Exemplo n.º 1
0
def getAxis2AxisRotation(a0, a1):
    """Given 2 vectors return the rotation that is needed to transfer 1 into the other.
    """
    # TODO: how to know which angle is taken (if you switch the axes, will you
    # still have to correct angle and axis?)
    vec3Type = type(GeomTypes.Vec3([0, 0, 0]))
    assert (type(a0) == vec3Type) and (type(a1) == vec3Type)
    if a0 == a1:
        # if both axis are in fact the same no roation is needed
        axis = GeomTypes.uz
        angle = 0
    if a0 == -a1:
        # if one axis should be rotated in its opposite axis, handle
        # separately, since the cross product will not work.
        # rotate pi around any vector that makes a straight angle with a0
        a2 = GeomTypes.Vec3([i + 0.5 for i in a1])
        angle = math.pi
        axis = a2.cross(a0)
    else:
        a_0 = a0.normalize()
        a_1 = a1.normalize()
        n = a_0 * a_1
        # because of floats there might be some rounding problems:
        n = min(n, 1.0)
        n = max(n, -1.0)
        angle = math.acos(n)
        axis = a_0.cross(a_1)
    return axis, angle
Exemplo n.º 2
0
 def xy2SphereV(x, y, w, h, R2):
     x, y = x - width / 2, height / 2 - y
     l2 = x * x + y * y
     if l2 < R2:
         spherePos = GeomTypes.Vec3([x, y, math.sqrt(R2 - l2)])
     elif l2 > R2:
         scale = math.sqrt(R2 / l2)
         spherePos = GeomTypes.Vec3([scale * x, scale * y, 0])
     else:  # probably never happens (floats)
         spherePos = GeomTypes.Vec3([x, y, 0])
     return spherePos
Exemplo n.º 3
0
 def updateOrientation(this):
     v = this.showGui[this.__AxisGuiIndex].GetVertex()
     if v == GeomTypes.Vec3([0, 0, 0]):
         rot = GeomTypes.E
         this.statusText(
             'Rotation axis is the null-vector: applying identity',
             LOG_INFO)
     else:
         rot = GeomTypes.Rot3(axis=v,
                              angle=Geom3D.Deg2Rad * this.currentAngle)
     try:
         this.shape.setBaseOrientation(rot)
     except AttributeError:
         this.statusText(
             'Apply symmetry first, before pulling the slide-bar', LOG_WARN)
Exemplo n.º 4
0
    def GetSelected(this):
        """returns a symmetry instance"""
        sym = this.getSymmetryClass(applyOrder=False)
        setup = {}
        for i, gui in zip(range(len(this.oriGuis)), this.oriGuis):
            inputType = sym.initPars[i]['type']
            if inputType == 'vec3':
                v = gui.GetVertex()
                if v != GeomTypes.Vec3([0, 0, 0]):
                    setup[sym.initPars[i]['par']] = v
            elif inputType == 'int':
                v = gui.GetValue()
                setup[sym.initPars[i]['par']] = v
        #print 'GetSelected; setup:', setup
        #print 'class:', sym
        sym = sym(setup=setup)

        return sym
Exemplo n.º 5
0
import Geom3D
import GeomTypes
import math

Vs = [
	GeomTypes.Vec3([ 1,  1,  1]),
	GeomTypes.Vec3([-1,  1,  1]),
	GeomTypes.Vec3([-1, -1,  1]),
	GeomTypes.Vec3([ 1, -1,  1]),
	GeomTypes.Vec3([ 1,  1, -1]),
	GeomTypes.Vec3([-1,  1, -1]),
	GeomTypes.Vec3([-1, -1, -1]),
	GeomTypes.Vec3([ 1, -1, -1]),
	GeomTypes.Vec3([ 1,  1, -2]),
	GeomTypes.Vec3([.5,  1,  1]),
]

Fs = [
        [0, 1, 2, 3],
	[0, 3, 7, 4],
	[1, 0, 4, 5],
	[2, 1, 5, 6],
	[3, 2, 6, 7],
	[7, 6, 5, 4]
]

shape0 = Geom3D.SimpleShape(Vs = Vs, Fs = Fs)

Vs = [
	GeomTypes.Vec3([ 0,  0,  2]),
	GeomTypes.Vec3([ 2,  0,  0]),
Exemplo n.º 6
0
    T64: '64 Triangles',
}


def Vlen(v0, v1):
    x = v1[0] - v0[0]
    y = v1[1] - v0[1]
    z = v1[2] - v0[2]
    return (math.sqrt(x * x + y * y + z * z))


# get the col faces array by using a similar shape here, so it is calculated
# only once
useIsom = isometry.A4()
egShape = Geom3D.IsometricShape(Vs=[
    GeomTypes.Vec3([0, 0, 1]),
    GeomTypes.Vec3([0, 1, 1]),
    GeomTypes.Vec3([1, 1, 1])
],
                                Fs=[[0, 1, 2]],
                                directIsometries=useIsom,
                                unfoldOrbit=True)
#colStabiliser = isometry.C2(setup = {'axis': [0.0, 1.0, 0.0]})
#colStabiliser = isometry.C2(setup = {'axis': [0.0, 0.0, 1.0]})
useSimpleColours = False
colStabiliser = isometry.C2(setup={'axis': [1.0, 0.0, 0.0]})
colQuotientSet = useIsom / colStabiliser
if useSimpleColours:
    useRgbCols = [
        rgb.gray95,
        rgb.gray80,
Exemplo n.º 7
0
import Geom3D
import GeomTypes
import math

Vs = [
	GeomTypes.Vec3([ 1,  1,  1]),
	GeomTypes.Vec3([-1,  1,  1]),
	GeomTypes.Vec3([-1, -1,  1]),
	GeomTypes.Vec3([ 1, -1,  1]),
	GeomTypes.Vec3([ 1,  1, -1]),
	GeomTypes.Vec3([-1,  1, -1]),
	GeomTypes.Vec3([-1, -1, -1]),
	GeomTypes.Vec3([ 1, -1, -1]),
	GeomTypes.Vec3([ 1,  1, -2]),
	GeomTypes.Vec3([.5,  1,  1]),
]

Fs = [
	[0, 4, 8],      # just a line
        [0, 9, 1, 2, 3],# first part on line, cannot be used to calc face normal
	[0, 3, 7, 4],
	[1, 0, 4, 5],
	[2, 1, 5, 6],
	[3, 2, 6, 7],
	[7, 6, 5, 4]
]

shape = Geom3D.SimpleShape(Vs = Vs, Fs = Fs)
Exemplo n.º 8
0
# along with this program; if not,
# check at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
# or write to the Free Software Foundation,
#--------------------------------------------------------------------

import wx
import math
import rgb
import Heptagons
import GeomTypes
import Geom3D
import Scenes3D

Title = 'Equilateral Heptagons Tetrahedron'

vec = lambda x, y, z: GeomTypes.Vec3([x, y, z])

V2  = math.sqrt(2)
hV2 = 1.0/V2
tV3 = 1.0/math.sqrt(3)

class Shape(Heptagons.EqlHeptagonShape):
    def __init__(this):
        Heptagons.EqlHeptagonShape.__init__(this,
            directIsometries = [
                    GeomTypes.E,
                    GeomTypes.Hx,
                    GeomTypes.Hy,
                    GeomTypes.Hz
                ],
            name = 'EglHeptS4A4'
Exemplo n.º 9
0
import GeomTypes
import Geom3D
import isometry
shape = Geom3D.IsometricShape(
    Vs = [
        GeomTypes.Vec3([1.0, 1.0, 1.0]),
        GeomTypes.Vec3([-1.0, 1.0, 1.0]),
        GeomTypes.Vec3([-1.0, -1.0, 1.0]),
        GeomTypes.Vec3([1.0, -1.0, 1.0]),
        GeomTypes.Vec3([1.0, 1.0, -1.0]),
        GeomTypes.Vec3([-1.0, 1.0, -1.0]),
        GeomTypes.Vec3([-1.0, -1.0, -1.0]),
        GeomTypes.Vec3([1.0, -1.0, -1.0])
    ],
    Fs = [
        [0, 1, 2, 3],
        [0, 3, 7, 4],
        [1, 0, 4, 5],
        [2, 1, 5, 6],
        [3, 2, 6, 7],
        [7, 6, 5, 4]
    ],
    Es = [0, 1, 1, 2, 2, 3, 0, 3, 3, 7, 4, 7, 0, 4, 4, 5, 1, 5, 5, 6, 2, 6, 6, 7],
    colors = [
        ([[0.99609400000000003, 0.83984400000000003, 0.0]], []),
        ([[0.13281200000000001, 0.54296900000000003, 0.13281200000000001]], []),
        ([[0.54296900000000003, 0.0, 0.0]], []),
        ([[0.0, 0.74609400000000003, 0.99609400000000003]], []),
        ([[0.54296900000000003, 0.0, 0.0]], []),
        ([[0.13281200000000001, 0.54296900000000003, 0.13281200000000001]], []),
        ([[0.0, 0.74609400000000003, 0.99609400000000003]], []),
Exemplo n.º 10
0
import GeomTypes
import Geom3D
import isometry
shape = Geom3D.CompoundShape(simpleShapes=[
    Geom3D.SimpleShape(Vs=[
        GeomTypes.Vec3([1.0, 1.0, 1.0]),
        GeomTypes.Vec3([-1.0, 1.0, 1.0]),
        GeomTypes.Vec3([-1.0, -1.0, 1.0]),
        GeomTypes.Vec3([1.0, -1.0, 1.0]),
        GeomTypes.Vec3([1.0, 1.0, -1.0]),
        GeomTypes.Vec3([-1.0, 1.0, -1.0]),
        GeomTypes.Vec3([-1.0, -1.0, -1.0]),
        GeomTypes.Vec3([1.0, -1.0, -1.0]),
        GeomTypes.Vec3([1.0, 1.0, -2.0]),
        GeomTypes.Vec3([0.5, 1.0, 1.0])
    ],
                       Fs=[[0, 1, 2, 3], [0, 3, 7, 4], [1, 0, 4, 5],
                           [2, 1, 5, 6], [3, 2, 6, 7], [7, 6, 5, 4]],
                       Es=[],
                       colors=([[0.99609400000000003, 0.0,
                                 0.0]], [0, 0, 0, 0, 0, 0]),
                       name="SimpleShape"),
    Geom3D.SimpleShape(Vs=[
        GeomTypes.Vec3([0.0, 0.0, 2.0]),
        GeomTypes.Vec3([2.0, 0.0, 0.0]),
        GeomTypes.Vec3([0.0, 2.0, 0.0]),
        GeomTypes.Vec3([-2.0, 0.0, 0.0]),
        GeomTypes.Vec3([0.0, -2.0, 0.0]),
        GeomTypes.Vec3([0.0, 0.0, 2.0])
    ],
                       Fs=[[0, 1, 2], [0, 2, 3], [0, 3, 4], [0, 4, 1],
Exemplo n.º 11
0
    def glDrawSingleRemoveUnscaledEdges(this):
        isScaledDown = not Geom3D.eq(this.c.scale, 1.0, margin=0.001)
        if not this.projectedTo3D:
            # print 'reprojecting...'
            try:
                del this.cell
            except AttributeError:
                pass
            Ns3D = []
            if this.rot4 != None:
                Vs4D = [this.rot4 * v for v in this.Vs]
            # TODO fix Ns.. if needed..
            #    if this.Ns != []:cleanUp
            #        Ns4D = [this.rot4*n for n in this.Ns]
            else:
                Vs4D = [v for v in this.Vs]
            Vs3D = this.projectVsTo3D(Vs4D)
            #for i in range(0, len(this.Es), 2):
            #    v0 = Vs4D[this.Es[i]]
            #    v1 = Vs4D[this.Es[i+1]]
            #    print 'delta v:', v0 - v1
            #    print 'Edge [%d, %d]; len:' % (this.Es[i], this.Es[i+1]), (v1-v0).length()
            #if this.Ns != []:
            #    Ns3D = this.projectVsTo3D(Ns4D)
            # Now project all to one 3D shape. 1 3D shape is chosen, instean of
            # projecting each cell to one shape because of different reasons:
            #  - when drawing transparent faces all the opaqe fae should be
            #    drawn first.
            #  - if drawing the cells per shape, the glVertexPointer should be
            #    called for each cell. (Currently SimpleShape will not call this
            #    function unless the vertices have been changed...
            shapeVs = []
            shapeEs = []
            shapeFs = []
            shapeColIndices = []
            if this.c.draw:
                shapeCols = this.c.col[0]
            else:
                shapeCols = this.f.col[0]
            if this.removeTransparency:
                shapeCols = [c[0:3] for c in shapeCols]
            if this.e.draw and (not isScaledDown or this.e.showUnscaled):
                shapeVs = Vs3D
                shapeEs = this.Es
            # Add a shape with faces for each cell
            for i in xrange(len(this.Cs)):
                # use a copy, since we will filter (v indices will change):
                cellFs = [f[:] for f in this.Cs[i]]
                if this.c.draw:
                    shapeColIndices.extend([this.c.col[1][i] for f in cellFs])
                else:
                    shapeColIndices.extend(this.f.col[1][i])
                # Now cleanup Vs3D
                # TODO
                # if this.e.draw and (not isScaledDown or this.e.showUnscaled):
                # Then shapeVs = Vs3D already, and the code below is all
                # unecessary.
                cellVs = Vs3D[:]
                nrUsed = glue.cleanUpVsFs(cellVs, cellFs)
                # Now attaching to current Vs, will change index:
                offset = len(shapeVs)
                cellFs = [[vIndex + offset for vIndex in f] for f in cellFs]
                # Now scale from gravitation centre:
                if isScaledDown:
                    g = GeomTypes.Vec3([0, 0, 0])
                    sum = 0
                    for vIndex in range(len(cellVs)):
                        g = g + nrUsed[vIndex] * GeomTypes.Vec3(cellVs[vIndex])
                        sum = sum + nrUsed[vIndex]
                    if sum != 0:
                        g = g / sum
                    #print this.name, 'g:', g
                    cellVs = [
                        this.c.scale * (GeomTypes.Vec3(v) - g) + g
                        for v in cellVs
                    ]

                shapeVs.extend(cellVs)
                shapeFs.extend(cellFs)
                # for shapeColIndices.extend() see above
            this.cell = Geom3D.SimpleShape(
                shapeVs,
                shapeFs,
                shapeEs,
                [],  # Vs , Fs, Es, Ns
                (shapeCols, shapeColIndices),
                name='%s_projection' % (this.name))
            this.cell.setVertexProperties(radius=this.v.radius,
                                          color=this.v.col)
            this.cell.setEdgeProperties(radius=this.e.radius,
                                        color=this.e.col,
                                        drawEdges=this.e.draw)
            this.cell.setFaceProperties(drawFaces=this.f.draw)
            this.cell.glInitialised = True  # done as first step in this func
            this.projectedTo3D = True
            this.updateTransparency = False
            if this.e.draw and isScaledDown:
                this.cell.recreateEdges()
                # Don't use, out of performance issues:
                # cellEs = this.cell.getEdgeProperties()['Es']
                # --------------------------
                # Bad performance during scaling:
                # cellEs = this.cell.getEdgeProperties()['Es']
                # this.cell.recreateEdges()
                # cellEs.extend(this.cell.getEdgeProperties()['Es'])
                # -------end bad perf---------
                cellEs = this.cell.Es
                if this.e.showUnscaled:
                    cellEs.extend(this.Es)
                this.cell.setEdgeProperties(Es=cellEs)
        if this.updateTransparency:
            cellCols = this.cell.getFaceProperties()['colors']
            if this.removeTransparency:
                shapeCols = [c[0:3] for c in cellCols[0]]
            else:
                if this.c.draw:
                    shapeCols = this.c.col[0]
                else:
                    shapeCols = this.f.col[0]
            cellCols = (shapeCols, cellCols[1])
            this.cell.setFaceProperties(colors=cellCols)
            this.updateTransparency = False
Exemplo n.º 12
0
 def __init__(this, v0, v1, v2):
     this.v = [GeomTypes.Vec3(v0), GeomTypes.Vec3(v1), GeomTypes.Vec3(v2)]
     this.N = None
Exemplo n.º 13
0
 def GetVertex(this):
     return GeomTypes.Vec3([
         this.__v[0].GetValue(),
         this.__v[1].GetValue(),
         this.__v[2].GetValue(),
     ])
Exemplo n.º 14
0
    only_hepts:		'Just Heptagons',
}

pos_angle_refl_2 = math.pi/2

def Vlen(v0, v1):
    x = v1[0] - v0[0]
    y = v1[1] - v0[1]
    z = v1[2] - v0[2]
    return (math.sqrt(x*x + y*y + z*z))

V2 = math.sqrt(2)
V3 = math.sqrt(3)
hV2 = V2/2

o4_fld_0 = GeomTypes.Vec3([1, 0, 0])
o4_fld_1 = GeomTypes.Vec3([0, 1, 1])
isomS4 = isometry.S4(setup = {'o4axis0': o4_fld_0, 'o4axis1': o4_fld_1})
o4fld = Rot(axis = o4_fld_1, angle = GeomTypes.qTurn)
isomO4 = isometry.C4(setup = {'axis': o4_fld_1})

o3axis = GeomTypes.Vec3([1/V3, 0, V2/V3])
o3fld = Rot(axis = o3axis, angle = GeomTypes.tTurn)
isomO3 = isometry.C3(setup = {'axis': o3axis})

# get the col faces array by using a similar shape here, so it is calculated
# only once
colStabilisers = [
	isometry.D2(setup = {
		'axis_n': [0.0, 0.0, 1.0],
		'axis_2': [1.0, 0.0, 0.0],
Exemplo n.º 15
0
    def setV(this):
        Vt = [0, this.top, 0]
        Vb = [0, -this.tail, 0]
        Vl = [-this.side, 0, 0]
        Vr = [this.side, 0, 0]
        tuple = Heptagons.Kite2Hept(Vl, Vt, Vr, Vb)
        if tuple == None: return
        h0, h1, h2, h3, h4, h5, h6 = tuple[0]

        #
        #              3 0'
        #
        #
        #        6'            1'
        #
        #
        #   2           +           0
        #
        #      5'                2'
        #
        #
        #
        #          4'        3'
        #
        #
        #               1
        #
        this.kiteVs = [
            GeomTypes.Vec3([Vr[0], Vr[1], Vr[2]]),
            GeomTypes.Vec3([Vb[0], Vb[1], Vb[2]]),
            GeomTypes.Vec3([Vl[0], Vl[1], Vl[2]]),
            GeomTypes.Vec3([Vt[0], Vt[1], Vt[2]])
        ]
        d = 1e-4
        this.heptaVs = [
            GeomTypes.Vec3([Vt[0], Vt[1], Vt[2] + d]),
            GeomTypes.Vec3([h1[0], h1[1], h1[2] + d]),
            GeomTypes.Vec3([h2[0], h2[1], h2[2] + d]),
            GeomTypes.Vec3([h3[0], h3[1], h3[2] + d]),
            GeomTypes.Vec3([h4[0], h4[1], h4[2] + d]),
            GeomTypes.Vec3([h5[0], h5[1], h5[2] + d]),
            GeomTypes.Vec3([h6[0], h6[1], h6[2] + d])
        ]
        # try to set the vertices array.
        # the failure occurs at init since showKite and showHepta don't exist
        try:
            Vs = []
            print 'this.showKite', this.showKite, 'this.showHepta', this.showHepta
            if this.showKite:
                Vs.extend(this.kiteVs)
            if this.showHepta:
                Vs.extend(this.heptaVs)
            for v in Vs:
                print v
            print '==============='
            this.setVertexProperties(Vs=Vs)
        except AttributeError:
            pass
import GeomTypes
import Geom3D
import isometry
shape = Geom3D.SimpleShape(Vs=[
    GeomTypes.Vec3([1.0, 1.0, 1.0]),
    GeomTypes.Vec3([-1.0, 1.0, 1.0]),
    GeomTypes.Vec3([-1.0, -1.0, 1.0]),
    GeomTypes.Vec3([1.0, -1.0, 1.0]),
    GeomTypes.Vec3([1.0, 1.0, -1.0]),
    GeomTypes.Vec3([-1.0, 1.0, -1.0]),
    GeomTypes.Vec3([-1.0, -1.0, -1.0]),
    GeomTypes.Vec3([1.0, -1.0, -1.0]),
    GeomTypes.Vec3([1.0, 1.0, -2.0]),
    GeomTypes.Vec3([0.5, 1.0, 1.0])
],
                           Fs=[[0, 4, 8], [0, 9, 1, 2, 3], [0, 3, 7, 4],
                               [1, 0, 4, 5], [2, 1, 5, 6], [3, 2, 6, 7],
                               [7, 6, 5, 4]],
                           Es=[],
                           colors=([[0.99609400000000003, 0.0,
                                     0.0]], [0, 0, 0, 0, 0, 0, 0]),
                           name="SimpleShape")
Exemplo n.º 17
0
    def setV(this):
        # input this.h
        St = this.h / (Dtau2 * V3 * this.h - 3)
        #print 's', St
        #
        #                  0
        #           __..--'-_
        #      3 -''    .    _"- 1
        #         \       _-'
        #          \   _-'
        #           \-'
        #           2
        #
        #    z    y
        #     ^ 7\
        #     |/
        #     ---> x
        #
        #
        # The kite above is a 5th of the top face of dodecahedron
        # standing on 1 face, 2 is a vertex, 1 and 3, centres of two edges
        # and 0 a face centre.
        #
        Vs = [
            vec(0.0, 0.0, this.h),  # 0
            Rl,
            vec(0.0, -Dtau2 * St, St),
            vec(-Rl[0], Rl[1], Rl[2])  # 3
        ]

        # add heptagons
        H = HalfTurn(Vs[3])
        this.errorStr = ''
        if not this.heptPosAlt:
            Ns = Vs
            heptN = Heptagons.Kite2Hept(Vs[3], Vs[0], Vs[1], Vs[2])
            if heptN == None:
                this.errorStr = 'No valid equilateral heptagon for this position'
                return
            Mr = Rot(axis=GeomTypes.Vec3(Vs[2]), angle=GeomTypes.turn(0.2))

            # p is a corner of the pentagon inside the pentagram
            # p is rotated 1/5th turn to form a triangle
            # together with 2 corners of the pentagram:
            # 5 of these triangles will cover the pentagram.
            # this is easier than finding the centre of the pentagram.
            v3 = heptN[0][3]
            v4 = heptN[0][4]
            p = v3 + (v4 - v3) / tau
            v = Mr * p
            if this.triangleAlt:
                vt = heptN[0][6]
                xtraEdgeIndex = 15
            else:
                vt = heptN[0][5]
                xtraEdgeIndex = 14
            # A part that will form the regular pentagrams (with overlaps).
            RegularTrianglePartV = [
                heptN[0][3],
                heptN[0][4],
                vec(v[0], v[1], v[2]),
            ]
            RegularTrianglePartN = Vs[2]
            # vt is the vertex that will be projected by a half turn on the
            # third vertex of the isosceles triangle.
            IsoscelesTriangleV = [heptN[0][5], heptN[0][6], vt]
        else:
            heptN = Heptagons.Kite2Hept(Vs[1], Vs[2], Vs[3], Vs[0])
            if heptN == None:
                this.errorStr = 'No valid equilateral heptagon for this position'
                return
            if this.triangleAlt:
                vt = heptN[0][1]
                xtraEdgeIndex = 14
            else:
                vt = heptN[0][2]
                xtraEdgeIndex = 15
            # One third of regular triangle.
            RegularTrianglePartV = [
                heptN[0][3],
                heptN[0][4],
                vec(0, 0, heptN[0][3][2]),
            ]
            RegularTrianglePartN = RegularTrianglePartV[2]
            # vt is the vertex that will be projected by a half turn on the
            # third vertex of the isosceles triangle.
            IsoscelesTriangleV = [heptN[0][1], heptN[0][2], vt]
        if heptN == None:
            this.errorStr = 'No valid equilateral heptagon for this position'
            return
        else:
            this.errorStr = ''
        vt = H * vt
        # rotate vt by a half turn, IsoscelesTriangleV NOT auto updated.
        IsoscelesTriangleV[2] = vt
        Vs.extend(heptN[0])  # V4 - V10, the heptagon
        Vs.extend(RegularTrianglePartV)  # V11 - V13
        Vs.extend(IsoscelesTriangleV)  # V14 - V16
        #for V in Vs: print V
        #h = heptN[1]
        #Ns = [[-h[0], -h[1], -h[2]] for i in range(11)]
        Ns = [heptN[1] for i in range(11)]
        Ns.extend([RegularTrianglePartN for i in range(3)])
        IsoscelesTriangleN = Geom3D.Triangle(IsoscelesTriangleV[0],
                                             IsoscelesTriangleV[1],
                                             IsoscelesTriangleV[2]).normal()
        Ns.extend([IsoscelesTriangleN for i in range(3)])
        this.xtraEs = []
        if this.addXtraEdge:
            this.xtraEs = [xtraEdgeIndex, 16]

        #this.showBaseOnly = True
        this.setBaseVertexProperties(Vs=Vs, Ns=Ns)
        Fs = []
        Es = []
        colIds = []
        if this.showKite:
            Fs.extend(this.kiteFs)
            Es.extend(this.kiteEs)
            colIds.extend(this.kiteColIds)
        if this.showHepta:
            Fs.extend(this.heptFs)
            Es.extend(this.heptEs)
            colIds.extend(this.heptColIds)
        if this.showXtra:
            Fs.extend(this.xtraFs)
            Es.extend(this.xtraEs)
            colIds.extend(this.xtraColIds)
        this.setBaseEdgeProperties(Es=Es)
        this.setBaseFaceProperties(Fs=Fs, colors=(this.theColors, colIds))
        this.Vs = Vs
Exemplo n.º 18
0
 def getVector(this, i):
     return GeomTypes.Vec3([
         this.__v[i][0].GetValue(),
         this.__v[i][1].GetValue(),
         this.__v[i][2].GetValue(),
     ])