Exemplo n.º 1
0
    def update_probe_nonmodal(self, i, psi_old, psi_new):
        
        d1, d2 = self.positions.data
        id1, id2 = d1//1, d2//1
        object_intensity_max = (abs(self.object)**2.0).data[0].max()

        self.probe.modes[0] += \
            CXData.shift(conj(self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2]) *
             (psi_new-psi_old)[0] / object_intensity_max, d1[i]%1, d2[i]%1)

        self.probe.normalise()
Exemplo n.º 2
0
    def preprocessing(self):
        """.. method:: preprocessing()
            Collects together all the preprocessing functions that are required to begin phase retrieval.

        """
        # Get the scan positions
        self.positions = CXData(name='positions', data=[])
        self.ptycho_mesh()

        if CXP.measurement.simulate_data:
            self.simulate_data()
        else:
            # Read in raw data
            self.det_mod = CXData(name = 'det_mod')
            if CXP.actions.preprocess_data:
                self.det_mod.read_in_data()
            else:
                self.det_mod.load()
            if CXP.io.whitefield_filename:
                self.probe_det_mod = CXData(name='probe_det_mod')
                self.probe_det_mod.preprocess_data()

        self.object = CXData(name='object', data=[sp.zeros((self.ob_p, self.ob_p), complex)])
        
        self.probe_intensity = CXData(name='probe_intensity', data=[sp.zeros((self.p, self.p))])

        self.probe = CXModal(modes=[])
        self.psi = CXModal(modes=[])

        for i in range(CXP.reconstruction.probe_modes):
            self.probe.modes.append(CXData(name='probe{:d}'.format(i), data=[sp.zeros((self.p, self.p), complex)]))
            self.psi.modes.append(CXData(name='psi{:d}'.format(i), data=[sp.zeros((self.p, self.p), complex) for i in xrange(self.det_mod.len())]))
    
        self.init_probe()

        # Calculate STXM image if this is a ptycho scan
        if len(self.det_mod.data) > 1:
            self.calc_stxm_image()

        if CXP.actions.process_dpc:
            self.process_dpc()
Exemplo n.º 3
0
    def update_probe(self, i, psi_old, psi_new):
        
        d1, d2 = self.positions.data
        id1, id2 = d1//1, d2//1
        object_intensity_max = (abs(self.object)**2.0).data[0].max()

        for mode in range(len(self.probe)):
            self.probe.modes[mode] += \
                CXData.shift(conj(self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2]) *
                 (psi_new-psi_old)[mode] / object_intensity_max, d1[i]%1, d2[i]%1)

        self.probe.normalise()
        
        self.probe.orthogonalise()
Exemplo n.º 4
0
    def update_object(self, i, psi_old, psi_new):
        """
        Update the object from a single ptycho position.

        """
        then=time.time()
        d1, d2 = self.positions.data
        id1, id2 = d1//1, d2//1
        probe_intensity_max = CXModal.modal_sum(abs(self.probe)**2.0).data[0].max()
        
        self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2] += \
            CXData.shift(CXModal.modal_sum(conj(self.probe) * (psi_new-psi_old)) / probe_intensity_max, 
                d1[i]%1, d2[i]%1)

        if self.total_its==0 and sp.mod(i, len(self.positions.data[0]) / 10) == 0:
            self.update_figure(i)
Exemplo n.º 5
0
    def init_probe(self, *args, **kwargs):

        if CXP.io.initial_probe_guess is not '':
            probe = CXData()
            probe.load(CXP.io.initial_probe_guess)
            self.probe.modes = [CXData(data=[probe.data[0]/(i+1)]) for i in range(CXP.reconstruction.probe_modes)]
            self.probe.normalise()
        else:
            dx_s = CXP.dx_s

            p, p2 = CXP.preprocessing.desired_array_shape, CXP.preprocessing.desired_array_shape/2

            probe = sp.zeros((p, p), complex)

            if CXP.experiment.optic.lower() == 'kb':
                if len(CXP.experiment.beam_size)==1:
                    bsx=bsy=np.round(CXP.experiment.beam_size[0]/dx_s)
                elif len(CXP.experiment.beam_size)==2:
                    bsx, bsy = np.round(CXP.experiment.beam_size[0]/dx_s), np.round(CXP.experiment.beam_size[1]/dx_s)

                probe = np.sinc((np.arange(p)-p2)/bsx)[:,np.newaxis]*np.sinc((np.arange(p)-p2)/bsy)[np.newaxis,:]
                

            elif CXP.experiment.optic.lower() == 'zp':
                probe = np.sinc(sp.hypot(*sp.ogrid[-p2:p2, -p2:p2])/np.round(3.*CXP.experiment.beam_size[0]/(2*CXP.dx_s)))

            ph_func = gauss_smooth(np.random.random(probe.shape), 10)
            fwhm = p/2.0
            radker = sp.hypot(*sp.ogrid[-p/2:p/2,-p/2:p/2])
            gaussian = exp(-1.0*(fwhm/2.35)**-2. * radker**2.0 )
            gaussian /= gaussian.max()
            probe = abs(gaussian*probe)* exp(complex(0.,np.pi)*ph_func/ph_func.max())

            self.probe.modes = [CXData(data=[probe/(i+1)]) for i in range(CXP.reconstruction.probe_modes)]
            
            self.probe.normalise()
Exemplo n.º 6
0
    def ptycho_mesh(self):
        """
        Generate a list of ptycho scan positions.

        Outputs
        -------
        self.data : list of 2xN arrays containing horizontal and vertical scan positions in pixels
        self.initial : initial guess at ptycho scan positions (before position correction)
        self.initial_skew : initial skew
        self.initial_rot : initial rotation
        self.initial_scl : initial scaling
        self.skew : current best guess at skew
        self.rot : current best guess at rotation
        self.scl : current best guess at scaling
        self.total : total number of ptycho positions

        [optional]
        self.correct : for simulated data this contains the correct position

        """
        CXP.log.info('Getting ptycho position mesh.')
        
        if CXP.measurement.ptycho_scan_mesh == 'generate':
            if CXP.measurement.ptycho_scan_type == 'cartesian':
                x2 = 0.5*(CXP.measurement.cartesian_scan_dims[0]-1)
                y2 = 0.5*(CXP.measurement.cartesian_scan_dims[1]-1)
                tmp = map(lambda a: CXP.measurement.cartesian_step_size*a, np.mgrid[-x2:x2+1, -y2:y2+1])
                self.positions.data = [tmp[0].flatten(), tmp[1].flatten()]
                if CXP.reconstruction.flip_mesh_lr:
                    self.log.info('Flip ptycho mesh left-right')
                    self.positions.data[0] = self.data[0][::-1]
                if CXP.reconstruction.flip_mesh_ud:
                    self.log.info('Flip ptycho mesh up-down')
                    self.positions.data[1] = self.data[1][::-1]
                if CXP.reconstruction.flip_fast_axis:
                    self.log.info('Flip ptycho mesh fast axis')
                    tmp0, tmp1 = self.data[0], self.data[1]
                    self.positions.data[0], self.positions.data[1] = tmp1, tmp0
            if CXP.measurement.ptycho_scan_type == 'round_roi':
                self.positions.data = list(round_roi(CXP.measurement.round_roi_diameter, CXP.measurement.round_roi_step_size))
            if CXP.measurement.ptycho_scan_type == 'list':
                l = np.genfromtxt(CXP.measurement.list_scan_filename)
                x_pos, y_pos = [], []
                for element in l:
                    x_pos.append(element[0])
                    y_pos.append(element[1])
                self.positions.data = [sp.array(x_pos), sp.array(y_pos)]


        elif CXP.measurement.ptycho_scan_mesh == 'supplied':
            l = np.genfromtxt(CXP.measurement.list_scan_filename)
            x_pos, y_pos = [], []
            for element in l:
                x_pos.append(element[0])
                y_pos.append(element[1])
            self.positions.data = [sp.array(x_pos), sp.array(y_pos)]

        for element in self.positions.data:
            element /= CXP.dx_s
            element += CXP.ob_p/2
        self.positions.total = len(self.positions.data[0])

        self.positions.correct = [sp.zeros((self.positions.total))]*2
        jit_pix = CXP.reconstruction.initial_position_jitter_radius
        search_pix = CXP.reconstruction.ppc_search_radius

        self.positions.data[0] += jit_pix * uniform(-1, 1, self.positions.total)
        self.positions.data[1] += jit_pix * uniform(-1, 1, self.positions.total)

        if CXP.reconstruction.probe_position_correction:
            self.positions.correct[0] = self.positions.data[0]+0.25*search_pix * uniform(-1, 1, self.positions.total)
            self.positions.correct[1] = self.positions.data[1]+0.25*search_pix * uniform(-1, 1, self.positions.total)
        else:
            self.positions.correct = [self.positions.data[0].copy(), self.positions.data[1].copy()]

        data_copy = CXData(data=list(self.positions.data))
        if not CXP.reconstruction.ptycho_subpixel_shift:
            self.positions.data = [np.round(self.positions.data[0]), np.round(self.positions.data[1])]
            self.positions.correct = [np.round(self.positions.correct[0]), np.round(self.positions.correct[1])]
        CXP.rms_rounding_error = [None]*2

        for i in range(2):
            CXP.rms_rounding_error[i] = sp.sqrt(sp.sum(abs(abs(data_copy.data[i])**2.-abs(self.positions.data[i])**2.)))

        CXP.log.info('RMS Rounding Error (Per Position, X, Y):\t {:2.2f}, {:2.2f}'.format(CXP.rms_rounding_error[0]/len(self.positions.data[0]),
                                                                                           CXP.rms_rounding_error[1]/len(self.positions.data[1])))
Exemplo n.º 7
0
class CXPhasing(object):
    """
    .. class:: CXPhasing(object)
        Implements phase retrieval process.


        :attr annealing_schedule: Annealing schedule for probe position correction
        :type annealing_schedule: lambda function
        :attr dict slow_db_queue: 
            Values to be entered into the slow (once per reconstruction attempt) database.
               Entry syntax:
               slow_db_queue[db_field] = (value, )
        :attr dict fast_db_queue: 
            Values to be entered into the fast (once per iteration per reconstruction attempt) database.
            Entry syntax:
                fast_db_queue[db_field] = (iter, value)
        :attr int p: side length of state vector array in pixels
        :attr int p2: half side length of state vector array in pixels
        :attr int ob_p: side length of object array in pixels
        :attr int total_its: the total number of iterations
        :attr int probe_modes: the number of probe modes
        :attr dict algorithms: dictionary of functions implementing iterative phase retrieval algorithms
        :attr algorithm: the current phase retrieval algorithm
        :type algorithm: lambda function
        :attr str em_repr: the update string for Error Reduction iterations
        :attr str dm_repr: the update string for Difference Map iterations
        :attr str progress_repr: the update string printed once per iteration
        :attr log: used for creating a log file and printing data to the terminal
        :type log: Logging object
        :attr int itnum: the current global iteration number
        :attr bool ppc: probe position correction


    """

    def __init__(self):
        # Annealing schedule for probe position correction
        self.annealing_schedule = lambda x: 1 if x ==0 else np.max([0.05,
                                    1. - np.double(x) / CXP.reconstruction.ppc_length])

        self.ppc = CXP.reconstruction.probe_position_correction

        # MySQL DB Integration
        if hasmysql:
            self.init_db_conn()
        # Values are inserted into the db by adding them to the queue
        # The queues are emptied once per iteration
        # The slow database has one entry per reconstruction attempt
        # The fast database has one entry per iteration per reconstruction attempt
        # Entry syntax:
        #   slow_db_queue[db_field] = (value, )
        #   fast_db_queue[db_field] = (iter, value)
        self.slow_db_queue = {}
        self.fast_db_queue = {}

        self.p = CXP.p
        self.p2 = self.p / 2
        self.ob_p = CXP.preprocessing.object_array_shape
        self.total_its = 0
        self.probe_modes = CXP.reconstruction.probe_modes

        self.algorithm = 'er' # Start with error reduction

        if CXP.machine.n_processes < 0:
            CXP.machine.n_processes = mp.cpu_count()

        self.epie_repr = '{:s}\n\tPtychography iteration:{:10d}\n\tPtychography position:{:10d} [{:3.0f}%]'
        self.progress_repr = 'Current iteration: {:d}\tPosition: {:d}'
        
        self._sequence_dir = '/'.join([CXP.io.base_dir, CXP.io.scan_id, 'sequences'])
        self._cur_sequence_dir = self._sequence_dir+'/sequence_{:d}'.format(CXP.reconstruction.sequence)

    def setup(self):
        """
        .. method:: setup()

            This function implements all of the setup required to begin a phasing attempt.
             - Setup directory structure.
             - Initiliase the init_figure.
             - Log all slow parameters to the db.

            :param path: The path to the new CXParams file.
            :type path: str.
            :returns:  int -- the return code.
            :raises: IOError

        """
        self.setup_dir_tree()

        self.init_figure()

        self.log_reconstruction_parameters()

    def preprocessing(self):
        """.. method:: preprocessing()
            Collects together all the preprocessing functions that are required to begin phase retrieval.

        """
        # Get the scan positions
        self.positions = CXData(name='positions', data=[])
        self.ptycho_mesh()

        if CXP.measurement.simulate_data:
            self.simulate_data()
        else:
            # Read in raw data
            self.det_mod = CXData(name = 'det_mod')
            if CXP.actions.preprocess_data:
                self.det_mod.read_in_data()
            else:
                self.det_mod.load()
            if CXP.io.whitefield_filename:
                self.probe_det_mod = CXData(name='probe_det_mod')
                self.probe_det_mod.preprocess_data()

        self.object = CXData(name='object', data=[sp.zeros((self.ob_p, self.ob_p), complex)])
        
        self.probe_intensity = CXData(name='probe_intensity', data=[sp.zeros((self.p, self.p))])

        self.probe = CXModal(modes=[])
        self.psi = CXModal(modes=[])

        for i in range(CXP.reconstruction.probe_modes):
            self.probe.modes.append(CXData(name='probe{:d}'.format(i), data=[sp.zeros((self.p, self.p), complex)]))
            self.psi.modes.append(CXData(name='psi{:d}'.format(i), data=[sp.zeros((self.p, self.p), complex) for i in xrange(self.det_mod.len())]))
    
        self.init_probe()

        # Calculate STXM image if this is a ptycho scan
        if len(self.det_mod.data) > 1:
            self.calc_stxm_image()

        if CXP.actions.process_dpc:
            self.process_dpc()


    def phase_retrieval(self):
        """.. method:: phase_retrieval()
            Runs the itertaive phase retrieval process.

        """ 
        its = CXP.reconstruction.ptycho_its
        
        if hasmysql:
            self.update_slow_table()
        beginning = time.time()
        
        for self.itnum in xrange(its):
            then = time.time()

            self.select_algorithm()

            self.ePIE()

            now = time.time()
            if hasmysql:
                self.fast_db_queue['iter_time'] = (self.itnum, now - then)
                self.fast_db_queue['iter_time_pptpxit'] = (self.itnum, 1e6*(now - then) / (self.positions.total * self.p**2 * (self.itnum + 1)))
            CXP.log.info('{:2.2f} seconds elapsed during iteration {:d} [{:1.2e} sec/pt/pix/it]'.format(now - then, self.itnum + 1,
                            (now-then)/(self.positions.total * self.p**2 * (self.itnum + 1))))
            CXP.log.info('{:5.2f} seconds have elapsed in {:d} iterations [{:2.2f} sec/it]'.format(now-beginning, self.itnum + 1, (now-beginning)/(self.total_its + 1)))
            self.calc_mse()
            self.total_its += 1
            if hasmysql:
                self.update_fast_table()
            if self.itnum > 0:
                self.update_figure(self.itnum)

    def postprocessing(self):
        """.. method::postprocessing()
            Collectes together all the orutines that should be completed after the iterative phase retrieval has successfully completed.

        """
        pass

    def simulate_data(self):
        CXP.log.info('Simulating diffraction patterns.')
        self.sample = CXData()
        self.sample.load(CXP.io.simulation_sample_filename[0])
        self.sample.data[0] = self.sample.data[0].astype(float)
        self.sample.normalise(val=0.8)
        self.sample.data[0]+=0.2
        self.input_probe = CXModal()
        if len(CXP.io.simulation_sample_filename)>1:
            ph = CXData()
            ph.load(CXP.io.simulation_sample_filename[1])
            ph.data[0] = ph.data[0].astype(float)
            ph.normalise(val=np.pi/3)
            self.sample.data[0] = self.sample.data[0]*exp(complex(0., 1.)*ph.data[0])
        p = self.sample.data[0].shape[0]
        ham_window = sp.hamming(p)[:,np.newaxis]*sp.hamming(p)[np.newaxis,:]
        sample_large = CXData(data=sp.zeros((CXP.ob_p, CXP.ob_p), complex))
        sample_large.data[0][CXP.ob_p/2-p/2:CXP.ob_p/2+p/2, CXP.ob_p/2-p/2:CXP.ob_p/2+p/2] = self.sample.data[0]*ham_window

        ker = sp.arange(0, p)
        fwhm = p/3.0
        radker = sp.hypot(*sp.ogrid[-p/2:p/2,-p/2:p/2])
        gaussian = exp(-1.0*(fwhm/2.35)**-2. * radker**2.0 )
        ortho_modes = lambda n1, n2 : gaussian*np.sin(n1*math.pi*ker/p)[:,np.newaxis]*np.sin(n2*math.pi*ker/p)[np.newaxis, :]
        mode_generator = lambda : sp.floor(4*sp.random.random(2))+1

        used_modes = []
        self.input_psi = CXModal()
        
        for mode in range(CXP.reconstruction.probe_modes):
            if mode==0:
                new_mode = [1,1]
            else:
                new_mode = list(mode_generator())
                while new_mode in used_modes:
                    new_mode = list(mode_generator())
            used_modes.append(new_mode)
            CXP.log.info('Simulating mode {:d}: [{:d}, {:d}]'.format(mode, int(new_mode[0]), int(new_mode[1])))
            ph_func = gauss_smooth(np.random.random((p,p)), 10)
            self.input_probe.modes.append(CXData(name='probe{:d}'.format(mode), 
                data=ortho_modes(new_mode[0], new_mode[1])*exp(complex(0.,np.pi)*ph_func/ph_func.max())))
        
        self.input_probe.normalise()
        self.input_probe.orthogonalise()

        for mode in range(CXP.reconstruction.probe_modes):
            p2 = p/2
            x, y = self.positions.correct
            self.input_psi.modes.append(CXData(name='input_psi_mode{:d}'.format(mode), data=[]))
            
            for i in xrange(len(x)):
                if i%(len(x)/10)==0.:
                    CXP.log.info('Simulating diff patt {:d}'.format(i))
                tmp = (CXData.shift(sample_large, -1.0*(x[i]-CXP.ob_p/2), -1.0*(y[i]-CXP.ob_p/2))
                        [CXP.ob_p/2-p2:CXP.ob_p/2+p2, CXP.ob_p/2-p2:CXP.ob_p/2+p2]*
                        self.input_probe[mode][0])
                self.input_psi[mode].data.append(tmp.data[0])

        # Add modes incoherently
        self.det_mod = CXModal.modal_sum(abs(fft2(self.input_psi)))
        self.det_mod.save(path=CXP.io.base_dir+'/'+CXP.io.scan_id+'/raw_data/{:s}.npy'.format('det_mod'))

    def pos_correction_transform(self, i, itnum):
        # Generates trial position
        search_rad = CXP.reconstruction.ppc_search_radius

        r = self.annealing_schedule(itnum)

        cx = self.positions.data[0][i] + (search_rad * r * uniform(-1, 1))
        cy = self.positions.data[1][i] + (search_rad * r * uniform(-1, 1))

        # Limit max deviation
        if np.abs(cx - self.positions.initial[0][i]) > search_rad:
            cx = self.positions.initial[0][i] + search_rad * r * uniform(-1, 1)
        if np.abs(cy - self.positions.initial[1][i]) > search_rad:
            cy = self.positions.initial[1][i] + search_rad * r * uniform(-1, 1)

        if CXP.reconstruction.ptycho_subpixel_shift:
            return [cx, cy]
        else:
            return [np.round(cx), np.round(cy)]

    @staticmethod
    def M(psi, det_mod):
        """.. method:: M(mode, psi_modes, det_mod)

            Applies modulus constraint to psi_modes(mode) for a given position.

            :param list psi_modes: A list of CXData instances containing all modes at a given position.
            :param np.ndarray det_mod: Modulus of measured diffraction pattern.

        """
        if isinstance(psi, CXData):
            return ifft2(det_mod * exp(complex(0., 1.) * angle(fft2(psi))))
        elif isinstance(psi, CXModal):
            mode_sum = CXModal.modal_sum(abs(fft2(psi))**2.0)**0.5
            return ifft2((fft2(psi)/(mode_sum))*det_mod)

    def ePIE(self):
        """.. method:: initial_update_state_vector(self)

            This method uses ePie to generate the initial estimate for psi and object.

        """

        d1, d2 = self.positions.data
        for i in xrange(self.positions.total):

            if i % np.floor(self.positions.total / 10) == 0 and CXP.reconstruction.verbose:
                CXP.log.info(self.epie_repr.format(self.algorithm_name, self.itnum, i, 100. * float(i + 1) / self.positions.total))

            # Non-modal reconstruction
            if self.total_its<CXP.reconstruction.begin_modal_reconstruction: 

                if self.itnum+i==0:
                    view=self.probe[0][0].copy()
                else:
                    view = self.probe[0][0] * self.object[d1[i] - self.p2:d1[i] + self.p2, d2[i] - self.p2:d2[i] + self.p2]
                
                if self.algorithm == 'er':
                    self.psi[0][i] = self.M(view.copy(), self.det_mod[i])
                elif self.algorithm == 'dm':
                    self.psi[0][i] += self.M(2*view-self.psi[0][i], self.det_mod[i]) - view
                    
                self.update_object(i, view, self.psi[0][i])
                if self.do_update_probe:
                    self.update_probe_nonmodal(i, view, self.psi[0][i])
            
            else: # Do modal reconstruction 
                view = self.probe * self.object[d1[i] - self.p2:d1[i] + self.p2, d2[i] - self.p2:d2[i] + self.p2]

                if self.algorithm == 'er':
                    self.psi.setat(i, self.M(view, self.det_mod[i]))
                    
                elif self.algorithm == 'dm':
                    self.psi.setat(i, self.psi.getat(i)+self.M(2*view-self.psi, self.det_mod[i]) - view)

                self.update_object(i, view, self.psi.getat(i))
                if self.do_update_probe:
                    self.update_probe(i, view, self.psi.getat(i))

        for mode, probe in enumerate(self.probe.modes):
            probe.save(path=self._cur_sequence_dir+'/probe_mode{:d}'.format(mode))
        self.object.save(path=self._cur_sequence_dir+'/object')

    def update_object(self, i, psi_old, psi_new):
        """
        Update the object from a single ptycho position.

        """
        then=time.time()
        d1, d2 = self.positions.data
        id1, id2 = d1//1, d2//1
        probe_intensity_max = CXModal.modal_sum(abs(self.probe)**2.0).data[0].max()
        
        self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2] += \
            CXData.shift(CXModal.modal_sum(conj(self.probe) * (psi_new-psi_old)) / probe_intensity_max, 
                d1[i]%1, d2[i]%1)

        if self.total_its==0 and sp.mod(i, len(self.positions.data[0]) / 10) == 0:
            self.update_figure(i)

    def update_probe_nonmodal(self, i, psi_old, psi_new):
        
        d1, d2 = self.positions.data
        id1, id2 = d1//1, d2//1
        object_intensity_max = (abs(self.object)**2.0).data[0].max()

        self.probe.modes[0] += \
            CXData.shift(conj(self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2]) *
             (psi_new-psi_old)[0] / object_intensity_max, d1[i]%1, d2[i]%1)

        self.probe.normalise()

    def update_probe(self, i, psi_old, psi_new):
        
        d1, d2 = self.positions.data
        id1, id2 = d1//1, d2//1
        object_intensity_max = (abs(self.object)**2.0).data[0].max()

        for mode in range(len(self.probe)):
            self.probe.modes[mode] += \
                CXData.shift(conj(self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2]) *
                 (psi_new-psi_old)[mode] / object_intensity_max, d1[i]%1, d2[i]%1)

        self.probe.normalise()
        
        self.probe.orthogonalise()

    def error(self, psi, det_mod):
        """.. method:: error(psi, det_mod)

            Calculates the MSE at a given position given the modes at that position.

            :param CXModal psi: A list of CXData instances containing all modes at a given position.
            :param np.ndarray det_mod: Modulus of measured diffraction pattern.

        """
        mode_sum = CXModal.modal_sum(abs(fft2(psi)))
        return (sp.sum((abs(mode_sum - det_mod) ** 2.).data[0]) / sp.sum(det_mod.data[0] ** 2.))**0.5


    def select_algorithm(self):
        try:
            self.algorithm_count
        except AttributeError:
            self.algorithm_count = 0

        if self.algorithm == 'er':
            if self.algorithm_count>=CXP.reconstruction.algorithm['er']:
                self.algorithm = 'dm'
                self.algorithm_name = 'Difference Map'
                self.algorithm_count = 0
            else:
                self.algorithm_name = 'Error Reduction'
        elif self.algorithm == 'dm':
            if self.algorithm_count>=CXP.reconstruction.algorithm['dm']:
                self.algorithm = 'er'
                self.algorithm_name = 'Error Reduction'
                self.algorithm_count = 0
            else:
                self.algorithm_name = 'Difference Map'

        if self.total_its>CXP.reconstruction.ptycho_its-100:
            self.algorithm = 'er'
            self.algorithm_name = 'Error Reduction'

        if self.total_its>CXP.reconstruction.begin_updating_probe:# and self.algorithm=='er':
            self.do_update_probe = True
        else:
            self.do_update_probe=False

        self.algorithm_count += 1
        self.fast_db_queue['algorithm'] = (self.itnum, self.algorithm)

    def init_figure(self):
        pylab.ion()
        self.f1=pylab.figure(1, figsize=(12, 10))
        thismanager = pylab.get_current_fig_manager()
        thismanager.window.wm_geometry("+600+0")
        try:
            itnum = self.itnum
        except AttributeError:
            itnum = 0
        try:
            mse = self.av_mse
        except AttributeError:
            mse = -1.0
        pylab.suptitle('Sequence: {:d}, Iteration: {:d}, MSE: {:3.2f}%'.format(CXP.reconstruction.sequence, itnum, 100*mse))


    def update_figure(self, i=0):
        cur_cmap = cm.RdGy_r
        self.f1.clf()
        self.init_figure()

        wh = sp.where(abs(self.object.data[0]) > 0.1 * (abs(self.object.data[0]).max()))
        try:
            x1, x2 = min(wh[0]), max(wh[0])
            y1, y2 = min(wh[1]), max(wh[1])
        except (ValueError, IndexError):
            x1, x2 = 0, self.ob_p
            y1, y2 = 0, self.ob_p

        # Plot magnitude of object
        s1 = pylab.subplot(231)
        s1_im = s1.imshow(abs(self.object).data[0][x1:x2, y1:y2], cmap=cm.Greys_r)
        s1.set_title('|object|')
        plt.axis('off')
        pylab.colorbar(s1_im)

        # Plot phase of object
        s2 = pylab.subplot(232)
        s2_im = s2.imshow(sp.angle(self.object.data[0][x1:x2, y1:y2]), cmap=cm.hsv)
        s2.set_title('phase(object)')
        plt.axis('off')
        pylab.colorbar(s2_im)

        # Complex HSV plot of object
        s3 = pylab.subplot(233)
        h = ((angle(self.object).data[0][x1:x2, y1:y2] + np.pi) / (2*np.pi)) % 1.0
        s = np.ones_like(h)
        l = abs(self.object).data[0][x1:x2, y1:y2]
        l-=l.min()
        l/=l.max()
        s3_im = s3.imshow(np.dstack(v_hls_to_rgb(h,l,s)))
        s3.set_title('Complex plot of Object')
        plt.axis('off')

        # Plot probe mode 0
        s4 = pylab.subplot(234)
        s4_im = s4.imshow(abs(self.probe.modes[0].data[0]), cmap=cur_cmap)
        s4.set_title('|probe0|')
        plt.axis('off')
        pylab.colorbar(s4_im)

        if CXP.reconstruction.probe_modes>1:
            s5 = pylab.subplot(235)
            s5_im = s5.imshow(abs(self.probe.modes[1].data[0]), cmap=cur_cmap)
            s5.set_title('|probe1|')
            plt.axis('off')
            pylab.colorbar(s5_im)
        else:
            pass
        if self.ppc:
            s6 = self.f1.add_subplot(236)
            s6_im = s6.scatter(self.positions.data[0], self.positions.data[1], s=10,
                c='b', marker='o', alpha=0.5, edgecolors='none', label='current')
            patches = []
            for m in range(self.positions.total):
                patches.append(Circle((self.positions.initial[0][m], self.positions.initial[1][m]),
                               radius=CXP.reconstruction.ppc_search_radius))
            collection = PatchCollection(patches, color='tomato', alpha=0.2, edgecolors=None)
            s4.add_collection(collection)
            if CXP.measurement.simulate_data:
                s4_im = s4.scatter(self.positions.correct[0], self.positions.correct[1], s=10,
                    c='g', marker='o', alpha=0.5, edgecolors='none', label='correct')
                CXP.log.info('RMS position deviation from correct: [x:{:3.2f},y:{:3.2f}] pixels'.format(
                            sp.sqrt(sp.mean((self.positions.data[0] - self.positions.correct[0])**2.)),
                            sp.sqrt(sp.mean((self.positions.data[1] - self.positions.correct[1])**2.))))
                lines=[]
                for m in range(self.positions.total):
                    lines.append(((self.positions.correct[0][m], self.positions.correct[1][m]),
                                  (self.positions.data[0][m], self.positions.data[1][m])))
                for element in lines:
                    x, y = zip(*element)
                    s4.plot(x, y, 'g-')
            else:
                lines = []
                for m in range(self.positions.total):
                    lines.append(((self.positions.initial[0][m], self.positions.initial[1][m]),
                                  (self.positions.data[0][m], self.positions.data[1][m])))
                for element in lines:
                    x, y = zip(*element)
                    s6.plot(x, y, 'g-')
                CXP.log.info('RMS position deviation from initial: [x:{:3.2f},y:{:3.2f}] pixels'.format(
                            sp.sqrt(sp.mean((self.positions.data[0] - self.positions.initial[0])**2.)),
                            sp.sqrt(sp.mean((self.positions.data[1] - self.positions.initial[1])**2.))))
            s6.legend(prop={'size': 6})
            s6.set_title('Position Correction')
            s6.set_aspect('equal')
            extent = s6.get_window_extent().transformed(self.f1.dpi_scale_trans.inverted())
            pylab.savefig(self._cur_sequence_dir + '/ppc_{:d}.png'.format(self.total_its), bbox_inches=extent.expanded(1.2, 1.2), dpi=100)
            s6.set_aspect('auto')
        else:
            s6 = pylab.subplot(236)
            if CXP.measurement.simulate_data:
                s6_im = s6.imshow(abs(self.input_probe[1].data[0]), cmap = cur_cmap)
                s6.set_title('|input_probe1|')
            else:
                s6_im = s6.imshow(nlog(fftshift(self.det_mod[np.mod(i,self.positions.total)])).data[0], cmap=cur_cmap)
                s6.set_title('Diff Patt: {:d}'.format(i))
            plt.axis('off')
            pylab.colorbar(s6_im)
        pylab.draw()
        pylab.savefig(self._cur_sequence_dir + '/recon_{:d}.png'.format(self.total_its), dpi=60)

    def init_db_conn(self):

        # Make db connection
        self.db = SimpleDB()
        self.dbconn = self.db.conn

        # Select the CXParams db
        self.db.use(CXP.db.master_db)
        self.db.get_cursor()

        # Create table interface
        self.t_slow_params = self.db.tables['slow_params']
        self.t_fast_params = self.db.tables['fast_params']

        self.recon_id = self.t_slow_params.get_new_recon_id()
        CXP.log.info('MySQL Reconstruction ID: {}'.format(self.recon_id))

    def update_slow_table(self):

        for element in CXP.param_store.instances:
            for key, value in getattr(CXP, element).__dict__.iteritems():
                self.slow_db_queue[key] = (value,)
        
        then = time.time()
        cnt = 0
        for k, (v,) in self.slow_db_queue.iteritems():
            if isinstance(v, (list, tuple)):
                v=str(v)
            self.t_slow_params.insert_on_duplicate_key_update(primary={'id': self.recon_id}, update={k: v})
            cnt += 1
        now = time.time()
        self.slow_db_queue['time_per_slow_db_entry'] = (now - then)/cnt
        CXP.log.info('{:3.2f} seconds elapsed entering {:d} values into slow db [{:3.2f} msec/entry]'.format(now-then,
                        cnt, 1e3*(now - then) / cnt))

    def update_fast_table(self):

        if not self.t_fast_params.check_columns(self.fast_db_queue.keys()):
            for key, (itnum, value) in self.fast_db_queue.iteritems():
                if not self.t_fast_params.check_columns([key]):
                    CXP.log.warning('MYSQL: Adding column {} to fast_params.'.format(key))
                    ftype = 'double'
                    if isinstance(value, (list, tuple)):
                        value = str(value)
                    if isinstance(value, str):
                        ftype = 'text'
                        def_val = ''
                    elif isinstance(value, bool):
                        ftype = 'bool'
                        def_val = ''
                    elif isinstance(value, (int, float)):
                        ftype = 'double'
                        def_val = 0
                    else:
                        ftype = 'blob'
                        def_val = ''
                    self.t_fast_params.add_column(col_name=key, var_type=ftype, default_value=def_val)
            self.t_fast_params.update_fieldtypes()

        then = time.time()
        cnt = 0

        for k, (itnum, v) in self.fast_db_queue.iteritems():
            if isinstance(v, (list, tuple)):
                v=str(v)
            self.t_fast_params.insert_on_duplicate_key_update(
                primary={'slow_id': self.recon_id, 'iter': itnum}, update={k: v})
            cnt+=1
        now = time.time()
        self.fast_db_queue['time_per_fast_db_entry'] = (self.itnum, (now - then) / cnt)
        CXP.log.info('{:3.2f} seconds elapsed entering {:d} values into fast db [{:3.2f} msec/entry]'.format(now-then,
                        cnt, 1e3 * (now - then) / cnt))

    def calc_mse(self):
        then = time.time()

        multip = multiprocess.multiprocess(self.mse_worker)

        d1, d2 = self.positions.data

        for i_range in list(split_seq(range(self.positions.total),
                CXP.machine.n_processes)):
                multip.add_job((i_range, self.psi, self.det_mod))

        results = multip.close_out()

        self.av_mse = sp.mean(list(itertools.chain(*results)))

        CXP.log.info('Mean square error: {:3.2f}%'.format(100 * self.av_mse))
        self.fast_db_queue['error'] = (self.itnum, self.av_mse)
        now = time.time()
        CXP.log.info('Calculating MSE took {:3.2f}sec [{:3.2f}msec/position]'.format(now - then,
                       1e3*(now - then) / self.positions.total))

    @staticmethod
    @multiprocess.worker
    def mse_worker(args):
        i_range, psi, det_mod = args
        indvdl_mse = []
        p = det_mod[0].data[0].shape[0]
        for i in i_range:
            psi_sum = CXModal.modal_sum(abs(fft2(psi.getat(i))))
            indvdl_mse.append(sp.sum((abs(psi_sum - det_mod[i]) ** 2.).data[0]) / sp.sum(det_mod[i].data[0] ** 2.))
        return indvdl_mse

    def log_reconstruction_parameters(self):
        """
        h - object size\nz - sam-det dist\npix - # of pix\ndel_x_d - pixel size
        """
        dx_d = CXP.experiment.dx_d
        x = (CXP.p/2.)*dx_d
        l = energy_to_wavelength(CXP.experiment.energy)
        h = min(CXP.experiment.beam_size)
        pix = CXP.p
        z=CXP.experiment.z
        NF = lambda nh, nl, nz: nh**2./(nl*nz)
        del_x_s = lambda l, z, x: (l*z)/(2.*x)
        nNF = NF(h, l, z)
        OS = lambda l, z, x, h, pix: ((pix*del_x_s(l, z, x))**2.)/(h**2.)
        nOS = OS(l, z, x, h, pix)
        NA = sp.sin(sp.arctan(x/z))
        axial_res = 2*l/NA**2.
        lateral_res = l/(2.*NA)
        CXP.log.info('Fresnel number: {:2.2e}'.format(nNF))
        CXP.log.info('Oversampling: {:3.2f}'.format(nOS))
        CXP.log.info('Detector pixel size: {:3.2f} [micron]'.format(1e6*dx_d))
        CXP.log.info('Detector width: {:3.2f} [mm]'.format(1e3*pix*dx_d))
        CXP.log.info('Sample pixel size: {:3.2f} [nm]'.format(1e9*del_x_s(l, z, x)))
        CXP.log.info('Sample FOV: {:3.2f} [micron]'.format(1e6*del_x_s(l, z, x)*pix))
        CXP.log.info('Numerical aperture: {:3.2f}'.format(NA))
        CXP.log.info('Axial resolution: {:3.2f} [micron]'.format(1e6*axial_res))
        CXP.log.info('Lateral resolution: {:3.2f} [nm]'.format(1e9*lateral_res))

        self.slow_db_queue['fresnel_number'] = (nNF,)
        self.slow_db_queue['oversampling'] = (nOS,)
        self.slow_db_queue['dx_s'] = (del_x_s(l, z, x),)
        self.slow_db_queue['sample_fov'] = (del_x_s(l, z, x)*pix,)
        self.slow_db_queue['numerical_aperture'] = (NA,)
        self.slow_db_queue['axial_resolution'] = (axial_res,)

    def setup_dir_tree(self):
        """Setup the directory structure for a new scan id"""
        _top_dir = '/'.join([CXP.io.base_dir, CXP.io.scan_id])
        _sequence_dir = '/'.join([CXP.io.base_dir, CXP.io.scan_id, 'sequences'])
        _cur_sequence_dir = _sequence_dir+'/sequence_{:d}'.format(CXP.reconstruction.sequence)
        _raw_data_dir = '/'.join([CXP.io.base_dir, CXP.io.scan_id, 'raw_data'])
        _dpc_dir = '/'.join([CXP.io.base_dir, CXP.io.scan_id, 'dpc'])
        _CXP_dir = '/'.join([CXP.io.base_dir, CXP.io.scan_id, '.CXPhasing'])
        _py_dir = '/'.join([CXP.io.base_dir, CXP.io.scan_id, 'python'])

        if not os.path.exists(_top_dir):
            CXP.log.info('Setting up new scan directory...')
            os.mkdir(_top_dir)
            os.mkdir(_sequence_dir)
            os.mkdir(_cur_sequence_dir)
            os.mkdir(_raw_data_dir)
            os.mkdir(_dpc_dir)
            os.mkdir(_CXP_dir)
            os.mkdir(_py_dir)
            try:
                shutil.copy(CXP.io.code_dir+'/CXParams.py', _py_dir)
            except IOError:
                CXP.log.error('Was unable to save a copy of CXParams.py to {}'.format(_py_dir))
        else:
            CXP.log.info('Dir tree already exists.')
            if not os.path.exists(_sequence_dir):
                os.mkdir(_sequence_dir)
            if not os.path.exists(_cur_sequence_dir):
                CXP.log.info('Making new sequence directory')
                os.mkdir(_cur_sequence_dir)
            try:
                shutil.copy(CXP.io.code_dir+'/CXParams.py', _py_dir)
                shutil.copy(CXP.io.code_dir+'/CXParams.py',
                            _cur_sequence_dir+'/CXParams_sequence{}.py'.format(CXP.reconstruction.sequence))
            except IOError:
                CXP.log.error('Was unable to save a copy of CXParams.py to {}'.format(_py_dir))

    def ptycho_mesh(self):
        """
        Generate a list of ptycho scan positions.

        Outputs
        -------
        self.data : list of 2xN arrays containing horizontal and vertical scan positions in pixels
        self.initial : initial guess at ptycho scan positions (before position correction)
        self.initial_skew : initial skew
        self.initial_rot : initial rotation
        self.initial_scl : initial scaling
        self.skew : current best guess at skew
        self.rot : current best guess at rotation
        self.scl : current best guess at scaling
        self.total : total number of ptycho positions

        [optional]
        self.correct : for simulated data this contains the correct position

        """
        CXP.log.info('Getting ptycho position mesh.')
        
        if CXP.measurement.ptycho_scan_mesh == 'generate':
            if CXP.measurement.ptycho_scan_type == 'cartesian':
                x2 = 0.5*(CXP.measurement.cartesian_scan_dims[0]-1)
                y2 = 0.5*(CXP.measurement.cartesian_scan_dims[1]-1)
                tmp = map(lambda a: CXP.measurement.cartesian_step_size*a, np.mgrid[-x2:x2+1, -y2:y2+1])
                self.positions.data = [tmp[0].flatten(), tmp[1].flatten()]
                if CXP.reconstruction.flip_mesh_lr:
                    self.log.info('Flip ptycho mesh left-right')
                    self.positions.data[0] = self.data[0][::-1]
                if CXP.reconstruction.flip_mesh_ud:
                    self.log.info('Flip ptycho mesh up-down')
                    self.positions.data[1] = self.data[1][::-1]
                if CXP.reconstruction.flip_fast_axis:
                    self.log.info('Flip ptycho mesh fast axis')
                    tmp0, tmp1 = self.data[0], self.data[1]
                    self.positions.data[0], self.positions.data[1] = tmp1, tmp0
            if CXP.measurement.ptycho_scan_type == 'round_roi':
                self.positions.data = list(round_roi(CXP.measurement.round_roi_diameter, CXP.measurement.round_roi_step_size))
            if CXP.measurement.ptycho_scan_type == 'list':
                l = np.genfromtxt(CXP.measurement.list_scan_filename)
                x_pos, y_pos = [], []
                for element in l:
                    x_pos.append(element[0])
                    y_pos.append(element[1])
                self.positions.data = [sp.array(x_pos), sp.array(y_pos)]


        elif CXP.measurement.ptycho_scan_mesh == 'supplied':
            l = np.genfromtxt(CXP.measurement.list_scan_filename)
            x_pos, y_pos = [], []
            for element in l:
                x_pos.append(element[0])
                y_pos.append(element[1])
            self.positions.data = [sp.array(x_pos), sp.array(y_pos)]

        for element in self.positions.data:
            element /= CXP.dx_s
            element += CXP.ob_p/2
        self.positions.total = len(self.positions.data[0])

        self.positions.correct = [sp.zeros((self.positions.total))]*2
        jit_pix = CXP.reconstruction.initial_position_jitter_radius
        search_pix = CXP.reconstruction.ppc_search_radius

        self.positions.data[0] += jit_pix * uniform(-1, 1, self.positions.total)
        self.positions.data[1] += jit_pix * uniform(-1, 1, self.positions.total)

        if CXP.reconstruction.probe_position_correction:
            self.positions.correct[0] = self.positions.data[0]+0.25*search_pix * uniform(-1, 1, self.positions.total)
            self.positions.correct[1] = self.positions.data[1]+0.25*search_pix * uniform(-1, 1, self.positions.total)
        else:
            self.positions.correct = [self.positions.data[0].copy(), self.positions.data[1].copy()]

        data_copy = CXData(data=list(self.positions.data))
        if not CXP.reconstruction.ptycho_subpixel_shift:
            self.positions.data = [np.round(self.positions.data[0]), np.round(self.positions.data[1])]
            self.positions.correct = [np.round(self.positions.correct[0]), np.round(self.positions.correct[1])]
        CXP.rms_rounding_error = [None]*2

        for i in range(2):
            CXP.rms_rounding_error[i] = sp.sqrt(sp.sum(abs(abs(data_copy.data[i])**2.-abs(self.positions.data[i])**2.)))

        CXP.log.info('RMS Rounding Error (Per Position, X, Y):\t {:2.2f}, {:2.2f}'.format(CXP.rms_rounding_error[0]/len(self.positions.data[0]),
                                                                                           CXP.rms_rounding_error[1]/len(self.positions.data[1])))

    def init_probe(self, *args, **kwargs):

        if CXP.io.initial_probe_guess is not '':
            probe = CXData()
            probe.load(CXP.io.initial_probe_guess)
            self.probe.modes = [CXData(data=[probe.data[0]/(i+1)]) for i in range(CXP.reconstruction.probe_modes)]
            self.probe.normalise()
        else:
            dx_s = CXP.dx_s

            p, p2 = CXP.preprocessing.desired_array_shape, CXP.preprocessing.desired_array_shape/2

            probe = sp.zeros((p, p), complex)

            if CXP.experiment.optic.lower() == 'kb':
                if len(CXP.experiment.beam_size)==1:
                    bsx=bsy=np.round(CXP.experiment.beam_size[0]/dx_s)
                elif len(CXP.experiment.beam_size)==2:
                    bsx, bsy = np.round(CXP.experiment.beam_size[0]/dx_s), np.round(CXP.experiment.beam_size[1]/dx_s)

                probe = np.sinc((np.arange(p)-p2)/bsx)[:,np.newaxis]*np.sinc((np.arange(p)-p2)/bsy)[np.newaxis,:]
                

            elif CXP.experiment.optic.lower() == 'zp':
                probe = np.sinc(sp.hypot(*sp.ogrid[-p2:p2, -p2:p2])/np.round(3.*CXP.experiment.beam_size[0]/(2*CXP.dx_s)))

            ph_func = gauss_smooth(np.random.random(probe.shape), 10)
            fwhm = p/2.0
            radker = sp.hypot(*sp.ogrid[-p/2:p/2,-p/2:p/2])
            gaussian = exp(-1.0*(fwhm/2.35)**-2. * radker**2.0 )
            gaussian /= gaussian.max()
            probe = abs(gaussian*probe)* exp(complex(0.,np.pi)*ph_func/ph_func.max())

            self.probe.modes = [CXData(data=[probe/(i+1)]) for i in range(CXP.reconstruction.probe_modes)]
            
            self.probe.normalise()

    def calc_stxm_image(self):
        path = '/'.join([CXP.io.base_dir, CXP.io.scan_id, 'sequences/sequence_{:d}/stxm_regular_grid.png'.format(CXP.reconstruction.sequence)])
        CXP.log.info('Calculating STXM image.\nSTXM saved to:\n\t{}'.format(path))
        image_sum = sp.array([sp.sum(data) for data in self.det_mod.data])

        x, y = self.positions.data

        fig = Figure(figsize=(6, 6))
        canvas = FigureCanvas(fig)
        ax = fig.add_subplot(111)
        ax.set_title('STXM Image', fontsize=14)
        ax.set_xlabel('Position [micron]', fontsize=12)
        ax.set_ylabel('Position [micron]', fontsize=12)

        if CXP.measurement.ptycho_scan_type == 'cartesian':
            ax.hexbin(x, y, C=image_sum, gridsize=CXP.measurement.cartesian_scan_dims, cmap=cm.RdGy)
            canvas.print_figure('/'.join([CXP.io.base_dir, CXP.io.scan_id, 'sequences/sequence_{:d}/stxm_scatter.png'.format(CXP.reconstruction.sequence)]), dpi=500)
            ax.imshow(image_sum.reshape(CXP.measurement.cartesian_scan_dims), cmap=cm.RdGy)
        else:
            ax.hexbin(x, y, C=image_sum, cmap=cm.RdGy)

        canvas.print_figure(path, dpi=500)
Exemplo n.º 8
0
    def simulate_data(self):
        CXP.log.info('Simulating diffraction patterns.')
        self.sample = CXData()
        self.sample.load(CXP.io.simulation_sample_filename[0])
        self.sample.data[0] = self.sample.data[0].astype(float)
        self.sample.normalise(val=0.8)
        self.sample.data[0]+=0.2
        self.input_probe = CXModal()
        if len(CXP.io.simulation_sample_filename)>1:
            ph = CXData()
            ph.load(CXP.io.simulation_sample_filename[1])
            ph.data[0] = ph.data[0].astype(float)
            ph.normalise(val=np.pi/3)
            self.sample.data[0] = self.sample.data[0]*exp(complex(0., 1.)*ph.data[0])
        p = self.sample.data[0].shape[0]
        ham_window = sp.hamming(p)[:,np.newaxis]*sp.hamming(p)[np.newaxis,:]
        sample_large = CXData(data=sp.zeros((CXP.ob_p, CXP.ob_p), complex))
        sample_large.data[0][CXP.ob_p/2-p/2:CXP.ob_p/2+p/2, CXP.ob_p/2-p/2:CXP.ob_p/2+p/2] = self.sample.data[0]*ham_window

        ker = sp.arange(0, p)
        fwhm = p/3.0
        radker = sp.hypot(*sp.ogrid[-p/2:p/2,-p/2:p/2])
        gaussian = exp(-1.0*(fwhm/2.35)**-2. * radker**2.0 )
        ortho_modes = lambda n1, n2 : gaussian*np.sin(n1*math.pi*ker/p)[:,np.newaxis]*np.sin(n2*math.pi*ker/p)[np.newaxis, :]
        mode_generator = lambda : sp.floor(4*sp.random.random(2))+1

        used_modes = []
        self.input_psi = CXModal()
        
        for mode in range(CXP.reconstruction.probe_modes):
            if mode==0:
                new_mode = [1,1]
            else:
                new_mode = list(mode_generator())
                while new_mode in used_modes:
                    new_mode = list(mode_generator())
            used_modes.append(new_mode)
            CXP.log.info('Simulating mode {:d}: [{:d}, {:d}]'.format(mode, int(new_mode[0]), int(new_mode[1])))
            ph_func = gauss_smooth(np.random.random((p,p)), 10)
            self.input_probe.modes.append(CXData(name='probe{:d}'.format(mode), 
                data=ortho_modes(new_mode[0], new_mode[1])*exp(complex(0.,np.pi)*ph_func/ph_func.max())))
        
        self.input_probe.normalise()
        self.input_probe.orthogonalise()

        for mode in range(CXP.reconstruction.probe_modes):
            p2 = p/2
            x, y = self.positions.correct
            self.input_psi.modes.append(CXData(name='input_psi_mode{:d}'.format(mode), data=[]))
            
            for i in xrange(len(x)):
                if i%(len(x)/10)==0.:
                    CXP.log.info('Simulating diff patt {:d}'.format(i))
                tmp = (CXData.shift(sample_large, -1.0*(x[i]-CXP.ob_p/2), -1.0*(y[i]-CXP.ob_p/2))
                        [CXP.ob_p/2-p2:CXP.ob_p/2+p2, CXP.ob_p/2-p2:CXP.ob_p/2+p2]*
                        self.input_probe[mode][0])
                self.input_psi[mode].data.append(tmp.data[0])

        # Add modes incoherently
        self.det_mod = CXModal.modal_sum(abs(fft2(self.input_psi)))
        self.det_mod.save(path=CXP.io.base_dir+'/'+CXP.io.scan_id+'/raw_data/{:s}.npy'.format('det_mod'))