Exemplo n.º 1
0
def SubsetSpectrum(parameters, subset_input):
    #--------------------------------------------------------------------------------------
    # function that process a given subset image estimate the wave incident direction
    # and compute the wave spectrum
    #--------------------------------------------------------------------------------------

    #--------------------------
    # A) Subset Processing
    #--------------------------
    # scale sub-images
    IP_Parameters = parameters.SubsetProcessingParameters
    image = IP.ScaleImage(subset_input.image, IP_Parameters.IntensityType)
    subset = CL.Subset(subset_input.CenterPoint, image,
                       subset_input.coordinates, subset_input.resolution,
                       subset_input.FlagFlip)

    #stretch contrast
    if IP_Parameters.ConstrastStretchFlag:
        image = IP.ContrastStretch(image, IP_Parameters.IntensityType)
        subset = CL.Subset(subset.CenterPoint, image, subset.coordinates,
                           subset.resolution, subset.FlagFlip)
    #--------------------------
    # B) Subset Spectrum
    #--------------------------
    Image_Spectrum = ImageSpectrum(IP_Parameters, subset)

    #--------------------------
    # C) Direction Estimate
    #--------------------------
    DE_Parameters = parameters.DirectionEstimateParameters
    direction = DirectionEstimate(DE_Parameters, subset, Image_Spectrum)

    #--------------------------------------
    # D) Apply Butterworth Elliptic Filter
    #-------------------------------------
    IF_Parameters = parameters.FilterParameters
    if IF_Parameters.FlagFilter:
        FilteredImage = ImageFilter(IF_Parameters, subset, direction)
        image = IP.ScaleImage(FilteredImage, 32)
        subset = CL.Subset(subset.CenterPoint, image, subset.coordinates,
                           subset.resolution, subset.FlagFlip)
        Image_Spectrum = ImageSpectrum(IP_Parameters, subset)

        #---------------------------
        # C1) Direction re-estimate
        #---------------------------
        DE_Parameters = parameters.DirectionEstimateParameters
        direction = DirectionEstimate(DE_Parameters, subset, Image_Spectrum)
    #---------------------------------------------
    # E) Extract Wave Series and Compute Spectrum
    #---------------------------------------------
    SP_Parameters = parameters.SpectrumParameters.WaveSpectrumParameters
    K, Ks, S, Sp, Sstd = WavesMeanSpectrum(SP_Parameters, subset, direction)
    #---------------------------------------------
    # F) Store data
    #---------------------------------------------
    Spectrum = CL.SpectrumData(Ks, Sp)
    subset_output = subset
    Spectrum_Computed_Data = CL.SpectrumComputedData(direction, Spectrum,
                                                     Image_Spectrum,
                                                     subset_output)

    return Spectrum_Computed_Data
Exemplo n.º 2
0
def RadialSpectrum(parameters, subset_input):
    #--------------------------
    # A) Subset Processing
    #--------------------------

    # scale sub-images
    IP_Parameters = parameters.SubsetProcessingParameters
    image = IP.ScaleImage(subset_input.image, IP_Parameters.IntensityType)
    subset = CL.Subset(subset_input.CenterPoint, image,
                       subset_input.coordinates, subset_input.resolution,
                       subset_input.FlagFlip)
    #stretch contrast
    if IP_Parameters.ConstrastStretchFlag > 0:
        image = IP.ContrastStretch(image, IP_Parameters.IntensityType)
        subset = CL.Subset(subset.CenterPoint, image, subset.coordinates,
                           subset.resolution, subset.FlagFlip)
    #--------------------------
    # B) Subset Spectrum
    #--------------------------
    Image_Spectrum = ImageSpectrum(IP_Parameters, subset)

    #--------------------------
    # C) Direction Estimate
    #--------------------------
    # determine radius of influence
    R, _, _ = Influence_Radius(Image_Spectrum)
    DE_Parameters = parameters.DirectionEstimateParameters
    direction = DirectionEstimate(DE_Parameters, subset, Image_Spectrum)

    #--------------------------------------
    # D) Apply Butterworth Elliptic Filter
    #-------------------------------------
    IF_Parameters = parameters.FilterParameters
    DE_Parameters = parameters.DirectionEstimateParameters
    if IF_Parameters.FlagFilter:
        FilteredImage = ImageFilter(IF_Parameters, subset, direction)
        image = IP.ScaleImage(FilteredImage, 32)
        subset = CL.Subset(subset.CenterPoint, image, subset.coordinates,
                           subset.resolution, subset.FlagFlip)

    #------------------------------
    # E) Perform Image Padding
    #------------------------------
    RI_Parameters = parameters.SpectrumParameters.WaveSpectrumParameters

    #---------------------------------------------------
    # F) Re-Compute Image Spectrum and wave direction
    #----------------------------------------------------
    Image_Spectrum = ImageSpectrum(IP_Parameters, subset)
    direction = DirectionEstimate(DE_Parameters, subset, Image_Spectrum)

    #------------------------------------------------
    # G) Process Spectrum
    #------------------------------------------------

    Spectrum = Image_Spectrum.Spectrum
    k = Image_Spectrum.k
    mask = MaskPlot(R, subset)
    Spectrum[mask] = 0

    #---------------------------------------------
    # H) Compute radial integration and
    #---------------------------------------------
    Rr, RadialIntegration = RadialProjection(Spectrum)

    #---------------------------------------------
    # I) Evaluate k-axis in agreement with Radius
    #---------------------------------------------
    dk = np.sum(np.diff(k)) / (k.shape[0] - 1)
    kr = Rr * dk
    """	
	fig, ax = plt.subplots(1)
	ax.plot(kr, RadialIntegration)
	ax.plot(kr, RadialIntegration,'or')
	plt.show()	
	"""

    #---------------------------------------------
    # I) store data
    #---------------------------------------------
    Spectrum = CL.SpectrumData(kr, RadialIntegration)
    subset_output = subset
    Spectrum_Computed_Data = CL.SpectrumComputedData(direction, Spectrum,
                                                     Image_Spectrum,
                                                     subset_output)

    return Spectrum_Computed_Data
Exemplo n.º 3
0
def ComputeSpectrum(SubsetParameters, ComputingParameters, Subsets):
    #--------------------------------------------------------------------------
    # Estimate Subsets Spectra and directions and determine their mean values
    #--------------------------------------------------------------------------

    WaveSpectra, Directions, ImageSpectra = [], [], []

    for i in range(SubsetParameters.BoxNb):
        subset = Subsets[i]
        # Compute wave related spectrum
        if ComputingParameters.SpectrumParameters.WaveSpectrumParameters.SpectrumType in {
                'waves', 'Waves'
        }:
            # use a multiple of wave signal
            SpectrumComputedData = SubsetSpectrum(ComputingParameters, subset)
        elif ComputingParameters.SpectrumParameters.WaveSpectrumParameters.SpectrumType in {
                'radial', 'Radial'
        }:
            # use the radial integration of the Image Spectrum
            SpectrumComputedData = RadialSpectrum(ComputingParameters, subset)
        else:
            sys.exit("Method for Spectrum Estimation not defined")

        # store data
        Directions.append(SpectrumComputedData.WaveDirection)
        WaveSpectra.append(SpectrumComputedData.WaveSpectrum)
        ImageSpectra.append(SpectrumComputedData.ImageSpectrum)

    # compute mean directions
    direction = np.nanmean(Directions)

    # compute mean Spectrum
    K = np.zeros((SubsetParameters.BoxNb, WaveSpectra[0].k.shape[0]))
    WSP = np.zeros((SubsetParameters.BoxNb, WaveSpectra[0].Spectrum.shape[0]))
    for i in range(SubsetParameters.BoxNb):
        K[i, :] = WaveSpectra[i].k
        WSP[i, :] = WaveSpectra[i].Spectrum
    k = np.mean(K, axis=0)
    spectrum = np.mean(WSP, axis=0)
    spectrumstd = np.std(WSP, axis=0)
    """
	fig, ax = plt.subplots(1)
	for i in range(SubsetParameters.BoxNb):
		ax.plot(K[i,:], WSP[i,:])	
	plt.show()
	"""

    # compute peak wavelength
    PeakWavelength = WavelengthEstimate(ComputingParameters, k, spectrum)

    # store processed data
    Spectrum = CL.SpectrumProcessedData(k, spectrum, spectrumstd,
                                        PeakWavelength)

    # post-processing data for figures and statistics
    SubscenesSpectrum = CL.SpectrumComputedData(Directions, WaveSpectra,
                                                ImageSpectra, Subsets)

    # store mean data
    ComputedSpectrumData = CL.SpectrumComputedData(direction, Spectrum)

    return ComputedSpectrumData, SubscenesSpectrum