataset) geo_out_LU, proj_LU, size_X_LU, size_Y_LU = RC.Open_array_info(LU_dataset) # Define resolution of SRTM Resolution = '15s' # Get the amount of months Amount_months = len(pd.date_range(Startdate, Enddate, freq='MS')) Amount_months_reservoirs = Amount_months + 1 # Startdate for moving window Budyko Startdate_2months_Timestamp = pd.Timestamp(Startdate) - pd.DateOffset( months=2) Startdate_2months = Startdate_2months_Timestamp.strftime('%Y-%m-%d') ############################# 2. Download Data ################################### # Download data Data_Path_P = Start.Download_Data.Precipitation( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months, Enddate, P_Product) Data_Path_ET = Start.Download_Data.Evapotranspiration( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months, Enddate, ET_Product) Data_Path_DEM = Start.Download_Data.DEM( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution) if Resolution is not '3s': Data_Path_DEM = Start.Download_Data.DEM( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution) Data_Path_DEM_Dir = Start.Download_Data.DEM_Dir( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution) Data_Path_ETref = Start.Download_Data.ETreference( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months, Enddate) Data_Path_JRC_occurrence = Start.Download_Data.JRC_occurrence( Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']], [Boundaries['Lonmin'], Boundaries['Lonmax']]) Data_Path_P_Monthly = os.path.join(Data_Path_P, 'Monthly') ###################### 3. Convert the RAW data to NETCDF files ############################## # The sequence of converting the data is: # DEM # DEM flow directions # Precipitation # Evapotranspiration # Reference Evapotranspiration #_____________________________________DEM__________________________________ # Get the data of DEM and save as nc, This dataset is also used as reference for others Example_dataset = os.path.join(Dir_Basin, Data_Path_DEM, 'DEM_HydroShed_m_%s.tif' % Resolution) DEMdest = gdal.Open(Example_dataset) Xsize_CR = int(DEMdest.RasterXSize) Ysize_CR = int(DEMdest.RasterYSize) DataCube_DEM_CR = DEMdest.GetRasterBand(1).ReadAsArray() Name_NC_DEM_CR = DC.Create_NC_name('DEM_CR', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_DEM_CR): DC.Save_as_NC(Name_NC_DEM_CR, DataCube_DEM_CR, 'DEM_CR', Example_dataset) DEMdest = None #___________________________________DEM Dir________________________________ # Get the data of flow direction and save as nc. Dir_dataset = os.path.join(Dir_Basin, Data_Path_DEM_Dir, 'DIR_HydroShed_-_%s.tif' % Resolution) DEMDirdest = gdal.Open(Dir_dataset) DataCube_DEM_Dir_CR = DEMDirdest.GetRasterBand(1).ReadAsArray() Name_NC_DEM_Dir_CR = DC.Create_NC_name('DEM_Dir_CR', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_DEM_Dir_CR): DC.Save_as_NC(Name_NC_DEM_Dir_CR, DataCube_DEM_Dir_CR, 'DEM_Dir_CR', Example_dataset) DEMDirdest = None del DataCube_DEM_Dir_CR #______________________________ Precipitation______________________________ # Define info for the nc files info = [ 'monthly', 'mm', ''.join([Startdate_2months[5:7], Startdate_2months[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] # Precipitation data Name_NC_Prec_CR = DC.Create_NC_name('Prec_CR', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Prec_CR): # Get the data of Precipitation and save as nc DataCube_Prec_CR = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_P_Monthly, Startdate_2months, Enddate, Example_data=Example_dataset) DC.Save_as_NC(Name_NC_Prec_CR, DataCube_Prec_CR, 'Prec_CR', Example_dataset, Startdate_2months, Enddate, 'monthly', 0.01) del DataCube_Prec_CR #____________________________ Evapotranspiration___________________________ # Evapotranspiration data info = [ 'monthly', 'mm', ''.join([Startdate_2months[5:7], Startdate_2months[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_ET_CR = DC.Create_NC_name('ET_CR', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_ET_CR): # Get the data of Evaporation and save as nc DataCube_ET_CR = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_ET, Startdate_2months, Enddate, Example_data=Example_dataset) DC.Save_as_NC(Name_NC_ET_CR, DataCube_ET_CR, 'ET_CR', Example_dataset, Startdate_2months, Enddate, 'monthly', 0.01) del DataCube_ET_CR #_______________________Reference Evapotranspiration_______________________ # Reference Evapotranspiration data Name_NC_ETref_CR = DC.Create_NC_name('ETref_CR', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_ETref_CR): # Get the data of Reference Evapotranspiration and save as nc DataCube_ETref_CR = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_ETref, Startdate_2months, Enddate, Example_data=Example_dataset) DC.Save_as_NC(Name_NC_ETref_CR, DataCube_ETref_CR, 'ETref_CR', Example_dataset, Startdate_2months, Enddate, 'monthly', 0.01) del DataCube_ETref_CR #_______________________fraction surface water _______________________ Name_NC_frac_sw_CR = DC.Create_NC_name('Fraction_SW_CR', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_frac_sw_CR): DataCube_frac_sw = np.ones_like(LU_data) * np.nan import wa.Functions.Start.Get_Dictionaries as GD # Get dictionaries and keys lulc = GD.get_sheet5_classes() lulc_dict = GD.get_sheet5_classes().keys() consumed_frac_dict = GD.sw_supply_fractions_sheet5() for key in lulc_dict: Numbers = lulc[key] for LU_nmbr in Numbers: Mask = np.zeros_like(LU_data) Mask[LU_data == LU_nmbr] = 1 DataCube_frac_sw[Mask == 1] = consumed_frac_dict[key] dest_frac_sw = DC.Save_as_MEM(DataCube_frac_sw, geo_out_LU, proj_LU) dest_frac_sw_CR = RC.reproject_dataset_example(dest_frac_sw, Example_dataset) DataCube_frac_sw_CR = dest_frac_sw_CR.ReadAsArray() DataCube_frac_sw_CR[DataCube_frac_sw_CR == 0] = np.nan DC.Save_as_NC(Name_NC_frac_sw_CR, DataCube_frac_sw_CR, 'Fraction_SW_CR', Example_dataset, Scaling_factor=0.01) del DataCube_frac_sw_CR del DataCube_DEM_CR ##################### 4. Create Mask based on LU map ########################### # Now a mask will be created to define the area of interest (pixels where there is a landuse defined) #_____________________________________LU___________________________________ destLU = RC.reproject_dataset_example(LU_dataset, Example_dataset, method=1) DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray() Raster_Basin_CR = np.zeros([Ysize_CR, Xsize_CR]) Raster_Basin_CR[DataCube_LU_CR > 0] = 1 Name_NC_Basin_CR = DC.Create_NC_name('Basin_CR', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_Basin_CR): DC.Save_as_NC(Name_NC_Basin_CR, Raster_Basin_CR, 'Basin_CR', Example_dataset) #del Raster_Basin ''' Name_NC_Basin = DC.Create_NC_name('Basin_CR', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_Basin): Raster_Basin = RC.Vector_to_Raster(Dir_Basin, Shape_file_name_shp, Example_dataset) Raster_Basin = np.clip(Raster_Basin, 0, 1) DC.Save_as_NC(Name_NC_Basin, Raster_Basin, 'Basin_CR', Example_dataset) #del Raster_Basin ''' ###################### 5. Calculate Runoff based on Budyko ########################### # Define info for the nc files info = [ 'monthly', 'mm', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] # Define the output names of section 5 and 6 Name_NC_Runoff_CR = DC.Create_NC_name('Runoff_CR', Simulation, Dir_Basin, 5, info) Name_NC_Runoff_for_Routing_CR = Name_NC_Runoff_CR if not os.path.exists(Name_NC_Runoff_CR): # Calculate runoff based on Budyko DataCube_Runoff_CR = Five.Budyko.Calc_runoff(Name_NC_ETref_CR, Name_NC_Prec_CR) # Save the runoff as netcdf DC.Save_as_NC(Name_NC_Runoff_CR, DataCube_Runoff_CR, 'Runoff_CR', Example_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_Runoff_CR ''' ###################### Calculate Runoff with P min ET ########################### Name_NC_Runoff_CR = DC.Create_NC_name('Runoff_CR', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Runoff_CR): ET = RC.Open_nc_array(Name_NC_ET_CR) P = RC.Open_nc_array(Name_NC_Prec_CR) DataCube_Runoff_CR = P - ET DataCube_Runoff_CR[:,:,:][DataCube_Runoff_CR<=0.1] = 0 DataCube_Runoff_CR[:,:,:][np.isnan(DataCube_Runoff_CR)] = 0 DC.Save_as_NC(Name_NC_Runoff_CR, DataCube_Runoff_CR, 'Runoff_CR', Example_dataset, Startdate, Enddate, 'monthly') del DataCube_Runoff_CR ''' ############### 6. Add inflow in basin by using textfile ######################### # add inlets if there are textfiles defined if len(Inflow_Text_Files) > 0: # Create name of the Runoff with inlets Name_NC_Runoff_with_Inlets_CR = DC.Create_NC_name( 'Runoff_with_Inlets_CR', Simulation, Dir_Basin, 5, info) # Use this runoff name for the routing (it will overwrite the runoff without inlets) Name_NC_Runoff_for_Routing_CR = Name_NC_Runoff_with_Inlets_CR # Create the file if it not exists if not os.path.exists(Name_NC_Runoff_with_Inlets_CR): # Calculate the runoff that will be routed by including the inlets DataCube_Runoff_with_Inlets_CR = Five.Inlets.Add_Inlets( Name_NC_Runoff_CR, Inflow_Text_Files) # Save this runoff as netcdf DC.Save_as_NC(Name_NC_Runoff_with_Inlets_CR, DataCube_Runoff_with_Inlets_CR, 'Runoff_with_Inlets_CR', Example_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_Runoff_with_Inlets_CR ######################### 7. Now the surface water is calculated ################# # Names for dicionaries and nc files # CR1 = Natural_flow with only green water # CR2 = Natural_flow with only green water and reservoirs # CR3 = Flow with green, blue and reservoirs ######################### 7.1 Apply Channel Routing ############################### # Create the name for the netcdf outputs for section 7.1 info = [ 'monthly', 'pixels', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_Acc_Pixels_CR = DC.Create_NC_name('Acc_Pixels_CR', Simulation, Dir_Basin, 5) info = [ 'monthly', 'm3', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_Discharge_CR1 = DC.Create_NC_name('Discharge_CR1', Simulation, Dir_Basin, 5, info) # If one of the outputs does not exists, run this part if not (os.path.exists(Name_NC_Acc_Pixels_CR) and os.path.exists(Name_NC_Discharge_CR1)): Accumulated_Pixels_CR, Discharge_CR1 = Five.Channel_Routing.Channel_Routing( Name_NC_DEM_Dir_CR, Name_NC_Runoff_for_Routing_CR, Name_NC_Basin_CR, Example_dataset, Degrees=1) # Save Results DC.Save_as_NC(Name_NC_Acc_Pixels_CR, Accumulated_Pixels_CR, 'Acc_Pixels_CR', Example_dataset) DC.Save_as_NC(Name_NC_Discharge_CR1, Discharge_CR1, 'Discharge_CR1', Example_dataset, Startdate, Enddate, 'monthly') ################# Calculate the natural river and river zones ################# Name_NC_Rivers_CR = DC.Create_NC_name('Rivers_CR', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Rivers_CR): # Open routed discharge array Discharge_CR1 = RC.Open_nc_array(Name_NC_Discharge_CR1) Raster_Basin = RC.Open_nc_array(Name_NC_Basin_CR) # Calculate mean average over the period if len(np.shape(Discharge_CR1)) > 2: Routed_Discharge_Ave = np.nanmean(Discharge_CR1, axis=0) else: Routed_Discharge_Ave = Discharge_CR1 # Define the 2% highest pixels as rivers Rivers = np.zeros([ np.size(Routed_Discharge_Ave, 0), np.size(Routed_Discharge_Ave, 1) ]) Routed_Discharge_Ave[Raster_Basin != 1] = np.nan Routed_Discharge_Ave_number = np.nanpercentile(Routed_Discharge_Ave, 98) Rivers[ Routed_Discharge_Ave > Routed_Discharge_Ave_number] = 1 # if yearly average is larger than 5000km3/month that it is a river # Save the river file as netcdf file DC.Save_as_NC(Name_NC_Rivers_CR, Rivers, 'Rivers_CR', Example_dataset) ########################## Create river directories ########################### Name_py_River_dict_CR1 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'River_dict_CR1_simulation%d.npy' % (Simulation)) Name_py_DEM_dict_CR1 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'DEM_dict_CR1_simulation%d.npy' % (Simulation)) Name_py_Distance_dict_CR1 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'Distance_dict_CR1_simulation%d.npy' % (Simulation)) if not (os.path.exists(Name_py_River_dict_CR1) and os.path.exists(Name_py_DEM_dict_CR1) and os.path.exists(Name_py_Distance_dict_CR1)): # Get river and DEM dict River_dict_CR1, DEM_dict_CR1, Distance_dict_CR1 = Five.Create_Dict.Rivers_General( Name_NC_DEM_CR, Name_NC_DEM_Dir_CR, Name_NC_Acc_Pixels_CR, Name_NC_Rivers_CR, Example_dataset) np.save(Name_py_River_dict_CR1, River_dict_CR1) np.save(Name_py_DEM_dict_CR1, DEM_dict_CR1) np.save(Name_py_Distance_dict_CR1, Distance_dict_CR1) else: # Load River_dict_CR1 = np.load(Name_py_River_dict_CR1).item() DEM_dict_CR1 = np.load(Name_py_DEM_dict_CR1).item() Distance_dict_CR1 = np.load(Name_py_Distance_dict_CR1).item() Name_py_Discharge_dict_CR1 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'Discharge_dict_CR1_simulation%d.npy' % (Simulation)) if not os.path.exists(Name_py_Discharge_dict_CR1): # Get discharge dict Discharge_dict_CR1 = Five.Create_Dict.Discharge( Name_NC_Discharge_CR1, River_dict_CR1, Amount_months, Example_dataset) np.save(Name_py_Discharge_dict_CR1, Discharge_dict_CR1) else: # Load Discharge_dict_CR1 = np.load(Name_py_Discharge_dict_CR1).item() ###################### 7.2 Calculate surface water storage characteristics ###################### Name_py_Discharge_dict_CR2 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'Discharge_dict_CR2_simulation%d.npy' % (Simulation)) Name_py_River_dict_CR2 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'River_dict_CR2_simulation%d.npy' % (Simulation)) Name_py_DEM_dict_CR2 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'DEM_dict_CR2_simulation%d.npy' % (Simulation)) Name_py_Distance_dict_CR2 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'Distance_dict_CR2_simulation%d.npy' % (Simulation)) Name_py_Diff_Water_Volume = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'Diff_Water_Volume_CR2_simulation%d.npy' % (Simulation)) Name_py_Regions = os.path.join(Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'Regions_simulation%d.npy' % (Simulation)) if not (os.path.exists(Name_py_Discharge_dict_CR2) and os.path.exists(Name_py_River_dict_CR2) and os.path.exists(Name_py_DEM_dict_CR2) and os.path.exists(Name_py_Distance_dict_CR2)): # Copy dicts as starting adding reservoir Discharge_dict_CR2 = copy.deepcopy(Discharge_dict_CR1) River_dict_CR2 = copy.deepcopy(River_dict_CR1) DEM_dict_CR2 = copy.deepcopy(DEM_dict_CR1) Distance_dict_CR2 = copy.deepcopy(Distance_dict_CR1) if Reservoirs_Lakes_Calculations == 1: # define input tiffs for surface water calculations input_JRC = os.path.join(Dir_Basin, Data_Path_JRC_occurrence, 'JRC_Occurrence_percent.tif') DEM_dataset = os.path.join(Dir_Basin, Data_Path_DEM, 'DEM_HydroShed_m_3s.tif') sensitivity = 700 # 900 is less sensitive 1 is very sensitive Regions = Five.Reservoirs.Calc_Regions(Name_NC_Basin_CR, input_JRC, sensitivity, Boundaries) Diff_Water_Volume = np.zeros( [len(Regions), Amount_months_reservoirs - 1, 3]) reservoir = 0 for region in Regions: popt = Five.Reservoirs.Find_Area_Volume_Relation( region, input_JRC, DEM_dataset) Area_Reservoir_Values = Five.Reservoirs.GEE_calc_reservoir_area( region, Startdate, Enddate) Diff_Water_Volume[ reservoir, :, :] = Five.Reservoirs.Calc_Diff_Storage( Area_Reservoir_Values, popt) reservoir += 1 ################# 7.3 Add storage reservoirs and change outflows ################## Discharge_dict_CR2, River_dict_CR2, DEM_dict_CR2, Distance_dict_CR2 = Five.Reservoirs.Add_Reservoirs( Name_NC_Rivers_CR, Name_NC_Acc_Pixels_CR, Diff_Water_Volume, River_dict_CR2, Discharge_dict_CR2, DEM_dict_CR2, Distance_dict_CR2, Regions, Example_dataset) np.save(Name_py_Regions, Regions) np.save(Name_py_Diff_Water_Volume, Diff_Water_Volume) np.save(Name_py_Discharge_dict_CR2, Discharge_dict_CR2) np.save(Name_py_River_dict_CR2, River_dict_CR2) np.save(Name_py_DEM_dict_CR2, DEM_dict_CR2) np.save(Name_py_Distance_dict_CR2, Distance_dict_CR2) else: # Load Discharge_dict_CR2 = np.load(Name_py_Discharge_dict_CR2).item() River_dict_CR2 = np.load(Name_py_River_dict_CR2).item() DEM_dict_CR2 = np.load(Name_py_DEM_dict_CR2).item() Distance_dict_CR2 = np.load(Name_py_Distance_dict_CR2).item() ####################### 7.3 Add surface water withdrawals ############################# Name_py_Discharge_dict_CR3 = os.path.join( Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5', 'Discharge_dict_CR3_simulation%d.npy' % (Simulation)) if not os.path.exists(Name_py_Discharge_dict_CR3): Discharge_dict_CR3, DataCube_ETblue_m3 = Five.Irrigation.Add_irrigation( Discharge_dict_CR2, River_dict_CR2, Name_NC_Rivers_CR, Name_NC_ET_CR, Name_NC_ETref_CR, Name_NC_Prec_CR, Name_NC_Basin_CR, Name_NC_frac_sw_CR, Startdate, Enddate, Example_dataset) np.save(Name_py_Discharge_dict_CR3, Discharge_dict_CR3) # save ETblue as nc info = [ 'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_ETblue = DC.Create_NC_name('ETblue', Simulation, Dir_Basin, 5, info) DC.Save_as_NC(Name_NC_ETblue, DataCube_ETblue_m3, 'ETblue', Example_dataset, Startdate, Enddate, 'monthly') else: Discharge_dict_CR3 = np.load(Name_py_Discharge_dict_CR3).item() ################################# Plot graph ################################## # Draw graph Five.Channel_Routing.Graph_DEM_Distance_Discharge( Discharge_dict_CR3, Distance_dict_CR2, DEM_dict_CR2, River_dict_CR2, Startdate, Enddate, Example_dataset) ######################## Change data to fit the LU data ####################### # Discharge # Define info for the nc files info = [ 'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_Discharge = DC.Create_NC_name('Discharge', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Discharge): # Get the data of Reference Evapotranspiration and save as nc DataCube_Discharge_CR = DC.Convert_dict_to_array( River_dict_CR2, Discharge_dict_CR3, Example_dataset) DC.Save_as_NC(Name_NC_Discharge, DataCube_Discharge_CR, 'Discharge', Example_dataset, Startdate, Enddate, 'monthly') del DataCube_Discharge_CR # DEM Name_NC_DEM = DC.Create_NC_name('DEM', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_DEM): # Get the data of Reference Evapotranspiration and save as nc DataCube_DEM_CR = RC.Open_nc_array(Name_NC_DEM_CR) DataCube_DEM = RC.resize_array_example(DataCube_DEM_CR, LU_data, method=1) DC.Save_as_NC(Name_NC_DEM, DataCube_DEM, 'DEM', LU_dataset) del DataCube_DEM # flow direction Name_NC_DEM_Dir = DC.Create_NC_name('DEM_Dir', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_DEM_Dir): # Get the data of Reference Evapotranspiration and save as nc DataCube_DEM_Dir_CR = RC.Open_nc_array(Name_NC_DEM_Dir_CR) DataCube_DEM_Dir = RC.resize_array_example(DataCube_DEM_Dir_CR, LU_data, method=1) DC.Save_as_NC(Name_NC_DEM_Dir, DataCube_DEM_Dir, 'DEM_Dir', LU_dataset) del DataCube_DEM_Dir # Precipitation # Define info for the nc files info = [ 'monthly', 'mm', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_Prec = DC.Create_NC_name('Prec', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_Prec): # Get the data of Reference Evapotranspiration and save as nc DataCube_Prec = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_P_Monthly, Startdate, Enddate, LU_dataset) DC.Save_as_NC(Name_NC_Prec, DataCube_Prec, 'Prec', LU_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_Prec # Evapotranspiration Name_NC_ET = DC.Create_NC_name('ET', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_ET): # Get the data of Reference Evapotranspiration and save as nc DataCube_ET = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_ET, Startdate, Enddate, LU_dataset) DC.Save_as_NC(Name_NC_ET, DataCube_ET, 'ET', LU_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_ET # Reference Evapotranspiration data Name_NC_ETref = DC.Create_NC_name('ETref', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_ETref): # Get the data of Reference Evapotranspiration and save as nc DataCube_ETref = RC.Get3Darray_time_series_monthly( Dir_Basin, Data_Path_ETref, Startdate, Enddate, LU_dataset) DC.Save_as_NC(Name_NC_ETref, DataCube_ETref, 'ETref', LU_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_ETref # Rivers Name_NC_Rivers = DC.Create_NC_name('Rivers', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Rivers): # Get the data of Reference Evapotranspiration and save as nc Rivers_CR = RC.Open_nc_array(Name_NC_Rivers_CR) DataCube_Rivers = RC.resize_array_example(Rivers_CR, LU_data) DC.Save_as_NC(Name_NC_Rivers, DataCube_Rivers, 'Rivers', LU_dataset) del DataCube_Rivers, Rivers_CR # Discharge # Define info for the nc files info = [ 'monthly', 'm3', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_NC_Routed_Discharge = DC.Create_NC_name('Routed_Discharge', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Routed_Discharge): # Get the data of Reference Evapotranspiration and save as nc Routed_Discharge_CR = RC.Open_nc_array(Name_NC_Discharge) DataCube_Routed_Discharge = RC.resize_array_example( Routed_Discharge_CR, LU_data) DC.Save_as_NC(Name_NC_Routed_Discharge, DataCube_Routed_Discharge, 'Routed_Discharge', LU_dataset, Startdate, Enddate, 'monthly') del DataCube_Routed_Discharge, Routed_Discharge_CR # Get raster information geo_out, proj, size_X, size_Y = RC.Open_array_info(Example_dataset) Rivers = RC.Open_nc_array(Name_NC_Rivers_CR) # Create ID Matrix y, x = np.indices((size_Y, size_X)) ID_Matrix = np.int32( np.ravel_multi_index(np.vstack((y.ravel(), x.ravel())), (size_Y, size_X), mode='clip').reshape(x.shape)) + 1 # Get tiff array time dimension: time_dimension = int(np.shape(Discharge_dict_CR3[0])[0]) # create an empty array Result = np.zeros([time_dimension, size_Y, size_X]) for river_part in range(0, len(River_dict_CR2)): for river_pixel in range(1, len(River_dict_CR2[river_part])): river_pixel_ID = River_dict_CR2[river_part][river_pixel] if len(np.argwhere(ID_Matrix == river_pixel_ID)) > 0: row, col = np.argwhere(ID_Matrix == river_pixel_ID)[0][:] Result[:, row, col] = Discharge_dict_CR3[river_part][:, river_pixel] print(river_part) Outflow = Discharge_dict_CR3[0][:, 1] for i in range(0, time_dimension): output_name = r'C:/testmap/rtest_%s.tif' % i Result_one = Result[i, :, :] DC.Save_as_tiff(output_name, Result_one, geo_out, "WGS84") import os # Get environmental variable for the Home folder WA_env_paths = os.environ["WA_HOME"].split(';') Dir_Home = WA_env_paths[0] # Create the Basin folder Dir_Basin = os.path.join(Dir_Home, Basin) info = [ 'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]), ''.join([Enddate[5:7], Enddate[0:4]]) ] Name_Result = DC.Create_NC_name('DischargeEnd', Simulation, Dir_Basin, 5, info) Result[np.logical_and(Result == 0.0, Rivers == 0.0)] = np.nan DC.Save_as_NC(Name_Result, Result, 'DischargeEnd', Example_dataset, Startdate, Enddate, 'monthly') return ()
def Calculate(WA_HOME_folder, Basin, P_Product, ET_Product, ETref_Product, DEM_Product, Water_Occurence_Product, Inflow_Text_Files, WaterPIX_filename, Reservoirs_GEE_on_off, Supply_method, Startdate, Enddate, Simulation): ''' This functions consists of the following sections: 1. Set General Parameters 2. Download Data 3. Convert the RAW data to NETCDF files 4. Run SurfWAT ''' # import General modules import os import gdal import numpy as np import pandas as pd from netCDF4 import Dataset # import WA plus modules from wa.General import raster_conversions as RC from wa.General import data_conversions as DC import wa.Functions.Five as Five import wa.Functions.Start as Start import wa.Functions.Start.Get_Dictionaries as GD ######################### 1. Set General Parameters ############################## # Get environmental variable for the Home folder if WA_HOME_folder == '': WA_env_paths = os.environ["WA_HOME"].split(';') Dir_Home = WA_env_paths[0] else: Dir_Home = WA_HOME_folder # Create the Basin folder Dir_Basin = os.path.join(Dir_Home, Basin) output_dir = os.path.join(Dir_Basin, "Simulations", "Simulation_%d" %Simulation) if not os.path.exists(output_dir): os.makedirs(output_dir) # Get the boundaries of the basin based on the shapefile of the watershed # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin) Boundaries, Example_dataset = Start.Boundaries.Determine_LU_Based(Basin, Dir_Home) geo_out, proj, size_X, size_Y = RC.Open_array_info(Example_dataset) # Define resolution of SRTM Resolution = '15s' # Find the maximum moving window value ET_Blue_Green_Classes_dict, Moving_Window_Per_Class_dict = GD.get_bluegreen_classes(version = '1.0') Additional_Months_tail = np.max(Moving_Window_Per_Class_dict.values()) ############## Cut dates into pieces if it is needed ###################### # Check the years that needs to be calculated years = range(int(Startdate.split('-')[0]),int(Enddate.split('-')[0]) + 1) for year in years: # Create .nc file if not exists nc_outname = os.path.join(output_dir, "%d.nc" % year) if not os.path.exists(nc_outname): DC.Create_new_NC_file(nc_outname, Example_dataset, Basin) # Open variables in netcdf fh = Dataset(nc_outname) Variables_NC = [var for var in fh.variables] fh.close() # Create Start and End date for time chunk Startdate_part = '%d-01-01' %int(year) Enddate_part = '%s-12-31' %int(year) if int(year) == int(years[0]): Startdate_Moving_Average = pd.Timestamp(Startdate) - pd.DateOffset(months = Additional_Months_tail) Startdate_Moving_Average_String = Startdate_Moving_Average.strftime('%Y-%m-%d') else: Startdate_Moving_Average_String = Startdate_part ############################# 2. Download Data ################################### # Download data if not "Precipitation" in Variables_NC: Data_Path_P_Monthly = Start.Download_Data.Precipitation(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, P_Product) if not "Actual_Evapotranspiration" in Variables_NC: Data_Path_ET = Start.Download_Data.Evapotranspiration(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, ET_Product) if (WaterPIX_filename == "" or Supply_method == "Fraction") and not ("Reference_Evapotranspiration" in Variables_NC): Data_Path_ETref = Start.Download_Data.ETreference(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_Moving_Average_String, Enddate_part, ETref_Product) if Reservoirs_GEE_on_off == 1 and not ("Water_Occurrence" in Variables_NC): Data_Path_JRC_occurrence = Start.Download_Data.JRC_occurrence(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Water_Occurence_Product) input_JRC = os.path.join(Data_Path_JRC_occurrence, "JRC_Occurrence_percent.tif") else: input_JRC = None # WaterPIX input Data_Path_DEM_Dir = Start.Download_Data.DEM_Dir(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Resolution, DEM_Product) Data_Path_DEM = Start.Download_Data.DEM(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Resolution, DEM_Product) ###################### 3. Convert the RAW data to NETCDF files ############################## # The sequence of converting the data into netcdf is: # Precipitation # Evapotranspiration # Reference Evapotranspiration # DEM flow directions #______________________________Precipitation_______________________________ # 1.) Precipitation data if not "Precipitation" in Variables_NC: # Get the data of Precipitation and save as nc DataCube_Prec = RC.Get3Darray_time_series_monthly(Data_Path_P_Monthly, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_Prec, "Precipitation", "mm/month", 0.01) del DataCube_Prec #_______________________________Evaporation________________________________ # 2.) Evapotranspiration data if not "Actual_Evapotranspiration" in Variables_NC: # Get the data of Evaporation and save as nc DataCube_ET = RC.Get3Darray_time_series_monthly(Data_Path_ET, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_ET, "Actual_Evapotranspiration", "mm/month", 0.01) del DataCube_ET #_______________________Reference Evaporation______________________________ # 3.) Reference Evapotranspiration data if (WaterPIX_filename == "" or Supply_method == "Fraction") and not ("Reference_Evapotranspiration" in Variables_NC): # Get the data of Precipitation and save as nc DataCube_ETref = RC.Get3Darray_time_series_monthly(Data_Path_ETref, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_ETref, "Reference_Evapotranspiration", "mm/month", 0.01) del DataCube_ETref #____________________________fraction surface water _______________________ DataCube_frac_sw = np.ones([size_Y, size_X]) * np.nan import wa.Functions.Start.Get_Dictionaries as GD # Open LU dataset DataCube_LU = RC.Open_nc_array(nc_outname, "Landuse") # Get dictionaries and keys lulc = GD.get_sheet5_classes() lulc_dict = GD.get_sheet5_classes().keys() consumed_frac_dict = GD.sw_supply_fractions() for key in lulc_dict: Numbers = lulc[key] for LU_nmbr in Numbers: DataCube_frac_sw[DataCube_LU==LU_nmbr] = consumed_frac_dict[key] DC.Add_NC_Array_Static(nc_outname, DataCube_frac_sw, "Fraction_Surface_Water_Supply", "fraction", 0.01) del DataCube_frac_sw, DataCube_LU ################### 4. Calculate Runoff (2 methods: a = Budyko and b = WaterPIX) ##################### ################ 4a. Calculate Runoff based on Precipitation and Evapotranspiration ################## if (Supply_method == "Fraction" and not "Surface_Runoff" in Variables_NC): # Calculate runoff based on Budyko DataCube_Runoff = Five.Fraction_Based.Calc_surface_runoff(Dir_Basin, nc_outname, Startdate_part, Enddate_part, Example_dataset, ETref_Product, P_Product) # Save the runoff as netcdf DC.Add_NC_Array_Variable(nc_outname, DataCube_Runoff, "Surface_Runoff", "mm/month", 0.01) del DataCube_Runoff ###################### 4b. Get Runoff from WaterPIX ########################### if (Supply_method == "WaterPIX" and not "Surface_Runoff" in Variables_NC): # Get WaterPIX data WaterPIX_Var = 'TotalRunoff_M' DataCube_Runoff = Five.Read_WaterPIX.Get_Array(WaterPIX_filename, WaterPIX_Var, Example_dataset, Startdate_part, Enddate_part) # Save the runoff as netcdf DC.Add_NC_Array_Variable(nc_outname, DataCube_Runoff, "Surface_Runoff", "mm/month", 0.01) del DataCube_Runoff ####################### 5. Calculate Extraction (2 methods: a = Fraction, b = WaterPIX) ############################# ###################### 5a. Get extraction from fraction method by using budyko ########################### if (Supply_method == "Fraction" and not "Surface_Withdrawal" in Variables_NC): DataCube_surface_withdrawal = Five.Fraction_Based.Calc_surface_withdrawal(Dir_Basin, nc_outname, Startdate_part, Enddate_part, Example_dataset, ETref_Product, P_Product) # Save the runoff as netcdf DC.Add_NC_Array_Variable(nc_outname, DataCube_surface_withdrawal, "Surface_Withdrawal", "mm/month", 0.01) del DataCube_surface_withdrawal #################################### 5b. Get extraction from WaterPIX #################################### if (Supply_method == "WaterPIX" and not "Surface_Withdrawal" in Variables_NC): WaterPIX_Var = 'Supply_M' DataCube_Supply = Five.Read_WaterPIX.Get_Array(WaterPIX_filename, WaterPIX_Var, Example_dataset, Startdate, Enddate) # Open array with surface water fractions DataCube_frac_sw = RC.Open_nc_array(nc_outname, "Fraction_Surface_Water_Supply") # Total amount of ETblue taken out of rivers DataCube_surface_withdrawal = DataCube_Supply * DataCube_frac_sw[None,:,:] # Save the runoff as netcdf DC.Add_NC_Array_Variable(nc_outname, DataCube_surface_withdrawal, "Surface_Withdrawal", "mm/month", 0.01) del DataCube_surface_withdrawal ################################## 5. Run SurfWAT ##################################### import wa.Models.SurfWAT as SurfWAT # Define formats of input data Format_DEM = "TIFF" # or "TIFF" Format_Runoff = "NetCDF" # or "TIFF" Format_Extraction = "NetCDF" # or "TIFF" Format_DEM_dir = "TIFF" # or "TIFF" Format_Basin = "NetCDF" # or "TIFF" # Give path (for tiff) or file (netcdf) input_nc = os.path.join(Dir_Basin, "Simulations", "Simulation_%s"%Simulation,"SurfWAT_in_%d.nc" %year) output_nc = os.path.join(Dir_Basin, "Simulations", "Simulation_%s"%Simulation,"SurfWAT_out_%d.nc" %year) # Create Input File for SurfWAT SurfWAT.Create_input_nc.main(Data_Path_DEM_Dir, Data_Path_DEM, os.path.dirname(nc_outname), os.path.dirname(nc_outname), os.path.dirname(nc_outname), Startdate, Enddate, input_nc, Resolution, Format_DEM_dir, Format_DEM, Format_Basin, Format_Runoff, Format_Extraction) # Run SurfWAT SurfWAT.Run_SurfWAT.main(input_nc, output_nc, input_JRC, Inflow_Text_Files, Reservoirs_GEE_on_off) ''' ################################# Plot graph ################################## # Draw graph Five.Channel_Routing.Graph_DEM_Distance_Discharge(Discharge_dict_CR3, Distance_dict_CR2, DEM_dict_CR2, River_dict_CR2, Startdate, Enddate, Example_dataset) ######################## Change data to fit the LU data ####################### # Discharge # Define info for the nc files info = ['monthly','m3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]) , ''.join([Enddate[5:7], Enddate[0:4]])] Name_NC_Discharge = DC.Create_NC_name('DischargeEnd', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Discharge): # Get the data of Reference Evapotranspiration and save as nc DataCube_Discharge_CR = DC.Convert_dict_to_array(River_dict_CR2, Discharge_dict_CR3, Example_dataset) DC.Save_as_NC(Name_NC_Discharge, DataCube_Discharge_CR, 'Discharge_End_CR', Example_dataset, Startdate, Enddate, 'monthly') del DataCube_Discharge_CR ''' ''' # DEM Name_NC_DEM = DC.Create_NC_name('DEM', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_DEM): # Get the data of Reference Evapotranspiration and save as nc DataCube_DEM_CR = RC.Open_nc_array(Name_NC_DEM_CR) DataCube_DEM = RC.resize_array_example(DataCube_DEM_CR, LU_data, method=1) DC.Save_as_NC(Name_NC_DEM, DataCube_DEM, 'DEM', LU_dataset) del DataCube_DEM # flow direction Name_NC_DEM_Dir = DC.Create_NC_name('DEM_Dir', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_DEM_Dir): # Get the data of Reference Evapotranspiration and save as nc DataCube_DEM_Dir_CR = RC.Open_nc_array(Name_NC_DEM_Dir_CR) DataCube_DEM_Dir = RC.resize_array_example(DataCube_DEM_Dir_CR, LU_data, method=1) DC.Save_as_NC(Name_NC_DEM_Dir, DataCube_DEM_Dir, 'DEM_Dir', LU_dataset) del DataCube_DEM_Dir # Precipitation # Define info for the nc files info = ['monthly','mm', ''.join([Startdate[5:7], Startdate[0:4]]) , ''.join([Enddate[5:7], Enddate[0:4]])] Name_NC_Prec = DC.Create_NC_name('Prec', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_Prec): # Get the data of Reference Evapotranspiration and save as nc DataCube_Prec = RC.Get3Darray_time_series_monthly(Dir_Basin, Data_Path_P_Monthly, Startdate, Enddate, LU_dataset) DC.Save_as_NC(Name_NC_Prec, DataCube_Prec, 'Prec', LU_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_Prec # Evapotranspiration Name_NC_ET = DC.Create_NC_name('ET', Simulation, Dir_Basin, 5) if not os.path.exists(Name_NC_ET): # Get the data of Reference Evapotranspiration and save as nc DataCube_ET = RC.Get3Darray_time_series_monthly(Dir_Basin, Data_Path_ET, Startdate, Enddate, LU_dataset) DC.Save_as_NC(Name_NC_ET, DataCube_ET, 'ET', LU_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_ET # Reference Evapotranspiration data Name_NC_ETref = DC.Create_NC_name('ETref', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_ETref): # Get the data of Reference Evapotranspiration and save as nc DataCube_ETref = RC.Get3Darray_time_series_monthly(Dir_Basin, Data_Path_ETref, Startdate, Enddate, LU_dataset) DC.Save_as_NC(Name_NC_ETref, DataCube_ETref, 'ETref', LU_dataset, Startdate, Enddate, 'monthly', 0.01) del DataCube_ETref # Rivers Name_NC_Rivers = DC.Create_NC_name('Rivers', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Rivers): # Get the data of Reference Evapotranspiration and save as nc Rivers_CR = RC.Open_nc_array(Name_NC_Rivers_CR) DataCube_Rivers = RC.resize_array_example(Rivers_CR, LU_data) DC.Save_as_NC(Name_NC_Rivers, DataCube_Rivers, 'Rivers', LU_dataset) del DataCube_Rivers, Rivers_CR # Discharge # Define info for the nc files info = ['monthly','m3', ''.join([Startdate[5:7], Startdate[0:4]]) , ''.join([Enddate[5:7], Enddate[0:4]])] Name_NC_Routed_Discharge = DC.Create_NC_name('Routed_Discharge', Simulation, Dir_Basin, 5, info) if not os.path.exists(Name_NC_Routed_Discharge): # Get the data of Reference Evapotranspiration and save as nc Routed_Discharge_CR = RC.Open_nc_array(Name_NC_Discharge) DataCube_Routed_Discharge = RC.resize_array_example(Routed_Discharge_CR, LU_data) DC.Save_as_NC(Name_NC_Routed_Discharge, DataCube_Routed_Discharge, 'Routed_Discharge', LU_dataset, Startdate, Enddate, 'monthly') del DataCube_Routed_Discharge, Routed_Discharge_CR # Get raster information geo_out, proj, size_X, size_Y = RC.Open_array_info(Example_dataset) Rivers = RC.Open_nc_array(Name_NC_Rivers_CR) # Create ID Matrix y,x = np.indices((size_Y, size_X)) ID_Matrix = np.int32(np.ravel_multi_index(np.vstack((y.ravel(),x.ravel())),(size_Y,size_X),mode='clip').reshape(x.shape)) + 1 # Get tiff array time dimension: time_dimension = int(np.shape(Discharge_dict_CR3[0])[0]) # create an empty array Result = np.zeros([time_dimension, size_Y, size_X]) for river_part in range(0,len(River_dict_CR2)): for river_pixel in range(1,len(River_dict_CR2[river_part])): river_pixel_ID = River_dict_CR2[river_part][river_pixel] if len(np.argwhere(ID_Matrix == river_pixel_ID))>0: row, col = np.argwhere(ID_Matrix == river_pixel_ID)[0][:] Result[:,row,col] = Discharge_dict_CR3[river_part][:,river_pixel] print(river_part) Outflow = Discharge_dict_CR3[0][:,1] for i in range(0,time_dimension): output_name = r'C:/testmap/rtest_%s.tif' %i Result_one = Result[i, :, :] DC.Save_as_tiff(output_name, Result_one, geo_out, "WGS84") import os # Get environmental variable for the Home folder WA_env_paths = os.environ["WA_HOME"].split(';') Dir_Home = WA_env_paths[0] # Create the Basin folder Dir_Basin = os.path.join(Dir_Home, Basin) info = ['monthly','m3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]) , ''.join([Enddate[5:7], Enddate[0:4]])] Name_Result = DC.Create_NC_name('DischargeEnd', Simulation, Dir_Basin, 5, info) Result[np.logical_and(Result == 0.0, Rivers == 0.0)] = np.nan DC.Save_as_NC(Name_Result, Result, 'DischargeEnd', Example_dataset, Startdate, Enddate, 'monthly') ''' return()