def CAplot(rule, n, initiate): ca = CA.CA(rule, n) if initiate == "single": ca.start_single() else: ca.start_random() ca.loop(n - 1) drawer = CADrawer.PyplotDrawer() drawer.draw(ca)
return 1.0 #2.0,3.0 funny pattern else: return cur / 2.0 # return cur/2.000000001 #tipping point, 2.0 -> grid, little more? no grid else: if 3 <= t < 4: return 1. else: return 0. if __name__ == '__main__': img = array( I.open('Pics/building.jpg').resize((36 * 5, 48 * 5)).convert('L')) img = img / float(img.max()) simulator = CA.CA(img, radius=1, rule=life_game_rule) plt.ion() simulator.plot() raw_input('sizing') iter = 0 while iter < 1000: plt.clf() simulator.update() simulator.plot() plt.draw() # raw_input('pause')
for j in range(len(cells[i])): if [i, j] not in input_data: test_inputs.append([i, j]) targets.append([cells[i][j]]) return torch.Tensor(np.array(input_data)), torch.Tensor(np.array(output_data)), torch.Tensor(np.array(test_inputs)), torch.Tensor(np.array(targets)) def display_results(x, y): plt.plot(x, y) plt.show() ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' Main ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' if __name__ == "__main__": ca = CA(N, N) for i in range(1000): ca.generate() if SHOW_MAP: plt.imshow(ca.get_cells(), cmap=plt.cm.gray, interpolation='nearest') plt.pause(0.01) if ca.check_for_stability(): plt.title("Stable") plt.imshow(ca.get_cells(), cmap=plt.cm.gray, interpolation='nearest') plt.show() print("Generation: {}".format(i)) break train_x, train_y, test_x, test_y = get_testing_data(ca.get_cells()) runs = []
import CA from numpy.random import binomial import matplotlib.pyplot as plt def life_game_rule(k): cur = k[len(k)/2] t = (k==1).sum() - cur return (cur == 1 and int(t==2 or t==3)) or (cur != 1 and int(t==3)) if __name__ == '__main__': simulator = CA.CA(binomial(1, 0.15, (20, 40)), 1, life_game_rule, circular = True) plt.ion() simulator.plot() raw_input('sizing') iter = 0 while iter < 1000: plt.clf() simulator.update() simulator.plot() plt.draw()
#alpha = .9, portation = .2 is good ind = acc.flatten().argsort()[::-1] l, w = arg_grid.shape[:2] bp = int(l * w * .1) #.2 no noise, little fuzzy for i in range(bp): cur_grid[ind[i]/w, ind[i]%w] = 1. for i in range(bp, l * w): cur_grid[ind[i]/w, ind[i]%w] = 0. return cur_grid if __name__ == '__main__': img = array(I.open('Pics/road.jpg').resize((1024, 548)).convert('L')) img = img/float(img.max()) simulator = CA.CA(img, radius = 1, rule = detector, global_update = True) plt.ion() simulator.plot() raw_input('sizing') iter = 0 while iter < 1000: plt.clf() simulator.update() simulator.plot() plt.draw() raw_input('pause')
return 1.0 #2.0,3.0 funny pattern else: return cur / 2.0 # return cur/2.000000001 #tipping point, 2.0 -> grid, little more? no grid else: if 3 <= t < 4: return 1. else: return 0. if __name__ == '__main__': simulator = CA.CA(binomial(1, 0.15, (40, 40)), 1, life_game_rule, circular=False) plt.ion() simulator.plot() raw_input('sizing') iter = 0 while iter < 1000: plt.clf() simulator.update() simulator.plot() plt.draw() # raw_input('pause')
from CA import * from CADrawer import * # for i in xrange(256): rule = 110 n = 300 ca = CA(rule, n) ca.start_comp() # ca.start_random() ca.loop(n - 1) drawer = PyplotDrawer() drawer.draw(ca) drawer.show() raw_input('')