示例#1
0
文件: main.py 项目: jupaladin/wa
def Calculate(Basin, P_Product, ET_Product, Inflow_Text_Files,
              Reservoirs_Lakes_Calculations, Startdate, Enddate, Simulation):
    '''
    This functions consists of the following sections:
    1. Set General Parameters
    2. Download Data
    3. Convert the RAW data to NETCDF files
    4. Create Mask based on LU map
    5. Calculate Runoff based on Budyko
    6. Add inflow in Runoff
    7. Calculate River flow
       7.1  Route Runoff
       7.2  Add Reservoirs
       7.3  Add surface water withdrawals
    '''
    # import General modules
    import os
    import gdal
    import numpy as np
    import pandas as pd
    import copy

    # import WA plus modules
    from wa.General import raster_conversions as RC
    from wa.General import data_conversions as DC
    import wa.Functions.Five as Five
    import wa.Functions.Start as Start

    ######################### 1. Set General Parameters ##############################

    # Get environmental variable for the Home folder
    WA_env_paths = os.environ["WA_HOME"].split(';')
    Dir_Home = WA_env_paths[0]

    # Create the Basin folder
    Dir_Basin = os.path.join(Dir_Home, Basin)
    if not os.path.exists(Dir_Basin):
        os.makedirs(Dir_Basin)

    # Get the boundaries of the basin based on the shapefile of the watershed
    # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin)
    Boundaries, LU_dataset = Start.Boundaries.Determine_LU_Based(Basin)
    LU_data = RC.Open_tiff_array(LU_dataset)
    geo_out_LU, proj_LU, size_X_LU, size_Y_LU = RC.Open_array_info(LU_dataset)

    # Define resolution of SRTM
    Resolution = '15s'

    # Get the amount of months
    Amount_months = len(pd.date_range(Startdate, Enddate, freq='MS'))
    Amount_months_reservoirs = Amount_months + 1

    # Startdate for moving window Budyko
    Startdate_2months_Timestamp = pd.Timestamp(Startdate) - pd.DateOffset(
        months=2)
    Startdate_2months = Startdate_2months_Timestamp.strftime('%Y-%m-%d')

    ############################# 2. Download Data ###################################

    # Download data
    Data_Path_P = Start.Download_Data.Precipitation(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months,
        Enddate, P_Product)
    Data_Path_ET = Start.Download_Data.Evapotranspiration(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months,
        Enddate, ET_Product)
    Data_Path_DEM = Start.Download_Data.DEM(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution)
    if Resolution is not '3s':
        Data_Path_DEM = Start.Download_Data.DEM(
            Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
            [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution)
    Data_Path_DEM_Dir = Start.Download_Data.DEM_Dir(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution)
    Data_Path_ETref = Start.Download_Data.ETreference(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months,
        Enddate)
    Data_Path_JRC_occurrence = Start.Download_Data.JRC_occurrence(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']])
    Data_Path_P_Monthly = os.path.join(Data_Path_P, 'Monthly')

    ###################### 3. Convert the RAW data to NETCDF files ##############################
    # The sequence of converting the data is:
    # DEM
    # DEM flow directions
    # Precipitation
    # Evapotranspiration
    # Reference Evapotranspiration

    #_____________________________________DEM__________________________________
    # Get the data of DEM and save as nc, This dataset is also used as reference for others
    Example_dataset = os.path.join(Dir_Basin, Data_Path_DEM,
                                   'DEM_HydroShed_m_%s.tif' % Resolution)
    DEMdest = gdal.Open(Example_dataset)
    Xsize_CR = int(DEMdest.RasterXSize)
    Ysize_CR = int(DEMdest.RasterYSize)
    DataCube_DEM_CR = DEMdest.GetRasterBand(1).ReadAsArray()

    Name_NC_DEM_CR = DC.Create_NC_name('DEM_CR', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_DEM_CR):
        DC.Save_as_NC(Name_NC_DEM_CR, DataCube_DEM_CR, 'DEM_CR',
                      Example_dataset)
    DEMdest = None

    #___________________________________DEM Dir________________________________
    # Get the data of flow direction and save as nc.
    Dir_dataset = os.path.join(Dir_Basin, Data_Path_DEM_Dir,
                               'DIR_HydroShed_-_%s.tif' % Resolution)
    DEMDirdest = gdal.Open(Dir_dataset)
    DataCube_DEM_Dir_CR = DEMDirdest.GetRasterBand(1).ReadAsArray()

    Name_NC_DEM_Dir_CR = DC.Create_NC_name('DEM_Dir_CR', Simulation, Dir_Basin,
                                           5)
    if not os.path.exists(Name_NC_DEM_Dir_CR):
        DC.Save_as_NC(Name_NC_DEM_Dir_CR, DataCube_DEM_Dir_CR, 'DEM_Dir_CR',
                      Example_dataset)
    DEMDirdest = None
    del DataCube_DEM_Dir_CR

    #______________________________ Precipitation______________________________
    # Define info for the nc files
    info = [
        'monthly', 'mm',
        ''.join([Startdate_2months[5:7], Startdate_2months[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    # Precipitation data
    Name_NC_Prec_CR = DC.Create_NC_name('Prec_CR', Simulation, Dir_Basin, 5,
                                        info)
    if not os.path.exists(Name_NC_Prec_CR):

        # Get the data of Precipitation and save as nc
        DataCube_Prec_CR = RC.Get3Darray_time_series_monthly(
            Dir_Basin,
            Data_Path_P_Monthly,
            Startdate_2months,
            Enddate,
            Example_data=Example_dataset)
        DC.Save_as_NC(Name_NC_Prec_CR, DataCube_Prec_CR, 'Prec_CR',
                      Example_dataset, Startdate_2months, Enddate, 'monthly',
                      0.01)
        del DataCube_Prec_CR

    #____________________________ Evapotranspiration___________________________
    # Evapotranspiration data
    info = [
        'monthly', 'mm',
        ''.join([Startdate_2months[5:7], Startdate_2months[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]
    Name_NC_ET_CR = DC.Create_NC_name('ET_CR', Simulation, Dir_Basin, 5, info)
    if not os.path.exists(Name_NC_ET_CR):

        # Get the data of Evaporation and save as nc
        DataCube_ET_CR = RC.Get3Darray_time_series_monthly(
            Dir_Basin,
            Data_Path_ET,
            Startdate_2months,
            Enddate,
            Example_data=Example_dataset)
        DC.Save_as_NC(Name_NC_ET_CR, DataCube_ET_CR, 'ET_CR', Example_dataset,
                      Startdate_2months, Enddate, 'monthly', 0.01)
        del DataCube_ET_CR

    #_______________________Reference Evapotranspiration_______________________
    # Reference Evapotranspiration data
    Name_NC_ETref_CR = DC.Create_NC_name('ETref_CR', Simulation, Dir_Basin, 5,
                                         info)
    if not os.path.exists(Name_NC_ETref_CR):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_ETref_CR = RC.Get3Darray_time_series_monthly(
            Dir_Basin,
            Data_Path_ETref,
            Startdate_2months,
            Enddate,
            Example_data=Example_dataset)
        DC.Save_as_NC(Name_NC_ETref_CR, DataCube_ETref_CR, 'ETref_CR',
                      Example_dataset, Startdate_2months, Enddate, 'monthly',
                      0.01)
        del DataCube_ETref_CR

    #_______________________fraction surface water _______________________

    Name_NC_frac_sw_CR = DC.Create_NC_name('Fraction_SW_CR', Simulation,
                                           Dir_Basin, 5)
    if not os.path.exists(Name_NC_frac_sw_CR):
        DataCube_frac_sw = np.ones_like(LU_data) * np.nan

        import wa.Functions.Start.Get_Dictionaries as GD

        # Get dictionaries and keys
        lulc = GD.get_sheet5_classes()
        lulc_dict = GD.get_sheet5_classes().keys()
        consumed_frac_dict = GD.sw_supply_fractions_sheet5()

        for key in lulc_dict:
            Numbers = lulc[key]
            for LU_nmbr in Numbers:
                Mask = np.zeros_like(LU_data)
                Mask[LU_data == LU_nmbr] = 1
                DataCube_frac_sw[Mask == 1] = consumed_frac_dict[key]

        dest_frac_sw = DC.Save_as_MEM(DataCube_frac_sw, geo_out_LU, proj_LU)
        dest_frac_sw_CR = RC.reproject_dataset_example(dest_frac_sw,
                                                       Example_dataset)
        DataCube_frac_sw_CR = dest_frac_sw_CR.ReadAsArray()
        DataCube_frac_sw_CR[DataCube_frac_sw_CR == 0] = np.nan

        DC.Save_as_NC(Name_NC_frac_sw_CR,
                      DataCube_frac_sw_CR,
                      'Fraction_SW_CR',
                      Example_dataset,
                      Scaling_factor=0.01)
        del DataCube_frac_sw_CR

    del DataCube_DEM_CR
    ##################### 4. Create Mask based on LU map ###########################

    # Now a mask will be created to define the area of interest (pixels where there is a landuse defined)

    #_____________________________________LU___________________________________
    destLU = RC.reproject_dataset_example(LU_dataset,
                                          Example_dataset,
                                          method=1)
    DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray()

    Raster_Basin_CR = np.zeros([Ysize_CR, Xsize_CR])
    Raster_Basin_CR[DataCube_LU_CR > 0] = 1
    Name_NC_Basin_CR = DC.Create_NC_name('Basin_CR', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_Basin_CR):
        DC.Save_as_NC(Name_NC_Basin_CR, Raster_Basin_CR, 'Basin_CR',
                      Example_dataset)
        #del Raster_Basin
    '''
    Name_NC_Basin = DC.Create_NC_name('Basin_CR', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_Basin):

        Raster_Basin = RC.Vector_to_Raster(Dir_Basin, Shape_file_name_shp, Example_dataset)
        Raster_Basin = np.clip(Raster_Basin, 0, 1)
        DC.Save_as_NC(Name_NC_Basin, Raster_Basin, 'Basin_CR', Example_dataset)
        #del Raster_Basin
    '''
    ###################### 5. Calculate Runoff based on Budyko ###########################

    # Define info for the nc files
    info = [
        'monthly', 'mm', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    # Define the output names of section 5 and 6
    Name_NC_Runoff_CR = DC.Create_NC_name('Runoff_CR', Simulation, Dir_Basin,
                                          5, info)
    Name_NC_Runoff_for_Routing_CR = Name_NC_Runoff_CR

    if not os.path.exists(Name_NC_Runoff_CR):

        # Calculate runoff based on Budyko
        DataCube_Runoff_CR = Five.Budyko.Calc_runoff(Name_NC_ETref_CR,
                                                     Name_NC_Prec_CR)

        # Save the runoff as netcdf
        DC.Save_as_NC(Name_NC_Runoff_CR, DataCube_Runoff_CR, 'Runoff_CR',
                      Example_dataset, Startdate, Enddate, 'monthly', 0.01)
        del DataCube_Runoff_CR
    '''  
    ###################### Calculate Runoff with P min ET ###########################
  
    Name_NC_Runoff_CR = DC.Create_NC_name('Runoff_CR', Simulation, Dir_Basin, 5, info)
    if not os.path.exists(Name_NC_Runoff_CR):

        ET = RC.Open_nc_array(Name_NC_ET_CR)
        P = RC.Open_nc_array(Name_NC_Prec_CR) 
        DataCube_Runoff_CR = P - ET
        DataCube_Runoff_CR[:,:,:][DataCube_Runoff_CR<=0.1] = 0
        DataCube_Runoff_CR[:,:,:][np.isnan(DataCube_Runoff_CR)] = 0                          
        DC.Save_as_NC(Name_NC_Runoff_CR, DataCube_Runoff_CR, 'Runoff_CR', Example_dataset, Startdate, Enddate, 'monthly')
        del DataCube_Runoff_CR

     '''
    ############### 6. Add inflow in basin by using textfile #########################

    # add inlets if there are textfiles defined
    if len(Inflow_Text_Files) > 0:

        # Create name of the Runoff with inlets
        Name_NC_Runoff_with_Inlets_CR = DC.Create_NC_name(
            'Runoff_with_Inlets_CR', Simulation, Dir_Basin, 5, info)

        # Use this runoff name for the routing (it will overwrite the runoff without inlets)
        Name_NC_Runoff_for_Routing_CR = Name_NC_Runoff_with_Inlets_CR

        # Create the file if it not exists
        if not os.path.exists(Name_NC_Runoff_with_Inlets_CR):

            # Calculate the runoff that will be routed by including the inlets
            DataCube_Runoff_with_Inlets_CR = Five.Inlets.Add_Inlets(
                Name_NC_Runoff_CR, Inflow_Text_Files)

            # Save this runoff as netcdf
            DC.Save_as_NC(Name_NC_Runoff_with_Inlets_CR,
                          DataCube_Runoff_with_Inlets_CR,
                          'Runoff_with_Inlets_CR', Example_dataset, Startdate,
                          Enddate, 'monthly', 0.01)
            del DataCube_Runoff_with_Inlets_CR

    ######################### 7. Now the surface water is calculated #################

    # Names for dicionaries and nc files
    # CR1 = Natural_flow with only green water
    # CR2 = Natural_flow with only green water and reservoirs
    # CR3 = Flow with green, blue and reservoirs

    ######################### 7.1 Apply Channel Routing ###############################

    # Create the name for the netcdf outputs for section 7.1
    info = [
        'monthly', 'pixels', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]
    Name_NC_Acc_Pixels_CR = DC.Create_NC_name('Acc_Pixels_CR', Simulation,
                                              Dir_Basin, 5)
    info = [
        'monthly', 'm3', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]
    Name_NC_Discharge_CR1 = DC.Create_NC_name('Discharge_CR1', Simulation,
                                              Dir_Basin, 5, info)

    # If one of the outputs does not exists, run this part
    if not (os.path.exists(Name_NC_Acc_Pixels_CR)
            and os.path.exists(Name_NC_Discharge_CR1)):

        Accumulated_Pixels_CR, Discharge_CR1 = Five.Channel_Routing.Channel_Routing(
            Name_NC_DEM_Dir_CR,
            Name_NC_Runoff_for_Routing_CR,
            Name_NC_Basin_CR,
            Example_dataset,
            Degrees=1)

        # Save Results
        DC.Save_as_NC(Name_NC_Acc_Pixels_CR, Accumulated_Pixels_CR,
                      'Acc_Pixels_CR', Example_dataset)
        DC.Save_as_NC(Name_NC_Discharge_CR1, Discharge_CR1, 'Discharge_CR1',
                      Example_dataset, Startdate, Enddate, 'monthly')

    ################# Calculate the natural river and river zones #################

    Name_NC_Rivers_CR = DC.Create_NC_name('Rivers_CR', Simulation, Dir_Basin,
                                          5, info)
    if not os.path.exists(Name_NC_Rivers_CR):

        # Open routed discharge array
        Discharge_CR1 = RC.Open_nc_array(Name_NC_Discharge_CR1)
        Raster_Basin = RC.Open_nc_array(Name_NC_Basin_CR)

        # Calculate mean average over the period
        if len(np.shape(Discharge_CR1)) > 2:
            Routed_Discharge_Ave = np.nanmean(Discharge_CR1, axis=0)
        else:
            Routed_Discharge_Ave = Discharge_CR1

        # Define the 2% highest pixels as rivers
        Rivers = np.zeros([
            np.size(Routed_Discharge_Ave, 0),
            np.size(Routed_Discharge_Ave, 1)
        ])
        Routed_Discharge_Ave[Raster_Basin != 1] = np.nan
        Routed_Discharge_Ave_number = np.nanpercentile(Routed_Discharge_Ave,
                                                       98)
        Rivers[
            Routed_Discharge_Ave >
            Routed_Discharge_Ave_number] = 1  # if yearly average is larger than 5000km3/month that it is a river

        # Save the river file as netcdf file
        DC.Save_as_NC(Name_NC_Rivers_CR, Rivers, 'Rivers_CR', Example_dataset)

    ########################## Create river directories ###########################

    Name_py_River_dict_CR1 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'River_dict_CR1_simulation%d.npy' % (Simulation))
    Name_py_DEM_dict_CR1 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'DEM_dict_CR1_simulation%d.npy' % (Simulation))
    Name_py_Distance_dict_CR1 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Distance_dict_CR1_simulation%d.npy' % (Simulation))

    if not (os.path.exists(Name_py_River_dict_CR1)
            and os.path.exists(Name_py_DEM_dict_CR1)
            and os.path.exists(Name_py_Distance_dict_CR1)):

        # Get river and DEM dict
        River_dict_CR1, DEM_dict_CR1, Distance_dict_CR1 = Five.Create_Dict.Rivers_General(
            Name_NC_DEM_CR, Name_NC_DEM_Dir_CR, Name_NC_Acc_Pixels_CR,
            Name_NC_Rivers_CR, Example_dataset)
        np.save(Name_py_River_dict_CR1, River_dict_CR1)
        np.save(Name_py_DEM_dict_CR1, DEM_dict_CR1)
        np.save(Name_py_Distance_dict_CR1, Distance_dict_CR1)
    else:
        # Load
        River_dict_CR1 = np.load(Name_py_River_dict_CR1).item()
        DEM_dict_CR1 = np.load(Name_py_DEM_dict_CR1).item()
        Distance_dict_CR1 = np.load(Name_py_Distance_dict_CR1).item()

    Name_py_Discharge_dict_CR1 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Discharge_dict_CR1_simulation%d.npy' % (Simulation))

    if not os.path.exists(Name_py_Discharge_dict_CR1):
        # Get discharge dict
        Discharge_dict_CR1 = Five.Create_Dict.Discharge(
            Name_NC_Discharge_CR1, River_dict_CR1, Amount_months,
            Example_dataset)
        np.save(Name_py_Discharge_dict_CR1, Discharge_dict_CR1)
    else:
        # Load
        Discharge_dict_CR1 = np.load(Name_py_Discharge_dict_CR1).item()

    ###################### 7.2 Calculate surface water storage characteristics ######################

    Name_py_Discharge_dict_CR2 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Discharge_dict_CR2_simulation%d.npy' % (Simulation))
    Name_py_River_dict_CR2 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'River_dict_CR2_simulation%d.npy' % (Simulation))
    Name_py_DEM_dict_CR2 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'DEM_dict_CR2_simulation%d.npy' % (Simulation))
    Name_py_Distance_dict_CR2 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Distance_dict_CR2_simulation%d.npy' % (Simulation))
    Name_py_Diff_Water_Volume = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Diff_Water_Volume_CR2_simulation%d.npy' % (Simulation))
    Name_py_Regions = os.path.join(Dir_Basin, 'Simulations',
                                   'Simulation_%d' % Simulation, 'Sheet_5',
                                   'Regions_simulation%d.npy' % (Simulation))

    if not (os.path.exists(Name_py_Discharge_dict_CR2)
            and os.path.exists(Name_py_River_dict_CR2)
            and os.path.exists(Name_py_DEM_dict_CR2)
            and os.path.exists(Name_py_Distance_dict_CR2)):

        # Copy dicts as starting adding reservoir
        Discharge_dict_CR2 = copy.deepcopy(Discharge_dict_CR1)
        River_dict_CR2 = copy.deepcopy(River_dict_CR1)
        DEM_dict_CR2 = copy.deepcopy(DEM_dict_CR1)
        Distance_dict_CR2 = copy.deepcopy(Distance_dict_CR1)

        if Reservoirs_Lakes_Calculations == 1:

            # define input tiffs for surface water calculations
            input_JRC = os.path.join(Dir_Basin, Data_Path_JRC_occurrence,
                                     'JRC_Occurrence_percent.tif')
            DEM_dataset = os.path.join(Dir_Basin, Data_Path_DEM,
                                       'DEM_HydroShed_m_3s.tif')

            sensitivity = 700  # 900 is less sensitive 1 is very sensitive
            Regions = Five.Reservoirs.Calc_Regions(Name_NC_Basin_CR, input_JRC,
                                                   sensitivity, Boundaries)

            Diff_Water_Volume = np.zeros(
                [len(Regions), Amount_months_reservoirs - 1, 3])
            reservoir = 0

            for region in Regions:

                popt = Five.Reservoirs.Find_Area_Volume_Relation(
                    region, input_JRC, DEM_dataset)

                Area_Reservoir_Values = Five.Reservoirs.GEE_calc_reservoir_area(
                    region, Startdate, Enddate)

                Diff_Water_Volume[
                    reservoir, :, :] = Five.Reservoirs.Calc_Diff_Storage(
                        Area_Reservoir_Values, popt)
                reservoir += 1

            ################# 7.3 Add storage reservoirs and change outflows ##################
            Discharge_dict_CR2, River_dict_CR2, DEM_dict_CR2, Distance_dict_CR2 = Five.Reservoirs.Add_Reservoirs(
                Name_NC_Rivers_CR, Name_NC_Acc_Pixels_CR, Diff_Water_Volume,
                River_dict_CR2, Discharge_dict_CR2, DEM_dict_CR2,
                Distance_dict_CR2, Regions, Example_dataset)

            np.save(Name_py_Regions, Regions)
            np.save(Name_py_Diff_Water_Volume, Diff_Water_Volume)

        np.save(Name_py_Discharge_dict_CR2, Discharge_dict_CR2)
        np.save(Name_py_River_dict_CR2, River_dict_CR2)
        np.save(Name_py_DEM_dict_CR2, DEM_dict_CR2)
        np.save(Name_py_Distance_dict_CR2, Distance_dict_CR2)

    else:
        # Load
        Discharge_dict_CR2 = np.load(Name_py_Discharge_dict_CR2).item()
        River_dict_CR2 = np.load(Name_py_River_dict_CR2).item()
        DEM_dict_CR2 = np.load(Name_py_DEM_dict_CR2).item()
        Distance_dict_CR2 = np.load(Name_py_Distance_dict_CR2).item()

    ####################### 7.3 Add surface water withdrawals #############################

    Name_py_Discharge_dict_CR3 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Discharge_dict_CR3_simulation%d.npy' % (Simulation))

    if not os.path.exists(Name_py_Discharge_dict_CR3):

        Discharge_dict_CR3, DataCube_ETblue_m3 = Five.Irrigation.Add_irrigation(
            Discharge_dict_CR2, River_dict_CR2, Name_NC_Rivers_CR,
            Name_NC_ET_CR, Name_NC_ETref_CR, Name_NC_Prec_CR, Name_NC_Basin_CR,
            Name_NC_frac_sw_CR, Startdate, Enddate, Example_dataset)
        np.save(Name_py_Discharge_dict_CR3, Discharge_dict_CR3)

        # save ETblue as nc
        info = [
            'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]),
            ''.join([Enddate[5:7], Enddate[0:4]])
        ]
        Name_NC_ETblue = DC.Create_NC_name('ETblue', Simulation, Dir_Basin, 5,
                                           info)
        DC.Save_as_NC(Name_NC_ETblue, DataCube_ETblue_m3, 'ETblue',
                      Example_dataset, Startdate, Enddate, 'monthly')

    else:
        Discharge_dict_CR3 = np.load(Name_py_Discharge_dict_CR3).item()

    ################################# Plot graph ##################################

    # Draw graph
    Five.Channel_Routing.Graph_DEM_Distance_Discharge(
        Discharge_dict_CR3, Distance_dict_CR2, DEM_dict_CR2, River_dict_CR2,
        Startdate, Enddate, Example_dataset)

    ######################## Change data to fit the LU data #######################

    # Discharge
    # Define info for the nc files
    info = [
        'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    Name_NC_Discharge = DC.Create_NC_name('Discharge', Simulation, Dir_Basin,
                                          5, info)
    if not os.path.exists(Name_NC_Discharge):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_Discharge_CR = DC.Convert_dict_to_array(
            River_dict_CR2, Discharge_dict_CR3, Example_dataset)
        DC.Save_as_NC(Name_NC_Discharge, DataCube_Discharge_CR, 'Discharge',
                      Example_dataset, Startdate, Enddate, 'monthly')
        del DataCube_Discharge_CR

    # DEM
    Name_NC_DEM = DC.Create_NC_name('DEM', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_DEM):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_DEM_CR = RC.Open_nc_array(Name_NC_DEM_CR)
        DataCube_DEM = RC.resize_array_example(DataCube_DEM_CR,
                                               LU_data,
                                               method=1)
        DC.Save_as_NC(Name_NC_DEM, DataCube_DEM, 'DEM', LU_dataset)
        del DataCube_DEM

    # flow direction
    Name_NC_DEM_Dir = DC.Create_NC_name('DEM_Dir', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_DEM_Dir):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_DEM_Dir_CR = RC.Open_nc_array(Name_NC_DEM_Dir_CR)
        DataCube_DEM_Dir = RC.resize_array_example(DataCube_DEM_Dir_CR,
                                                   LU_data,
                                                   method=1)
        DC.Save_as_NC(Name_NC_DEM_Dir, DataCube_DEM_Dir, 'DEM_Dir', LU_dataset)
        del DataCube_DEM_Dir

    # Precipitation
    # Define info for the nc files
    info = [
        'monthly', 'mm', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    Name_NC_Prec = DC.Create_NC_name('Prec', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_Prec):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_Prec = RC.Get3Darray_time_series_monthly(
            Dir_Basin, Data_Path_P_Monthly, Startdate, Enddate, LU_dataset)
        DC.Save_as_NC(Name_NC_Prec, DataCube_Prec, 'Prec', LU_dataset,
                      Startdate, Enddate, 'monthly', 0.01)
        del DataCube_Prec

    # Evapotranspiration
    Name_NC_ET = DC.Create_NC_name('ET', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_ET):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_ET = RC.Get3Darray_time_series_monthly(
            Dir_Basin, Data_Path_ET, Startdate, Enddate, LU_dataset)
        DC.Save_as_NC(Name_NC_ET, DataCube_ET, 'ET', LU_dataset, Startdate,
                      Enddate, 'monthly', 0.01)
        del DataCube_ET

    # Reference Evapotranspiration data
    Name_NC_ETref = DC.Create_NC_name('ETref', Simulation, Dir_Basin, 5, info)
    if not os.path.exists(Name_NC_ETref):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_ETref = RC.Get3Darray_time_series_monthly(
            Dir_Basin, Data_Path_ETref, Startdate, Enddate, LU_dataset)
        DC.Save_as_NC(Name_NC_ETref, DataCube_ETref, 'ETref', LU_dataset,
                      Startdate, Enddate, 'monthly', 0.01)
        del DataCube_ETref

    # Rivers
    Name_NC_Rivers = DC.Create_NC_name('Rivers', Simulation, Dir_Basin, 5,
                                       info)
    if not os.path.exists(Name_NC_Rivers):

        # Get the data of Reference Evapotranspiration and save as nc
        Rivers_CR = RC.Open_nc_array(Name_NC_Rivers_CR)
        DataCube_Rivers = RC.resize_array_example(Rivers_CR, LU_data)
        DC.Save_as_NC(Name_NC_Rivers, DataCube_Rivers, 'Rivers', LU_dataset)
        del DataCube_Rivers, Rivers_CR

    # Discharge
    # Define info for the nc files
    info = [
        'monthly', 'm3', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    Name_NC_Routed_Discharge = DC.Create_NC_name('Routed_Discharge',
                                                 Simulation, Dir_Basin, 5,
                                                 info)
    if not os.path.exists(Name_NC_Routed_Discharge):

        # Get the data of Reference Evapotranspiration and save as nc
        Routed_Discharge_CR = RC.Open_nc_array(Name_NC_Discharge)
        DataCube_Routed_Discharge = RC.resize_array_example(
            Routed_Discharge_CR, LU_data)
        DC.Save_as_NC(Name_NC_Routed_Discharge, DataCube_Routed_Discharge,
                      'Routed_Discharge', LU_dataset, Startdate, Enddate,
                      'monthly')
        del DataCube_Routed_Discharge, Routed_Discharge_CR

    # Get raster information
    geo_out, proj, size_X, size_Y = RC.Open_array_info(Example_dataset)

    Rivers = RC.Open_nc_array(Name_NC_Rivers_CR)

    # Create ID Matrix
    y, x = np.indices((size_Y, size_X))
    ID_Matrix = np.int32(
        np.ravel_multi_index(np.vstack((y.ravel(), x.ravel())),
                             (size_Y, size_X),
                             mode='clip').reshape(x.shape)) + 1

    # Get tiff array time dimension:
    time_dimension = int(np.shape(Discharge_dict_CR3[0])[0])

    # create an empty array
    Result = np.zeros([time_dimension, size_Y, size_X])

    for river_part in range(0, len(River_dict_CR2)):
        for river_pixel in range(1, len(River_dict_CR2[river_part])):
            river_pixel_ID = River_dict_CR2[river_part][river_pixel]
            if len(np.argwhere(ID_Matrix == river_pixel_ID)) > 0:
                row, col = np.argwhere(ID_Matrix == river_pixel_ID)[0][:]
                Result[:, row,
                       col] = Discharge_dict_CR3[river_part][:, river_pixel]
        print(river_part)

    Outflow = Discharge_dict_CR3[0][:, 1]

    for i in range(0, time_dimension):
        output_name = r'C:/testmap/rtest_%s.tif' % i
        Result_one = Result[i, :, :]
        DC.Save_as_tiff(output_name, Result_one, geo_out, "WGS84")

    import os

    # Get environmental variable for the Home folder
    WA_env_paths = os.environ["WA_HOME"].split(';')
    Dir_Home = WA_env_paths[0]

    # Create the Basin folder
    Dir_Basin = os.path.join(Dir_Home, Basin)
    info = [
        'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]
    Name_Result = DC.Create_NC_name('DischargeEnd', Simulation, Dir_Basin, 5,
                                    info)
    Result[np.logical_and(Result == 0.0, Rivers == 0.0)] = np.nan

    DC.Save_as_NC(Name_Result, Result, 'DischargeEnd', Example_dataset,
                  Startdate, Enddate, 'monthly')

    return ()
示例#2
0
def Calculate(WA_HOME_folder, Basin, P_Product, ET_Product, ETref_Product, DEM_Product, Water_Occurence_Product, Inflow_Text_Files, WaterPIX_filename, Reservoirs_GEE_on_off, Supply_method, Startdate, Enddate, Simulation):
    '''
    This functions consists of the following sections:
    1. Set General Parameters
    2. Download Data
    3. Convert the RAW data to NETCDF files
    4. Run SurfWAT

    '''
    # import General modules
    import os
    import gdal
    import numpy as np
    import pandas as pd
    from netCDF4 import Dataset

    # import WA plus modules
    from wa.General import raster_conversions as RC
    from wa.General import data_conversions as DC
    import wa.Functions.Five as Five
    import wa.Functions.Start as Start
    import wa.Functions.Start.Get_Dictionaries as GD

    ######################### 1. Set General Parameters ##############################

    # Get environmental variable for the Home folder
    if WA_HOME_folder == '':
        WA_env_paths = os.environ["WA_HOME"].split(';')
        Dir_Home = WA_env_paths[0]
    else:
        Dir_Home = WA_HOME_folder

    # Create the Basin folder
    Dir_Basin = os.path.join(Dir_Home, Basin)
    output_dir = os.path.join(Dir_Basin, "Simulations", "Simulation_%d" %Simulation)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # Get the boundaries of the basin based on the shapefile of the watershed
    # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin)
    Boundaries, Example_dataset = Start.Boundaries.Determine_LU_Based(Basin, Dir_Home)
    geo_out, proj, size_X, size_Y = RC.Open_array_info(Example_dataset)

    # Define resolution of SRTM
    Resolution = '15s'

    # Find the maximum moving window value
    ET_Blue_Green_Classes_dict, Moving_Window_Per_Class_dict = GD.get_bluegreen_classes(version = '1.0')
    Additional_Months_tail = np.max(Moving_Window_Per_Class_dict.values())

    ############## Cut dates into pieces if it is needed ######################

    # Check the years that needs to be calculated
    years = range(int(Startdate.split('-')[0]),int(Enddate.split('-')[0]) + 1)

    for year in years:

        # Create .nc file if not exists
        nc_outname = os.path.join(output_dir, "%d.nc" % year)
        if not os.path.exists(nc_outname):
            DC.Create_new_NC_file(nc_outname, Example_dataset, Basin)

        # Open variables in netcdf
        fh = Dataset(nc_outname)
        Variables_NC = [var for var in fh.variables]
        fh.close()

        # Create Start and End date for time chunk
        Startdate_part = '%d-01-01' %int(year)
        Enddate_part = '%s-12-31' %int(year)

        if int(year) == int(years[0]):
            Startdate_Moving_Average = pd.Timestamp(Startdate) - pd.DateOffset(months = Additional_Months_tail)
            Startdate_Moving_Average_String = Startdate_Moving_Average.strftime('%Y-%m-%d')
        else:
            Startdate_Moving_Average_String = Startdate_part

        ############################# 2. Download Data ###################################

        # Download data
        if not "Precipitation" in Variables_NC:
            Data_Path_P_Monthly = Start.Download_Data.Precipitation(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, P_Product)

        if not "Actual_Evapotranspiration" in Variables_NC:
            Data_Path_ET = Start.Download_Data.Evapotranspiration(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, ET_Product)

        if (WaterPIX_filename == "" or Supply_method == "Fraction") and not ("Reference_Evapotranspiration" in Variables_NC):
            Data_Path_ETref = Start.Download_Data.ETreference(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_Moving_Average_String, Enddate_part, ETref_Product)

        if Reservoirs_GEE_on_off == 1 and not ("Water_Occurrence" in Variables_NC):
            Data_Path_JRC_occurrence = Start.Download_Data.JRC_occurrence(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Water_Occurence_Product)
            input_JRC = os.path.join(Data_Path_JRC_occurrence, "JRC_Occurrence_percent.tif")
        else:
            input_JRC = None

        # WaterPIX input
        Data_Path_DEM_Dir = Start.Download_Data.DEM_Dir(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Resolution, DEM_Product)
        Data_Path_DEM = Start.Download_Data.DEM(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Resolution, DEM_Product)

        ###################### 3. Convert the RAW data to NETCDF files ##############################
        # The sequence of converting the data into netcdf is:
        # Precipitation
        # Evapotranspiration
        # Reference Evapotranspiration
        # DEM flow directions

        #______________________________Precipitation_______________________________

        # 1.) Precipitation data
        if not "Precipitation" in Variables_NC:
            # Get the data of Precipitation and save as nc
            DataCube_Prec = RC.Get3Darray_time_series_monthly(Data_Path_P_Monthly, Startdate_part, Enddate_part, Example_data = Example_dataset)
            DC.Add_NC_Array_Variable(nc_outname, DataCube_Prec, "Precipitation", "mm/month", 0.01)
            del DataCube_Prec

        #_______________________________Evaporation________________________________

        # 2.) Evapotranspiration data
        if not "Actual_Evapotranspiration" in Variables_NC:
            # Get the data of Evaporation and save as nc
            DataCube_ET = RC.Get3Darray_time_series_monthly(Data_Path_ET, Startdate_part, Enddate_part, Example_data = Example_dataset)
            DC.Add_NC_Array_Variable(nc_outname, DataCube_ET, "Actual_Evapotranspiration", "mm/month", 0.01)
            del DataCube_ET

        #_______________________Reference Evaporation______________________________

        # 3.) Reference Evapotranspiration data
        if (WaterPIX_filename == "" or Supply_method == "Fraction") and not ("Reference_Evapotranspiration" in Variables_NC):
            # Get the data of Precipitation and save as nc
            DataCube_ETref = RC.Get3Darray_time_series_monthly(Data_Path_ETref, Startdate_part, Enddate_part, Example_data = Example_dataset)
            DC.Add_NC_Array_Variable(nc_outname, DataCube_ETref, "Reference_Evapotranspiration", "mm/month", 0.01)
            del DataCube_ETref

        #____________________________fraction surface water _______________________

        DataCube_frac_sw = np.ones([size_Y, size_X]) * np.nan

        import wa.Functions.Start.Get_Dictionaries as GD

        # Open LU dataset
        DataCube_LU = RC.Open_nc_array(nc_outname, "Landuse")

        # Get dictionaries and keys
        lulc = GD.get_sheet5_classes()
        lulc_dict = GD.get_sheet5_classes().keys()
        consumed_frac_dict = GD.sw_supply_fractions()

        for key in lulc_dict:
            Numbers = lulc[key]
            for LU_nmbr in Numbers:
                DataCube_frac_sw[DataCube_LU==LU_nmbr] = consumed_frac_dict[key]

        DC.Add_NC_Array_Static(nc_outname, DataCube_frac_sw, "Fraction_Surface_Water_Supply", "fraction", 0.01)
        del DataCube_frac_sw, DataCube_LU

        ################### 4. Calculate Runoff (2 methods: a = Budyko and b = WaterPIX) #####################

        ################ 4a. Calculate Runoff based on Precipitation and Evapotranspiration ##################

        if (Supply_method == "Fraction" and not "Surface_Runoff" in Variables_NC):

            # Calculate runoff based on Budyko
            DataCube_Runoff = Five.Fraction_Based.Calc_surface_runoff(Dir_Basin, nc_outname, Startdate_part, Enddate_part, Example_dataset, ETref_Product, P_Product)

            # Save the runoff as netcdf
            DC.Add_NC_Array_Variable(nc_outname, DataCube_Runoff, "Surface_Runoff", "mm/month", 0.01)
            del DataCube_Runoff

        ###################### 4b. Get Runoff from WaterPIX ###########################
        if (Supply_method == "WaterPIX" and not "Surface_Runoff" in Variables_NC):

            # Get WaterPIX data
            WaterPIX_Var = 'TotalRunoff_M'
            DataCube_Runoff = Five.Read_WaterPIX.Get_Array(WaterPIX_filename, WaterPIX_Var, Example_dataset, Startdate_part, Enddate_part)

            # Save the runoff as netcdf
            DC.Add_NC_Array_Variable(nc_outname, DataCube_Runoff, "Surface_Runoff", "mm/month", 0.01)
            del DataCube_Runoff

        ####################### 5. Calculate Extraction (2 methods: a = Fraction, b = WaterPIX) #############################

        ###################### 5a. Get extraction from fraction method by using budyko ###########################
        if (Supply_method == "Fraction" and not "Surface_Withdrawal" in Variables_NC):
            DataCube_surface_withdrawal = Five.Fraction_Based.Calc_surface_withdrawal(Dir_Basin, nc_outname, Startdate_part, Enddate_part, Example_dataset, ETref_Product, P_Product)

            # Save the runoff as netcdf
            DC.Add_NC_Array_Variable(nc_outname, DataCube_surface_withdrawal, "Surface_Withdrawal", "mm/month", 0.01)
            del DataCube_surface_withdrawal

        #################################### 5b. Get extraction from WaterPIX ####################################
        if (Supply_method == "WaterPIX" and not "Surface_Withdrawal" in Variables_NC):
            WaterPIX_Var = 'Supply_M'
            DataCube_Supply = Five.Read_WaterPIX.Get_Array(WaterPIX_filename, WaterPIX_Var, Example_dataset, Startdate, Enddate)

            # Open array with surface water fractions
            DataCube_frac_sw = RC.Open_nc_array(nc_outname, "Fraction_Surface_Water_Supply")

            # Total amount of ETblue taken out of rivers
            DataCube_surface_withdrawal = DataCube_Supply * DataCube_frac_sw[None,:,:]

            # Save the runoff as netcdf
            DC.Add_NC_Array_Variable(nc_outname, DataCube_surface_withdrawal, "Surface_Withdrawal", "mm/month", 0.01)
            del DataCube_surface_withdrawal

        ################################## 5. Run SurfWAT #####################################

        import wa.Models.SurfWAT as SurfWAT

        # Define formats of input data
        Format_DEM = "TIFF"    # or "TIFF"
        Format_Runoff = "NetCDF"    # or "TIFF"
        Format_Extraction = "NetCDF"    # or "TIFF"
        Format_DEM_dir = "TIFF"    # or "TIFF"
        Format_Basin = "NetCDF"    # or "TIFF"

        # Give path (for tiff) or file (netcdf)
        input_nc = os.path.join(Dir_Basin, "Simulations", "Simulation_%s"%Simulation,"SurfWAT_in_%d.nc" %year)
        output_nc = os.path.join(Dir_Basin, "Simulations", "Simulation_%s"%Simulation,"SurfWAT_out_%d.nc" %year)

        # Create Input File for SurfWAT
        SurfWAT.Create_input_nc.main(Data_Path_DEM_Dir,
                                     Data_Path_DEM,
                                     os.path.dirname(nc_outname),
                                     os.path.dirname(nc_outname),
                                     os.path.dirname(nc_outname),
                                     Startdate,
                                     Enddate,
                                     input_nc,
                                     Resolution,
                                     Format_DEM_dir,
                                     Format_DEM,
                                     Format_Basin,
                                     Format_Runoff,
                                     Format_Extraction)

        # Run SurfWAT
        SurfWAT.Run_SurfWAT.main(input_nc, output_nc, input_JRC, Inflow_Text_Files, Reservoirs_GEE_on_off)



























    '''
    ################################# Plot graph ##################################

    # Draw graph
    Five.Channel_Routing.Graph_DEM_Distance_Discharge(Discharge_dict_CR3, Distance_dict_CR2, DEM_dict_CR2, River_dict_CR2, Startdate, Enddate, Example_dataset)

    ######################## Change data to fit the LU data #######################

    # Discharge
    # Define info for the nc files
    info = ['monthly','m3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]) , ''.join([Enddate[5:7], Enddate[0:4]])]

    Name_NC_Discharge = DC.Create_NC_name('DischargeEnd', Simulation, Dir_Basin, 5, info)
    if not os.path.exists(Name_NC_Discharge):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_Discharge_CR = DC.Convert_dict_to_array(River_dict_CR2, Discharge_dict_CR3, Example_dataset)
        DC.Save_as_NC(Name_NC_Discharge, DataCube_Discharge_CR, 'Discharge_End_CR', Example_dataset, Startdate, Enddate, 'monthly')
        del DataCube_Discharge_CR


    '''





























    '''

    # DEM
    Name_NC_DEM = DC.Create_NC_name('DEM', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_DEM):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_DEM_CR = RC.Open_nc_array(Name_NC_DEM_CR)
        DataCube_DEM = RC.resize_array_example(DataCube_DEM_CR, LU_data, method=1)
        DC.Save_as_NC(Name_NC_DEM, DataCube_DEM, 'DEM', LU_dataset)
        del DataCube_DEM

    # flow direction
    Name_NC_DEM_Dir = DC.Create_NC_name('DEM_Dir', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_DEM_Dir):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_DEM_Dir_CR = RC.Open_nc_array(Name_NC_DEM_Dir_CR)
        DataCube_DEM_Dir = RC.resize_array_example(DataCube_DEM_Dir_CR, LU_data, method=1)
        DC.Save_as_NC(Name_NC_DEM_Dir, DataCube_DEM_Dir, 'DEM_Dir', LU_dataset)
        del DataCube_DEM_Dir

    # Precipitation
    # Define info for the nc files
    info = ['monthly','mm', ''.join([Startdate[5:7], Startdate[0:4]]) , ''.join([Enddate[5:7], Enddate[0:4]])]

    Name_NC_Prec = DC.Create_NC_name('Prec', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_Prec):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_Prec = RC.Get3Darray_time_series_monthly(Dir_Basin, Data_Path_P_Monthly, Startdate, Enddate, LU_dataset)
        DC.Save_as_NC(Name_NC_Prec, DataCube_Prec, 'Prec', LU_dataset, Startdate, Enddate, 'monthly', 0.01)
        del DataCube_Prec

    # Evapotranspiration
    Name_NC_ET = DC.Create_NC_name('ET', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_ET):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_ET = RC.Get3Darray_time_series_monthly(Dir_Basin, Data_Path_ET, Startdate, Enddate, LU_dataset)
        DC.Save_as_NC(Name_NC_ET, DataCube_ET, 'ET', LU_dataset, Startdate, Enddate, 'monthly', 0.01)
        del DataCube_ET

    # Reference Evapotranspiration data
    Name_NC_ETref = DC.Create_NC_name('ETref', Simulation, Dir_Basin, 5, info)
    if not os.path.exists(Name_NC_ETref):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_ETref = RC.Get3Darray_time_series_monthly(Dir_Basin, Data_Path_ETref, Startdate, Enddate, LU_dataset)
        DC.Save_as_NC(Name_NC_ETref, DataCube_ETref, 'ETref', LU_dataset, Startdate, Enddate, 'monthly', 0.01)
        del DataCube_ETref

    # Rivers
    Name_NC_Rivers = DC.Create_NC_name('Rivers', Simulation, Dir_Basin, 5, info)
    if not os.path.exists(Name_NC_Rivers):

        # Get the data of Reference Evapotranspiration and save as nc
        Rivers_CR = RC.Open_nc_array(Name_NC_Rivers_CR)
        DataCube_Rivers = RC.resize_array_example(Rivers_CR, LU_data)
        DC.Save_as_NC(Name_NC_Rivers, DataCube_Rivers, 'Rivers', LU_dataset)
        del DataCube_Rivers, Rivers_CR

    # Discharge
    # Define info for the nc files
    info = ['monthly','m3', ''.join([Startdate[5:7], Startdate[0:4]]) , ''.join([Enddate[5:7], Enddate[0:4]])]

    Name_NC_Routed_Discharge = DC.Create_NC_name('Routed_Discharge', Simulation, Dir_Basin, 5, info)
    if not os.path.exists(Name_NC_Routed_Discharge):

        # Get the data of Reference Evapotranspiration and save as nc
        Routed_Discharge_CR = RC.Open_nc_array(Name_NC_Discharge)
        DataCube_Routed_Discharge = RC.resize_array_example(Routed_Discharge_CR, LU_data)
        DC.Save_as_NC(Name_NC_Routed_Discharge, DataCube_Routed_Discharge, 'Routed_Discharge', LU_dataset, Startdate, Enddate, 'monthly')
        del DataCube_Routed_Discharge, Routed_Discharge_CR





    # Get raster information
    geo_out, proj, size_X, size_Y = RC.Open_array_info(Example_dataset)

    Rivers = RC.Open_nc_array(Name_NC_Rivers_CR)

    # Create ID Matrix
    y,x = np.indices((size_Y, size_X))
    ID_Matrix = np.int32(np.ravel_multi_index(np.vstack((y.ravel(),x.ravel())),(size_Y,size_X),mode='clip').reshape(x.shape)) + 1

    # Get tiff array time dimension:
    time_dimension = int(np.shape(Discharge_dict_CR3[0])[0])

    # create an empty array
    Result = np.zeros([time_dimension, size_Y, size_X])

    for river_part in range(0,len(River_dict_CR2)):
        for river_pixel in range(1,len(River_dict_CR2[river_part])):
            river_pixel_ID = River_dict_CR2[river_part][river_pixel]
            if len(np.argwhere(ID_Matrix == river_pixel_ID))>0:
                row, col = np.argwhere(ID_Matrix == river_pixel_ID)[0][:]
                Result[:,row,col] = Discharge_dict_CR3[river_part][:,river_pixel]
        print(river_part)


    Outflow = Discharge_dict_CR3[0][:,1]

    for i in range(0,time_dimension):
        output_name = r'C:/testmap/rtest_%s.tif' %i
        Result_one = Result[i, :, :]
        DC.Save_as_tiff(output_name, Result_one, geo_out, "WGS84")

    import os

    # Get environmental variable for the Home folder
    WA_env_paths = os.environ["WA_HOME"].split(';')
    Dir_Home = WA_env_paths[0]

    # Create the Basin folder
    Dir_Basin = os.path.join(Dir_Home, Basin)
    info = ['monthly','m3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]) , ''.join([Enddate[5:7], Enddate[0:4]])]
    Name_Result = DC.Create_NC_name('DischargeEnd', Simulation, Dir_Basin, 5, info)
    Result[np.logical_and(Result == 0.0, Rivers == 0.0)] = np.nan

    DC.Save_as_NC(Name_Result, Result, 'DischargeEnd', Example_dataset, Startdate, Enddate, 'monthly')



    '''


    return()