Exemplo n.º 1
0
def GetImageSubset(subsetparameters, data, dimensions):
    #------------------------------------------------------------------
    # Create square image subset from predefined corner points
    #------------------------------------------------------------------
    Point = subsetparameters.Point

    # get and scale image subset
    BoxRange = dimensions.BoxRange
    BoxRange = BoxRange.astype(int)
    image = data.image[Point[1] - BoxRange[0]:Point[1] + BoxRange[1],
                       Point[0] - BoxRange[0]:Point[0] + BoxRange[1]]
    image = IP.ScaleImage(image, 8)

    # get and store corresponding coordinates
    easting = data.coordinates.easting[Point[1] - BoxRange[0]:Point[1] +
                                       BoxRange[1], Point[0] -
                                       BoxRange[0]:Point[0] + BoxRange[1]]
    northing = data.coordinates.northing[Point[1] - BoxRange[0]:Point[1] +
                                         BoxRange[1], Point[0] -
                                         BoxRange[0]:Point[0] + BoxRange[1]]
    coordinates = CL.Coordinates(northing, easting)

    #store subset data
    FlagFlip = IP.CheckImageOrientation(coordinates)
    subset = CL.Subset(Point, image, coordinates, data.resolution, FlagFlip)

    return subset
Exemplo n.º 2
0
def GetGtiffInformation(filein,EPSG=0):

	# open file and get information
	f, a, img = ReadGtiffRaster(filein)
	
	# metadata
	Metadata = f.GetMetadata()

	# dimension	
	ncols, nrows = a.XSize, a.YSize
	
	# ground control points
	GCPs = f.GetGCPs()
	GCPs_projection = f.GetGCPProjection()

	# transformation info (coordinates and resolution)
	Geotransform = f.GetGeoTransform()
	
	# projection info (spatial reference system (EPSG related))
	if EPSG == 0:
		srs = osr.SpatialReference(wkt=f.GetProjection())
	else:
		srs = osr.SpatialReference(); srs.ImportFromEPSG(EPSG)

	#store information
	Infos = CL.GtiffInformation(Metadata, ncols, nrows, GCPs, GCPs_projection, Geotransform, srs)
		
	#deallocate raster
	f = None

	return img, Infos
Exemplo n.º 3
0
def DefineLine(img, direction, point, FlagOrtho):
    #-----------------------------------------------
    # Define line slope, offset and equation
    #-----------------------------------------------
    fac = np.pi / 180

    # image dimension
    dim = img.shape

    # determine line coefficients
    a = np.tan(fac * direction)
    # slope
    if FlagOrtho == 1:  # orthogonal slope a*a'=-1
        a = -1 / a
    b = point[1] - a * point[0]
    # constant

    # estimate line
    x = np.linspace(0, dim[0] - 1, dim[0])
    y = a * x + b

    # store data
    lined = CL.line(x, y, a, b)

    return lined
Exemplo n.º 4
0
def GetBoxDim(subsetparameters, subset):
    #------------------------------------------------------------------
    # defined box dimension as a function of :
    #		- image resolution
    #		- domain length (m) : 1000m<length<2000m
    #------------------------------------------------------------------
    # rough estimate of the box dimension in pixel
    DimensionPixel = np.int(
        np.round(((subsetparameters.DomainDimension) / subset.resolution[0])))

    # refine dimension for computation efficiency
    if subsetparameters.FlagPowerofTwo:
        # dimension as a functionnearest power of 2
        power = np.round(np.log(DimensionPixel) / np.log(2))
        DimensionPixel = 2**power
    else:
        # dimension as a combination of simple prime numbers (2,3,5,...)
        DimensionPixel = cv2.getOptimalDFTSize(DimensionPixel)

    # box dimension in meter
    DimensionMeters = DimensionPixel * subset.resolution[0]

    # range from center
    BoxRange = np.zeros(2) + np.int(np.round(DimensionPixel / 2.))
    residual = np.mod(DimensionPixel, 2)

    if residual > 1:
        BoxRange[0] = np.int(np.round(DimensionPixel / 2.)) - 1

    # store data
    dimension = CL.SubsetDimension(DimensionPixel, DimensionMeters, BoxRange)

    return dimension
Exemplo n.º 5
0
def GetImageGridPointsIndices(data, ResolutionPixels):
    #----------------------------------------------------------------------------------------
    #
    # Create Grid according to the image dimension and user-defined resolution
    #
    #----------------------------------------------------------------------------------------
    GlobalGridPoints = []

    # get image dimension
    easting = data.coordinates.easting[0, :]
    northing = data.coordinates.northing[:, 0]
    nx = easting.shape[0]
    ny = northing.shape[0]

    # create points indices arrays
    IndicesX = GridSubSampling(nx, ResolutionPixels)
    IndicesY = GridSubSampling(ny, ResolutionPixels)
    X, Y = np.meshgrid(IndicesX, IndicesY)
    # flatten the arrays for fast computation
    indx = X.flatten()
    indy = Y.flatten()

    # gather all information about grid points
    for i in range(indx.shape[0]):
        indexx = indx[i]
        indexy = indy[i]
        east = easting[indexx]
        north = northing[indexy]
        Point = CL.GridPoints(east, north)
        GlobalGridPoints.append(Point)

    # array format
    GlobalGridPoints = np.asarray(GlobalGridPoints)

    return GlobalGridPoints
Exemplo n.º 6
0
def DetectLineEdge(img, lined):
    #------------------------------------------------------------
    # Detect intersection points of image edges by a given line
    #------------------------------------------------------------
    # initialization
    point1 = np.zeros(2)
    point2 = np.zeros(2)
    dim = img.shape

    # Detect intersection with image edge
    m = np.min(lined.y)
    M = np.max(lined.y)

    if m < 0:
        point1[0] = np.int(np.rint(-lined.b / lined.a))
        point1[1] = 0
    else:
        point1[0] = 0
        point1[1] = np.int(np.rint(lined.b))
    yy = dim[1] - 1
    xx = dim[0] - 1
    if M > yy:
        point2[1] = yy
        point2[0] = np.int(np.rint((yy - lined.b) / lined.a))
    else:
        point2[0] = xx
        point2[1] = np.int(np.rint(lined.a * xx + lined.b))

    # store data
    edpt = CL.edgepoint(point1, point2)

    return edpt
Exemplo n.º 7
0
def GetImageGridPoints(data, ResolutionPixels):
    #----------------------------------------------------------------------------------------
    #
    # Create Grid according to the image dimension and user-defined resolution
    #
    #----------------------------------------------------------------------------------------
    GlobalGridPoints = []

    # get image dimension
    easting = data.coordinates.easting[0, :]
    northing = data.coordinates.northing[:, 0]

    # create points indices arrays
    Easting = GridSubSampling(easting, ResolutionPixels)
    Northing = GridSubSampling(northing, ResolutionPixels)
    E, N = np.meshgrid(Easting, Northing)
    # flatten the arrays for fast computation
    East = E.flatten()
    North = N.flatten()

    # gather all information about grid points
    for i in range(East.shape[0]):
        Point = CL.GridPoints(East[i], North[i])
        GlobalGridPoints.append(Point)

    # array format
    GlobalGridPoints = np.asarray(GlobalGridPoints)

    return GlobalGridPoints
Exemplo n.º 8
0
def Direction_PeakDetection(parameters, theta, distribution, Flag):

    #------------------------------------
    #	peak detection
    #------------------------------------
    # domain dichotomy
    angle = 360 - UT.CartesianNautical(
        parameters.CoastNormalOrientation) if Flag else UT.CartesianNautical(
            parameters.CoastNormalOrientation)

    theta1, distribution1, theta2, distribution2 = DirectionDichotomy(
        theta, distribution, angle)

    Directions = np.zeros(2)
    # parameter for peak detection
    ratio = 20. / 100
    if parameters.submethod in {
            'clusterpower', 'ClusterPower', 'centroidpower', 'CentroidPower'
    }:
        power = 2
    else:
        power = 1

    PeakParameters = CL.PeakParameters(power, ratio)
    # data for peak detection
    DataDirection1 = CL.DataPeak(theta1, distribution1)
    DataDirection2 = CL.DataPeak(theta2, distribution2)

    # estimate mean direction
    Directions[0] = UT.PeakDetection(PeakParameters, parameters.submethod,
                                     DataDirection1)
    Directions[1] = UT.PeakDetection(PeakParameters, parameters.submethod,
                                     DataDirection2)

    flagplot = 0
    if flagplot > 0:
        fig, ax1 = plt.subplots(1)
        ax1.plot(theta1, distribution1, 'o')
        ax1.plot(theta2, distribution2, 'o')
        ax1.axvline(x=Directions[0]), ax1.axvline(x=Directions[1])
        ax1.axhline(y=ratio * np.max(distribution1)), ax1.axhline(
            y=ratio * np.max(distribution2))
    plt.show()

    return Directions
Exemplo n.º 9
0
def Array2List(array):
    #---------------------------------------------------------------------
    #
    # convert numpy coordinate array coordinate into a list of data
    #
    #----------------------------------------------------------------------
    data = []
    for i in range(array.shape[0]):
        if array.shape[1] == 1:
            point = CL.GridPoints(array[i, 0])
        elif array.shape[1] == 2:
            point = CL.GridPoints(array[i, 0], array[i, 1])
        elif array.shape[1] == 3:
            point = CL.GridPoints(array[i, 0], array[i, 1], array[i, 2])
        data.append(point)
    data = np.asarray(data)

    return data
Exemplo n.º 10
0
def WavelengthEstimate(ComputingParameters, k, spectrum):
    #-----------------------------------------
    #	Estimate Peak Wavelength
    #----------------------------------------
    # parameters
    if ComputingParameters.SpectrumParameters.WaveSpectrumParameters.SpectrumType == 'Radial':
        kth = 0.01
        data = CL.DataPeak(k[np.where(k > kth)], spectrum[np.where(k > kth)])
    else:
        data = CL.DataPeak(k, spectrum)
    WavelengthParameters = ComputingParameters.SpectrumParameters.WavelengthEstimationParameters
    peak_parameters = CL.PeakParameters(WavelengthParameters.Power)

    # mean wavenumber estimate
    PeakWavenumber = UT.PeakDetection(
        peak_parameters, WavelengthParameters.PeakDeterminationMethod, data)

    # wavelength
    PeakWavelength = 2 * np.pi / PeakWavenumber

    return PeakWavelength
Exemplo n.º 11
0
def RemoveBathymetryException(parameters, Points, Bathymetry):
    #-------------------------------------------------------------------------------------------------------------------
    #
    #	Remove Grid points impacted with bathymetry exception
    #
    #--------------------------------------------------------------------------------------------------------------------

    #  remove NaN bathymetry values
    point, bathymetry, northing, easting = RemoveNanBathymetry(
        Points, Bathymetry)

    # remove land-sea interpolation artefacts
    #point, bathymetry, northing, easting = RemoveBathymetryAnomalies(parameters, point, bathymetry, northing, easting)

    coordinates = CL.Coordinates(northing, easting)
    BathymetryData = CL.BathymetryData(coordinates, bathymetry)
    """
	fig, ax = plt.subplots(1)
	for i in range(bathymetry.shape[0]):
		ax.plot(i, bathymetry[i],'or')
	"""
    return point, BathymetryData
Exemplo n.º 12
0
def InputSubsetParameters():
	#-----------------------------------------------
	# Image Processing input parameters  
	#-----------------------------------------------

	#input arguments
	parser = argparse.ArgumentParser(description='Co-ReSyF: SAR Bathymetry Research Application')
	#image
	parser.add_argument('-a', '--param', help='Parameters file for Wings (.ini file)', default='Config_Image.ini',required=False)
	parser.add_argument('-i', '--input', help='Input image (to be processed)', required=True)
	parser.add_argument('-b','--bathymetry', help='Bathymetric grid in a txt or npz file',required=True)
	parser.add_argument('-p', '--processing', nargs='+', help='Image Processing Filters (Slant Range Correction, ContrastStretch)', default=[True, True], required=False)
	parser.add_argument('-r', '--reference_system', nargs='+', help='Spatial Reference system EPSG code (Selected Image and Projection, cf. gdalinfo for image information and \
				http://spatialreference.org/ref/epsg/)', required=True)

	#subscene
	parser.add_argument('-o', '--output', nargs='+', help='List with output file names (subsets#.out) for FFT determination (to be used by Wings)', required=False)
	parser.add_argument('-d', '--dimension', help='Dimension of the subscenes (meters, ideally 1000-2000m)', default=2000., required=False)
	parser.add_argument('-w', '--window', help='number of overlapping boxes for FFT computation', default=9, required=False)
	parser.add_argument('-s', '--shift', help='Overlapping boxes offset parameters for FFT computation. Values between (0.1-0.75). Default=0.5.',default=0.5, required=False)
	
	# peak wave period
	parser.add_argument('-T', '--Tp', help='mean peak wave period Tp', default=0, required=False)
	
	#comments
	parser.add_argument('-v','--verbose', help="comments and screen outputs", action="store_true")

	# store
	args = parser.parse_args()
	RunId = datetime.now().strftime('%Y%m%dT%H%M%S')

	#create config.ini file
	parOut = open(args.param, "w"); Config = ConfigParser.ConfigParser(); Config.add_section("Arguments")
	#image
	Config.set("Arguments", "Input_image", args.input); Config.set("Arguments", "Bathymetry_file", args.bathymetry)
	Config.set("Arguments", "Image_processing_filters", args.processing); Config.set("Arguments", "Reference_systems", args.reference_system)
	#subscene	
	Config.set("Arguments", "Subscene_list", args.output); Config.set("Arguments", "Box_dimension", args.dimension)
	Config.set("Arguments", "Number_of_boxes", args.window); Config.set("Arguments", "Box_shift", args.shift)	
	Config.add_section("Run")
	Config.set("Run", "Id", RunId)

	Config.write(parOut); parOut.close()

	# check which filters to apply
	Contrast_Stretch = True if (any("contrast" in s for s in args.processing) or any("contrast" in s for s in args.processing)) else False
	Slant_Correction = True if (any("slant" in s for s in args.processing) or any("Slant" in s for s in args.processing)) else False
	
	# store data in classes
	file_path_name = CL.File_path_name('', args.input, '', '')
	Point = np.zeros(2) + 1000; Point = Point.astype(int)
	LandMask_Parameters = CL.LandMaskParameters()	
	ProcessingParameters = CL.Processing_Parameters('uint16', Slant_Correction, 1., Contrast_Stretch, LandMask_Parameters)
	SpatialReferenceSystem = CL.Spatial_Reference_System(args.reference_system[0], args.reference_system[1])
	Subsetparameters = CL.SubsetParameters(Point, float(args.dimension), True, float(args.shift), int(float(args.window)))
	Image_Parameters = CL.ImageParameters(file_path_name, ProcessingParameters, SpatialReferenceSystem)
	
	return Subsetparameters, Image_Parameters, args, args.verbose
Exemplo n.º 13
0
def Get_apriori_bathymetry(parameters, points):

    # transform input data
    Coordinates = PointsList2Coordinates(points)

    # Find Collocated bathymetry
    coord, bathy = FindCollocatedBathymetry(parameters.BathymetryParameters,
                                            Coordinates)
    bathydata = CL.BathymetryData(coord, bathy)

    # interpolate bathymetry on the grid points
    Bathymetry_Data = InterpolateBathymetry(parameters.MiscellaneousParameters,
                                            Coordinates, bathydata)

    return Bathymetry_Data
def MergeSpectrumData(points):
    #---------------------------------------------------
    # gather all 2D spectrum data in exploitable arrays
    #---------------------------------------------------
    # get array size
    k, Spectra, SpectraStd = [point.Spectrum.WaveSpectrum.k for point in points], [point.Spectrum.WaveSpectrum.Spectrum for point in points], \
       [point.Spectrum.WaveSpectrum.StandardDeviation for point in points]

    # store and save data
    fname = os.getcwd() + '/Output/Bathymetry/WaveSpectrum.out'
    data = CL.SpectrumProcessedData(np.asarray(k), np.asarray(Spectra),
                                    np.asarray(SpectraStd))
    data.pickle(fname)

    return k, Spectra
Exemplo n.º 15
0
def GetFFTBoxes(subsetparameters, data, dimension):

    #---------------------------------------------------------------------------------------------------------------
    # Create list of overlapping subset images to estimate spectrum at a given grid point (center of main subset)
    #---------------------------------------------------------------------------------------------------------------

    # initialisation
    #images, northings, eastings= [],[],[]
    Subsets = []
    # Get the various subset images centers (box defined with an offset from the main subset, the overlapping is controlled by the offset)
    offset = subsetparameters.Shift * dimension.BoxRange
    subset_centers = GetSubsetCenters(subsetparameters.Point, offset,
                                      subsetparameters.BoxNb)

    # get information on subsets (coordinates, image footprint)
    for i in subset_centers:
        # get subset
        subsetparameters.Point = i
        subset = GetImageSubset(subsetparameters, data, dimension)
        # scale image
        image = IP.ScaleImage(subset.image, 8)
        coordinates = CL.Coordinates(subset.coordinates.northing,
                                     subset.coordinates.easting)
        FlagFlip = IP.CheckImageOrientation(coordinates)
        subsets = CL.Subset(i, image, coordinates, data.resolution, FlagFlip)
        Subsets.append(subsets)
        """
		# concatenate data
		images.append(image); eastings.append(subset.coordinates.easting); northings.append(subset.coordinates.northing)
		
	#store data
	coordinates = Coordinates(northings,eastings)
	subsets = Subset(subset_centers, images, coordinates, data.resolution) 
	"""

    return Subsets
Exemplo n.º 16
0
def CreatePolygon(indices, image, easting, northing):
    #----------------------------------------------
    # create a polygonial region of interest (ROI)
    #----------------------------------------------
    ROI_points = []
    for i in range(indices.shape[0]):
        indx, indy = indices[i, 0], indices[i, 1]  # indices
        East, North = easting[indx], northing[indy]  # coordinates
        cv2.circle(image, (indx, indy), 10, (255, 255, 255), -1)  # plot points
        point = CL.GridPoints(East, North)
        # store points
        ROI_points.append(point)

    ROI_points = np.asarray(ROI_points)
    return ROI_points
Exemplo n.º 17
0
def PointsList2Coordinates(points):
    #-----------------------------------------
    # Convert points list in Coordinates list
    #------------------------------------------

    easting, northing = [], []

    for point in points:
        easting.append(point.easting)
        northing.append(point.northing)

    easting = np.asarray(easting)
    northing = np.asarray(northing)
    coordinates = CL.Coordinates(northing, easting)

    return coordinates
Exemplo n.º 18
0
def Create_Subset_TransferFile(index, parameters, point, SubsetData, outlist):
    #-----------------------------------------------------------------------
    # Create transfer file to save grid point subsets data and information
    #------------------------------------------------------------------------
    # path and filename
    cwd = os.getcwd()
    path = cwd + '/'
    fname = 'subset'
    if outlist:
        transfer_file = path + outlist[index]
    else:
        transfer_file = path + fname + str(index) + '.out'
    # gather data
    Subset = CL.SubsetTransferData(parameters, point, SubsetData)

    # save data
    Subset.pickle(transfer_file)
Exemplo n.º 19
0
def DirectDepthInversion(point, Tp):
    #-------------------------------------------------------------------------------
    #
    # perform direct inversion (Tp known (hydrodynamic input or computed offshore))
    #
    #-------------------------------------------------------------------------------

    # depth inversion
    depth = DepthEstimate(point.wavelength, Tp)

    # store data
    ComputedPoint = CL.GridPointsData(point.IndexEasting, point.IndexNorthing,
                                      point.easting, point.northing,
                                      point.apriori_bathymetry, point.Spectrum,
                                      point.wavelength,
                                      point.DiscriminationFlag, Tp, -depth)

    return ComputedPoint
Exemplo n.º 20
0
def InterpolateBathymetry(parameters, Coordinates, bathydata):

    #------------------------------------------------------------------------
    # Find Collocated bathymetry corresponding to the input data coordinates
    #------------------------------------------------------------------------
    #initialization
    # grid points
    easting = Coordinates.easting
    northing = Coordinates.northing
    npt = easting.shape[0]
    bathymetry = np.zeros(npt)

    # current bathymetry
    coord = bathydata.Coordinates
    bathy = bathydata.Bathymetry
    e, n = np.meshgrid(coord.easting, coord.northing)

    #interpolate on the grid points

    if parameters.InterpolationMethod == 'multiquadric':
        rbfi = Rbf(e, n, bathy)
        bathymetry = rbfi(easting, northing)
    else:
        bathymetry = griddata((e.ravel(), n.ravel()),
                              bathy.ravel(), (easting, northing),
                              method=parameters.InterpolationMethod)

    BathymetryData = CL.BathymetryData(Coordinates, bathymetry)
    """
	fig, ax = plt.subplots(1)
	cl=np.array([-200,-20])
	ea = coord.easting; no = coord.northing;
	ax.imshow(bathy, cmap=plt.cm.jet, interpolation=None, aspect='auto', origin='upper', extent=[np.min(ea), np.max(ea), np.min(no), np.max(no)], vmin=cl[0], vmax=cl[1])	
	
	cm = plt.get_cmap("jet")
	for i in range(easting.shape[0]):
		convcol = 255*(bathymetry[i]-cl[0])/(cl[1]-cl[0]); col = cm(convcol.astype(int))
		ax.plot(easting[i], northing[i], color=col, marker='o',markeredgecolor='k');
	plt.show()
	"""
    return BathymetryData
Exemplo n.º 21
0
def ReadGtiffBathymetry(parameters):

    #-----------------------------------------
    #	READ EMODNET BATHYMETRY
    #-----------------------------------------

    # Read bathymetry (Gtiff format)
    coordinate, depth, _ = IP.ReadSARImg(parameters)

    # process bathymetry
    # depth to bathymetry
    bathymetry = -depth
    # Land Mask
    bathymetry[bathymetry > 0] = np.nan

    # create vector coordinate (instead of )
    east = coordinate.easting[0, :]
    north = coordinate.northing[:, 0]
    coordinates = CL.Coordinates(north, east)

    return coordinates, bathymetry
Exemplo n.º 22
0
def ImageSpectrum(parameters, subset):
    #----------------------------------------------
    # Compute Image Spectrum or Power Spectrum
    #----------------------------------------------
    image = subset.image  # given subset image
    if parameters.MeanSubstractionFlag:
        image = image - np.mean(image)  # substract mean value
    Spectrum = imfft(image)  # FFT of the given image
    mag = cv2.magnitude(Spectrum[:, :, 0], Spectrum[:, :, 1])
    if parameters.DecibelRepresentationFlag:
        mag = 20 * np.log(mag)  # amplitude spectrum (sqrt(Im**2 +Re**2))

    #power Spectrum
    S = Spectrum[:, :, 0] + 1j * Spectrum[:, :, 1]
    mag2 = np.real(S * np.conjugate(S))
    if parameters.DecibelRepresentationFlag:
        mag2 = 20 * np.log(mag2)
    #mag2 = np.abs(mag)**2

    # selected spectrum to be plotted
    if parameters.PowerSpectrumFlag == True:
        spectrum = mag2
    else:
        spectrum = mag

    #--------------------------------
    #    define the wavenumber axis
    #--------------------------------
    step = 1 / subset.resolution[0]
    freqs = np.linspace(0, (spectrum.shape[1] - 1) * step / spectrum.shape[1],
                        spectrum.shape[1])
    fCenter = 0.5 * (freqs[np.int(spectrum.shape[1] / 2)] +
                     freqs[np.int(spectrum.shape[1] / 2) - 1])
    freqs = freqs - fCenter  # axis centered on 0
    k = 2 * np.pi * (freqs)

    #store data
    ImageSpectrum = CL.SpectrumData(k, spectrum)

    return ImageSpectrum
Exemplo n.º 23
0
def ReadTopography(parameters):
	#-----------------------------------------------------
	# Read Topography file to extract 
	#-----------------------------------------------------	
	parameter = parameters.ProcessingParameters.LandMaskParameters	
	filename = parameter.LandMaskFileName; path_input = parameter.LandMaskFilePath; path_output=parameters.File_path_name.path_output
	pattern ='/'
        if sys.platform=='win32':                                                                      
                pattern =  '\\'

	# get projection information
	EPSG_in = GetDataProjectionSystem(path_input+filename)
	
	# reproject topography in the selected output reference coordinate system 
	EPSG_out = GetEPSG(parameters.SpatialReferenceSystem.EPSG_Flag_Out)

	if EPSG_in != EPSG_out:
		file_aux = filename[:-4].split(pattern)[-1]+"_projected_EPSG"+str(EPSG_out)+".tif"; flin = path_input + filename; fout = path_output + file_aux;
		if not os.path.isfile(fout):
			os.system("gdalwarp -overwrite -srcnodata 0 -dstnodata 0 -r average -t_srs EPSG:"+str(EPSG_out)+" "+flin+" "+fout)
		else:
			print file_aux," Already Exists..."
		flin = file_aux
		path = path_output
	else:
		path = path_input
	
	# read raster
	filename= path + flin
	f, _, topography = ReadGtiffRaster(filename,'float32')
	f = None

	# process exception
	topography[np.isnan(topography)] = 0
	
	# get Coordinates	
	northing, easting = GetNorthingEasting(filename)
	coordinates = CL.Coordinates(northing[:,0], easting[0,:])
	
	return coordinates, topography	
Exemplo n.º 24
0
def array2raster(img, coordinates, EPSG, filein, fileout="ImgOut.tif"):
	#------------------------------------------------------------
	# convert 2D array into GDAL raster (GeoTiff)
	# 	General purpose: recreate raster after 
	#			- change in frame of reference
	#			- conserve the Projection system
	#------------------------------------------------------------
	# get input infos	
	_,Info = GetGtiffInformation(filein, EPSG)

	#process image
	img=ScaleImage(img,8)
	
	# get corner coordinates
	
	# coordinates
	easting = coordinates.easting; northing = coordinates.northing;

	# extrema
	xmin,ymin,xmax,ymax = [easting.min(),northing.min(),easting.max(),northing.max()]

	if len(img.shape)>2:
		nrows,ncols = np.shape(img[0,:,:])
	else:
		nrows,ncols = np.shape(img)
	# store dimension data
	Info.ncols = ncols; Info.nrows=nrows;
		
	#get the edges and recreate the corner coordinates for Geotransform raster properties
	xres = (xmax-xmin)/float(ncols); yres = (ymax-ymin)/float(nrows)
	Geotransform = (xmin,xres,0,ymax,0, -yres); 
	Infos = CL.GtiffInformation(Info.Metadata, Info.ncols, Info.nrows, Info.GCPs, Info.GCPs_projection, Geotransform, Info.srs)
	
	#create output raster
	CreateOutputGtiff(img, fileout, Infos)
	
	return None
Exemplo n.º 25
0
def ReadGridPoints(args, coordinates):
    #----------------------------------------------------------------------
    #
    # find image pixel that correspond to the grid point
    #
    #----------------------------------------------------------------------
    # image coordinates
    Easting = coordinates.easting[0, :]
    Northing = coordinates.northing[:, 0]

    # grid points coordinates
    points, flagbathy = ReadPointsfromGridFile(args.bathymetry)

    # find correspondance grid / image
    Points = []
    for point in points:
        indE = np.argmin(np.abs(Easting - point.easting))
        indN = np.argmin(np.abs(Northing - point.northing))
        data = CL.GridPointsData(indE, indN, Easting[indE], Northing[indN],
                                 point.apriori_bathymetry)
        Points.append(data)
    Points = np.asarray(Points)

    return Points, flagbathy
Exemplo n.º 26
0
def CollocatedData(Coordinates, coord, data):
    #-------------------------------------------------------------------------------------------------------------------
    #	ESTIMATE COLLOCATED COORDINATES AND data
    #
    #	Remark: data (bathymetry/topography) domain should be bigger than image domain if grid points are different
    #--------------------------------------------------------------------------------------------------------------------

    east = coord.easting
    north = coord.northing
    East = Coordinates.easting
    North = Coordinates.northing

    # check if image was flipped
    flagE = False
    FlagN = False
    if east[0] > east[-1]:
        flagE = True
    if north[0] > north[-1]:
        flagN = True

    # Image limit (Coordinate-wise, (W, E, S, N))
    W = np.min(East)
    E = np.max(East)
    S = np.min(North)
    N = np.max(North)

    # find nearest collocated coordinates
    iW = np.argmin(abs(W - east))
    iE = np.argmin(abs(E - east))
    iS = np.argmin(abs(S - north))
    iN = np.argmin(abs(N - north))

    # verify that bathymetry domain is bigger
    if east[iW] > W:
        if flagE:
            iW = iW + 1
        else:
            iW = iW - 1
    if east[iE] < E:
        if flagE:
            iE = iE - 1
        else:
            iE = iE + 1

    if north[iS] > S:
        if flagN:
            iS = iS + 1
        else:
            iS = iS - 1

    if north[iN] < N:
        if flagN:
            iN = iN - 1
        else:
            iN = iN + 1

    # coordinates
    easting = east[iW:iE + 1]
    northing = north[iN:iS + 1]
    coordinates = CL.Coordinates(northing, easting)

    # bathymetry
    Data = data[iN:iS + 1, iW:iE + 1]

    return coordinates, Data
Exemplo n.º 27
0
def ReadSARImg(parameters):

	#------------------------------------------------------------
	# Read/process SAR images and get related information 
	#------------------------------------------------------------	
	# define EPSG code according to frame of reference 
	# (WGS84/4326: Geodesic, WGS84/32629: UTM zone 29N, ETRS89/3763: portugal projection)
	EPSG_in = GetEPSG(parameters.SpatialReferenceSystem.EPSG_Flag_In)
	EPSG_out = GetEPSG(parameters.SpatialReferenceSystem.EPSG_Flag_Out)
	
	# Input/Output path and files
	path_input = parameters.File_path_name.path_input; fname_input = parameters.File_path_name.fname_input; 
	path_output = parameters.File_path_name.path_output;

	#path delimiter
	pattern ='/'
        if sys.platform=='win32':                                                                      
                pattern =  '\\'
	#**************************
	# 	A) Raw image
	#**************************	
	#------------------------------------------------------------------------------------- 	
	# PROCESS IMAGE
	
	# Get image specific format and dimension
	filein = fname_input; flin = path_input + filein;

	ImgType, ImgSize, ImgRes = GetImgType(flin), GetImgSize(flin), GetImRes(flin)
	
	f, RasterBand, img = ReadGtiffRaster(flin,parameters.ProcessingParameters.DataType)
	
	# slant range correction
	if parameters.ProcessingParameters.SlantRangeCorrection_Flag:
		if (ImgType["ENVISAT"] or ImgType["ERS1/2"] or ImgType["GeoTIFF"]):
			fileout_slant  = fname_input[:-4]+"_Slant.tif"; fout = path_input + fileout_slant
			SlantRangeGTiFF(flin,fout, EPSG_in)
			filein = fileout_slant

	# Scale image
	if parameters.ProcessingParameters.ScaleFactor!=1.:
		file_aux = filein[:-4].split(pattern)[-1]+"_scaled.tif"; flin = path_input + filein; fout = path_input + file_aux;
		dim = (int(ImgSize[1]*ScaleFactor), int(ImgSize[0]*ScaleFactor))
		if not os.path.isfile(fout):
			print "\nCreating an "+EPSG_flag+" image file..."
			os.system("gdalwarp -overwrite -srcnodata 0 -dstnodata 0 -r average -ts "+str(dim[0])+" "+str(dim[1])+" -t_srs EPSG:"+str(EPSG_in)+" "+flin+" "+fout)
		else:
			print file_aux," Already Exists..."
		filein = file_aux
	
	#-------------------------------------------------------------------------------------

	#**************************
	#  B) Projected image 
	#**************************
	# IMAGE PROJECTION
	if EPSG_in != EPSG_out:
		file_aux = filein[:-4].split(pattern)[-1]+"_projected_EPSG"+str(EPSG_out)+".tif"; flin = path_input + filein; fout = path_output + file_aux;
		if not os.path.isfile(fout):
			os.system("gdalwarp -overwrite -srcnodata 0 -dstnodata 0 -r average -t_srs EPSG:"+str(EPSG_out)+" "+flin+" "+fout)
		else:
			print file_aux," Projected image Already Exists..."
		filein = file_aux
		path = path_output
	else:
		path = path_input
	# get Image type and dimensions
	flin = path + filein
	ImgType = GetImgType(flin); ImgSize = GetImgSize(flin);

	#-------------------------------------------------------------------------------------
	# GET IMAGE INFORMATION
	
	# get northing/easting and pixel resolution (m) from projected image
	northing, easting, res = GetProjImgInfo(flin)

	# gather all coordinates
	coordinates = CL.Coordinates(northing,easting)
	
	# read projected image and get raster image
	f, _, img = ReadGtiffRaster(flin, parameters.ProcessingParameters.DataType)
	
	# close raster
	f = None
	#-------------------------------------------------------------------------------------
	# PROCESS IMAGE
	
	# stretch contrast (CS is the reference image)
	if parameters.ProcessingParameters.ContrastStretch_Flag:
		img = ImageContrastStretch(coordinates, img, flin, EPSG_out)
	else:
		flin = path + filein; fout = path_output + filein[:-4].split(pattern)[-1] + "_CS.tif"
		os.system("cp " + flin + " " + fout)

	#create land mask

	if parameters.ProcessingParameters.LandMaskParameters.LandMaskFlag:
		
		filename = filein[:-4].split(pattern)[-1]+"_Masked.tif"
		
		if not os.path.isfile(path+filename):
			# create image mask
			mask = CreateLandMask(flin, coordinates, parameters)
			ind = (mask>0)	

			# save masked image 	
			array2raster(img, coordinates, EPSG_out, flin, path+filename)
		else:
			print filename," Masked image Already Exists..."
			f, _, mask = ReadGtiffRaster(path+filename); f = None;
			ind = (mask==0)

		# superpose mask on image
		img[ind] = 0		
	else:
		LMaskFile = flin
		mask = img
	"""
	fig, ax = plt.subplots(1)
	E=coordinates.easting; N=coordinates.northing;
	ax.imshow(img, cmap=plt.cm.gray, interpolation=None, aspect='auto', origin='upper', extent=[np.min(E), np.max(E), np.min(N), np.max(N)])
	plt.show()
	"""

	return coordinates, img, res
Exemplo n.º 28
0
def DefinePolygonalROI(data):
    #-------------------------------------------------------------------------------------------------
    # create a polygonial region of interest (ROI) to crop the image and perform wavelength estimation
    #-------------------------------------------------------------------------------------------------

    # load data
    image = data.image
    image = cv2.convertScaleAbs(image)
    easting = data.coordinates.easting
    northing = data.coordinates.northing

    # resize image parameters (reduce resolution)
    fac = 5
    dimension = (np.round(image.shape[0] / fac),
                 np.round(image.shape[1] / fac))

    # resize image
    image = UT.ResizeArray(image, dimension)
    northing = UT.ResizeArray(northing, dimension)
    easting = UT.ResizeArray(easting, dimension)

    # clone image
    clone = image.copy()
    N = northing.copy()
    E = easting.copy()
    Northing = N[:, 0]
    Easting = E[0, :]

    # initialize list of points: reference points (corners) indices and coordinates
    ReferencePoints, ContourCoordinates = [], []

    # image attribute for cropping with OpenCV
    points = CL.StoreIndices()
    cv2.namedWindow('image', cv2.WINDOW_NORMAL)
    cv2.resizeWindow('image', 600, 600)
    cv2.setMouseCallback('image', points.select_point)

    # display options
    print """
	####################################
	#   Press 'r' to reset points.     #
	#   Press 's' to save points.      #
	#   Press 'q' to quit.             #
	####################################
	"""
    # loop to create ROI
    while True:

        # display image
        cv2.imshow('image', image)
        key = cv2.waitKey(1) & 0xFF

        # reset
        if key == ord("r"):
            del points.indices[0:]
            image = clone.copy()
        # quit
        elif key == ord("q"):
            cv2.destroyWindow("image")
            break

        # define and save ROI
        elif key == ord("s"):
            # save selected points
            indices = np.asarray(points.indices)

            # check the number of selected points (2-> rectangle, 3 or + -> polygon)
            dimension = indices.shape[0]
            if dimension < 3:
                ROI_points, indices = CreateRectangle(indices, image, Easting,
                                                      Northing)
            else:
                ROI_points = CreatePolygon(indices, image, Easting, Northing)

            #print domain edges
            cv2.polylines(image, [indices.reshape((-1, 1, 2))], True,
                          (255, 255, 255), 2)

            # change data format

    return ROI_points
Exemplo n.º 29
0
def CreateLandMask(filein, coordinates_image, parameters):
	#-----------------------------------------------------
	# create Land Mask using selected topography file 
	#-----------------------------------------------------	
	#*******************************************************
	# 0) get information on the output system of reference	
	#*******************************************************
	EPSG_out = GetEPSG(parameters.SpatialReferenceSystem.EPSG_Flag_Out)
	kernel = np.ones((5,5),np.uint8)
	#**************************
	# A) band mask from image
	#**************************

	mask = CreateBandMask(filein)	
	indexS = (mask>0); indexM = (mask==0)
	mask[indexS] = 0; mask[indexM] = 255										# create band mask
	northing, easting = GetNorthingEasting(filein)									# retrieve coordinates
	coordinates_image = CL.Coordinates(northing[:,0], easting[0,:])

	#process / dilate mask edge 
	if parameters.ProcessingParameters.LandMaskParameters.FilterFlag:
		mask = cv2.dilate(mask, kernel,iterations = 2)

	# save raster to temporary file
	fileout_image = 'ImageMask.tif'; array2raster(mask, coordinates_image, EPSG_out, filein, fileout_image)		
	
	#******************************
	# B) band mask for topography
	#******************************

	# read topography file
	Coordinates, Topography = ReadTopography(parameters)						#read topography

	# collocated topography 
	coordinates, topography = ROI.CollocatedData(coordinates_image, Coordinates, Topography)	# find collocated topography (reference: image coordinates)
	indexS = (topography==0); indexL = (topography!=0)						# distinguish between  						
	topography[indexS] = 0; topography[indexL]  = 255						# create mask
	
	#process / dilate mask edge
	if parameters.ProcessingParameters.LandMaskParameters.FilterFlag:
		topography = cv2.dilate(topography, kernel,iterations = 2)

	# create mask raster
	fileout_mask='TopographyMask.tif'; array2raster(topography, coordinates, EPSG_out, filein, fileout_mask)

	#*********************
	# C) merge both masks
	#*********************
	filename = fileout_image								# the mask is pasted into the image mask file (mandatory for gdal_merge to keep dimensions)
	os.system("gdal_merge.py -n 0. -o "+fileout_image+" "+fileout_mask+" "+ filename)	# merge mask image using gdal_merge
	f, _, finalmask = ReadGtiffRaster(filename,'float32'); f = None;			# read mask
	os.system("rm"+" "+fileout_mask+" "+fileout_image)					# clean directory

	
	"""
	#--------
	# figure
	#--------

	fig, (ax1,ax2,ax3) = plt.subplots(3)
	# image mask
	E = coordinates_image.easting; N = coordinates_image.northing;
	ax1.imshow(mask, cmap=plt.cm.jet, interpolation=None, aspect='auto', origin='upper', extent = [np.min(E), np.max(E), np.min(N), np.max(N)])

	# topography mask
	E = coordinates.easting; N = coordinates.northing;
	ax2.imshow(topography, cmap=plt.cm.jet, interpolation=None, aspect='auto', origin='upper', extent = [np.min(E), np.max(E), np.min(N), np.max(N)])	

	#merge mask
	E = coordinates_image.easting; N = coordinates_image.northing;
	ax3.imshow(finalmask, cmap=plt.cm.jet, interpolation=None, aspect='auto', origin='upper', extent = [np.min(E), np.max(E), np.min(N), np.max(N)])	
	
	
	plt.show()
	"""

	return finalmask
Exemplo n.º 30
0
def DiscriminatedGroups(parameters, Points):
    #----------------------------------------------------------------------------------------
    # Gather points in groups (DW, nDW, SW or other) and affect a method for depth inversion
    #----------------------------------------------------------------------------------------
    Points = np.asarray(Points)
    # look for exception points (Deep Water or shallow water)
    DWpoints, SWpoints, nDWpoints, Otherpoints, GlobalPoints = [], [], [], [], []
    for point in Points:
        flag = point.DiscriminationFlag
        if flag == 0:
            Tp = WavePeriodEstimate(point.wavelength,
                                    abs(point.apriori_bathymetry))
            pt = CL.GridPointsData(point.IndexEasting, point.IndexNorthing,
                                   point.easting, point.northing,
                                   point.apriori_bathymetry, point.Spectrum,
                                   point.wavelength, flag, Tp,
                                   point.apriori_bathymetry)
            DWpoints.append(pt)
        elif flag == -1:
            pt = CL.GridPointsData(point.IndexEasting, point.IndexNorthing,
                                   point.easting, point.northing,
                                   point.apriori_bathymetry, point.Spectrum,
                                   point.wavelength, flag, 0, np.nan)
            SWpoints.append(pt)
        else:
            Otherpoints.append(point)
    # gather points
    DWpoints = np.asarray(DWpoints)
    SWpoints = np.asarray(SWpoints)
    ExceptionPoints = CL.ExceptionPoints(DWpoints, SWpoints)

    # if no deep water points look for near deep water point
    lDW = len(DWpoints)
    Otherpoints = np.asarray(Otherpoints)
    if lDW == 0 and parameters.InversionMethod != 'direct':
        nDWpoints = []
        for point in Otherpoints:
            flag = point.DiscriminationFlag
            if flag == 0.5:
                nDWpoints.append(point)
            else:
                GlobalPoints.append(point)
    else:
        GlobalPoints = Otherpoints

    #gather points
    nDWpoints = np.asarray(nDWpoints)
    GlobalPoints = np.asarray(GlobalPoints)
    ComputationPoints = CL.ComputationPoints(GlobalPoints, nDWpoints)

    # sum up grid point status
    print 'total number of points', len(Points)
    print 'number exception points', len(DWpoints) + len(SWpoints)
    print '- number of deep water points', len(DWpoints)
    print '- number of shallow water points', len(SWpoints)
    print 'number Computation points', len(nDWpoints) + len(GlobalPoints)
    print '- number of quasi deep water points', len(nDWpoints)
    print '- number of normal computation points', len(GlobalPoints)

    # if no deep or near deep water points only direct method is used
    if (len(DWpoints) == 0) and (len(nDWpoints) == 0):
        method = 'direct'
    else:
        method = parameters.InversionMethod

    return ExceptionPoints, ComputationPoints, method