def update_probe_nonmodal(self, i, psi_old, psi_new): d1, d2 = self.positions.data id1, id2 = d1//1, d2//1 object_intensity_max = (abs(self.object)**2.0).data[0].max() self.probe.modes[0] += \ CXData.shift(conj(self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2]) * (psi_new-psi_old)[0] / object_intensity_max, d1[i]%1, d2[i]%1) self.probe.normalise()
def preprocessing(self): """.. method:: preprocessing() Collects together all the preprocessing functions that are required to begin phase retrieval. """ # Get the scan positions self.positions = CXData(name='positions', data=[]) self.ptycho_mesh() if CXP.measurement.simulate_data: self.simulate_data() else: # Read in raw data self.det_mod = CXData(name = 'det_mod') if CXP.actions.preprocess_data: self.det_mod.read_in_data() else: self.det_mod.load() if CXP.io.whitefield_filename: self.probe_det_mod = CXData(name='probe_det_mod') self.probe_det_mod.preprocess_data() self.object = CXData(name='object', data=[sp.zeros((self.ob_p, self.ob_p), complex)]) self.probe_intensity = CXData(name='probe_intensity', data=[sp.zeros((self.p, self.p))]) self.probe = CXModal(modes=[]) self.psi = CXModal(modes=[]) for i in range(CXP.reconstruction.probe_modes): self.probe.modes.append(CXData(name='probe{:d}'.format(i), data=[sp.zeros((self.p, self.p), complex)])) self.psi.modes.append(CXData(name='psi{:d}'.format(i), data=[sp.zeros((self.p, self.p), complex) for i in xrange(self.det_mod.len())])) self.init_probe() # Calculate STXM image if this is a ptycho scan if len(self.det_mod.data) > 1: self.calc_stxm_image() if CXP.actions.process_dpc: self.process_dpc()
def update_probe(self, i, psi_old, psi_new): d1, d2 = self.positions.data id1, id2 = d1//1, d2//1 object_intensity_max = (abs(self.object)**2.0).data[0].max() for mode in range(len(self.probe)): self.probe.modes[mode] += \ CXData.shift(conj(self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2]) * (psi_new-psi_old)[mode] / object_intensity_max, d1[i]%1, d2[i]%1) self.probe.normalise() self.probe.orthogonalise()
def update_object(self, i, psi_old, psi_new): """ Update the object from a single ptycho position. """ then=time.time() d1, d2 = self.positions.data id1, id2 = d1//1, d2//1 probe_intensity_max = CXModal.modal_sum(abs(self.probe)**2.0).data[0].max() self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2] += \ CXData.shift(CXModal.modal_sum(conj(self.probe) * (psi_new-psi_old)) / probe_intensity_max, d1[i]%1, d2[i]%1) if self.total_its==0 and sp.mod(i, len(self.positions.data[0]) / 10) == 0: self.update_figure(i)
def init_probe(self, *args, **kwargs): if CXP.io.initial_probe_guess is not '': probe = CXData() probe.load(CXP.io.initial_probe_guess) self.probe.modes = [CXData(data=[probe.data[0]/(i+1)]) for i in range(CXP.reconstruction.probe_modes)] self.probe.normalise() else: dx_s = CXP.dx_s p, p2 = CXP.preprocessing.desired_array_shape, CXP.preprocessing.desired_array_shape/2 probe = sp.zeros((p, p), complex) if CXP.experiment.optic.lower() == 'kb': if len(CXP.experiment.beam_size)==1: bsx=bsy=np.round(CXP.experiment.beam_size[0]/dx_s) elif len(CXP.experiment.beam_size)==2: bsx, bsy = np.round(CXP.experiment.beam_size[0]/dx_s), np.round(CXP.experiment.beam_size[1]/dx_s) probe = np.sinc((np.arange(p)-p2)/bsx)[:,np.newaxis]*np.sinc((np.arange(p)-p2)/bsy)[np.newaxis,:] elif CXP.experiment.optic.lower() == 'zp': probe = np.sinc(sp.hypot(*sp.ogrid[-p2:p2, -p2:p2])/np.round(3.*CXP.experiment.beam_size[0]/(2*CXP.dx_s))) ph_func = gauss_smooth(np.random.random(probe.shape), 10) fwhm = p/2.0 radker = sp.hypot(*sp.ogrid[-p/2:p/2,-p/2:p/2]) gaussian = exp(-1.0*(fwhm/2.35)**-2. * radker**2.0 ) gaussian /= gaussian.max() probe = abs(gaussian*probe)* exp(complex(0.,np.pi)*ph_func/ph_func.max()) self.probe.modes = [CXData(data=[probe/(i+1)]) for i in range(CXP.reconstruction.probe_modes)] self.probe.normalise()
def ptycho_mesh(self): """ Generate a list of ptycho scan positions. Outputs ------- self.data : list of 2xN arrays containing horizontal and vertical scan positions in pixels self.initial : initial guess at ptycho scan positions (before position correction) self.initial_skew : initial skew self.initial_rot : initial rotation self.initial_scl : initial scaling self.skew : current best guess at skew self.rot : current best guess at rotation self.scl : current best guess at scaling self.total : total number of ptycho positions [optional] self.correct : for simulated data this contains the correct position """ CXP.log.info('Getting ptycho position mesh.') if CXP.measurement.ptycho_scan_mesh == 'generate': if CXP.measurement.ptycho_scan_type == 'cartesian': x2 = 0.5*(CXP.measurement.cartesian_scan_dims[0]-1) y2 = 0.5*(CXP.measurement.cartesian_scan_dims[1]-1) tmp = map(lambda a: CXP.measurement.cartesian_step_size*a, np.mgrid[-x2:x2+1, -y2:y2+1]) self.positions.data = [tmp[0].flatten(), tmp[1].flatten()] if CXP.reconstruction.flip_mesh_lr: self.log.info('Flip ptycho mesh left-right') self.positions.data[0] = self.data[0][::-1] if CXP.reconstruction.flip_mesh_ud: self.log.info('Flip ptycho mesh up-down') self.positions.data[1] = self.data[1][::-1] if CXP.reconstruction.flip_fast_axis: self.log.info('Flip ptycho mesh fast axis') tmp0, tmp1 = self.data[0], self.data[1] self.positions.data[0], self.positions.data[1] = tmp1, tmp0 if CXP.measurement.ptycho_scan_type == 'round_roi': self.positions.data = list(round_roi(CXP.measurement.round_roi_diameter, CXP.measurement.round_roi_step_size)) if CXP.measurement.ptycho_scan_type == 'list': l = np.genfromtxt(CXP.measurement.list_scan_filename) x_pos, y_pos = [], [] for element in l: x_pos.append(element[0]) y_pos.append(element[1]) self.positions.data = [sp.array(x_pos), sp.array(y_pos)] elif CXP.measurement.ptycho_scan_mesh == 'supplied': l = np.genfromtxt(CXP.measurement.list_scan_filename) x_pos, y_pos = [], [] for element in l: x_pos.append(element[0]) y_pos.append(element[1]) self.positions.data = [sp.array(x_pos), sp.array(y_pos)] for element in self.positions.data: element /= CXP.dx_s element += CXP.ob_p/2 self.positions.total = len(self.positions.data[0]) self.positions.correct = [sp.zeros((self.positions.total))]*2 jit_pix = CXP.reconstruction.initial_position_jitter_radius search_pix = CXP.reconstruction.ppc_search_radius self.positions.data[0] += jit_pix * uniform(-1, 1, self.positions.total) self.positions.data[1] += jit_pix * uniform(-1, 1, self.positions.total) if CXP.reconstruction.probe_position_correction: self.positions.correct[0] = self.positions.data[0]+0.25*search_pix * uniform(-1, 1, self.positions.total) self.positions.correct[1] = self.positions.data[1]+0.25*search_pix * uniform(-1, 1, self.positions.total) else: self.positions.correct = [self.positions.data[0].copy(), self.positions.data[1].copy()] data_copy = CXData(data=list(self.positions.data)) if not CXP.reconstruction.ptycho_subpixel_shift: self.positions.data = [np.round(self.positions.data[0]), np.round(self.positions.data[1])] self.positions.correct = [np.round(self.positions.correct[0]), np.round(self.positions.correct[1])] CXP.rms_rounding_error = [None]*2 for i in range(2): CXP.rms_rounding_error[i] = sp.sqrt(sp.sum(abs(abs(data_copy.data[i])**2.-abs(self.positions.data[i])**2.))) CXP.log.info('RMS Rounding Error (Per Position, X, Y):\t {:2.2f}, {:2.2f}'.format(CXP.rms_rounding_error[0]/len(self.positions.data[0]), CXP.rms_rounding_error[1]/len(self.positions.data[1])))
class CXPhasing(object): """ .. class:: CXPhasing(object) Implements phase retrieval process. :attr annealing_schedule: Annealing schedule for probe position correction :type annealing_schedule: lambda function :attr dict slow_db_queue: Values to be entered into the slow (once per reconstruction attempt) database. Entry syntax: slow_db_queue[db_field] = (value, ) :attr dict fast_db_queue: Values to be entered into the fast (once per iteration per reconstruction attempt) database. Entry syntax: fast_db_queue[db_field] = (iter, value) :attr int p: side length of state vector array in pixels :attr int p2: half side length of state vector array in pixels :attr int ob_p: side length of object array in pixels :attr int total_its: the total number of iterations :attr int probe_modes: the number of probe modes :attr dict algorithms: dictionary of functions implementing iterative phase retrieval algorithms :attr algorithm: the current phase retrieval algorithm :type algorithm: lambda function :attr str em_repr: the update string for Error Reduction iterations :attr str dm_repr: the update string for Difference Map iterations :attr str progress_repr: the update string printed once per iteration :attr log: used for creating a log file and printing data to the terminal :type log: Logging object :attr int itnum: the current global iteration number :attr bool ppc: probe position correction """ def __init__(self): # Annealing schedule for probe position correction self.annealing_schedule = lambda x: 1 if x ==0 else np.max([0.05, 1. - np.double(x) / CXP.reconstruction.ppc_length]) self.ppc = CXP.reconstruction.probe_position_correction # MySQL DB Integration if hasmysql: self.init_db_conn() # Values are inserted into the db by adding them to the queue # The queues are emptied once per iteration # The slow database has one entry per reconstruction attempt # The fast database has one entry per iteration per reconstruction attempt # Entry syntax: # slow_db_queue[db_field] = (value, ) # fast_db_queue[db_field] = (iter, value) self.slow_db_queue = {} self.fast_db_queue = {} self.p = CXP.p self.p2 = self.p / 2 self.ob_p = CXP.preprocessing.object_array_shape self.total_its = 0 self.probe_modes = CXP.reconstruction.probe_modes self.algorithm = 'er' # Start with error reduction if CXP.machine.n_processes < 0: CXP.machine.n_processes = mp.cpu_count() self.epie_repr = '{:s}\n\tPtychography iteration:{:10d}\n\tPtychography position:{:10d} [{:3.0f}%]' self.progress_repr = 'Current iteration: {:d}\tPosition: {:d}' self._sequence_dir = '/'.join([CXP.io.base_dir, CXP.io.scan_id, 'sequences']) self._cur_sequence_dir = self._sequence_dir+'/sequence_{:d}'.format(CXP.reconstruction.sequence) def setup(self): """ .. method:: setup() This function implements all of the setup required to begin a phasing attempt. - Setup directory structure. - Initiliase the init_figure. - Log all slow parameters to the db. :param path: The path to the new CXParams file. :type path: str. :returns: int -- the return code. :raises: IOError """ self.setup_dir_tree() self.init_figure() self.log_reconstruction_parameters() def preprocessing(self): """.. method:: preprocessing() Collects together all the preprocessing functions that are required to begin phase retrieval. """ # Get the scan positions self.positions = CXData(name='positions', data=[]) self.ptycho_mesh() if CXP.measurement.simulate_data: self.simulate_data() else: # Read in raw data self.det_mod = CXData(name = 'det_mod') if CXP.actions.preprocess_data: self.det_mod.read_in_data() else: self.det_mod.load() if CXP.io.whitefield_filename: self.probe_det_mod = CXData(name='probe_det_mod') self.probe_det_mod.preprocess_data() self.object = CXData(name='object', data=[sp.zeros((self.ob_p, self.ob_p), complex)]) self.probe_intensity = CXData(name='probe_intensity', data=[sp.zeros((self.p, self.p))]) self.probe = CXModal(modes=[]) self.psi = CXModal(modes=[]) for i in range(CXP.reconstruction.probe_modes): self.probe.modes.append(CXData(name='probe{:d}'.format(i), data=[sp.zeros((self.p, self.p), complex)])) self.psi.modes.append(CXData(name='psi{:d}'.format(i), data=[sp.zeros((self.p, self.p), complex) for i in xrange(self.det_mod.len())])) self.init_probe() # Calculate STXM image if this is a ptycho scan if len(self.det_mod.data) > 1: self.calc_stxm_image() if CXP.actions.process_dpc: self.process_dpc() def phase_retrieval(self): """.. method:: phase_retrieval() Runs the itertaive phase retrieval process. """ its = CXP.reconstruction.ptycho_its if hasmysql: self.update_slow_table() beginning = time.time() for self.itnum in xrange(its): then = time.time() self.select_algorithm() self.ePIE() now = time.time() if hasmysql: self.fast_db_queue['iter_time'] = (self.itnum, now - then) self.fast_db_queue['iter_time_pptpxit'] = (self.itnum, 1e6*(now - then) / (self.positions.total * self.p**2 * (self.itnum + 1))) CXP.log.info('{:2.2f} seconds elapsed during iteration {:d} [{:1.2e} sec/pt/pix/it]'.format(now - then, self.itnum + 1, (now-then)/(self.positions.total * self.p**2 * (self.itnum + 1)))) CXP.log.info('{:5.2f} seconds have elapsed in {:d} iterations [{:2.2f} sec/it]'.format(now-beginning, self.itnum + 1, (now-beginning)/(self.total_its + 1))) self.calc_mse() self.total_its += 1 if hasmysql: self.update_fast_table() if self.itnum > 0: self.update_figure(self.itnum) def postprocessing(self): """.. method::postprocessing() Collectes together all the orutines that should be completed after the iterative phase retrieval has successfully completed. """ pass def simulate_data(self): CXP.log.info('Simulating diffraction patterns.') self.sample = CXData() self.sample.load(CXP.io.simulation_sample_filename[0]) self.sample.data[0] = self.sample.data[0].astype(float) self.sample.normalise(val=0.8) self.sample.data[0]+=0.2 self.input_probe = CXModal() if len(CXP.io.simulation_sample_filename)>1: ph = CXData() ph.load(CXP.io.simulation_sample_filename[1]) ph.data[0] = ph.data[0].astype(float) ph.normalise(val=np.pi/3) self.sample.data[0] = self.sample.data[0]*exp(complex(0., 1.)*ph.data[0]) p = self.sample.data[0].shape[0] ham_window = sp.hamming(p)[:,np.newaxis]*sp.hamming(p)[np.newaxis,:] sample_large = CXData(data=sp.zeros((CXP.ob_p, CXP.ob_p), complex)) sample_large.data[0][CXP.ob_p/2-p/2:CXP.ob_p/2+p/2, CXP.ob_p/2-p/2:CXP.ob_p/2+p/2] = self.sample.data[0]*ham_window ker = sp.arange(0, p) fwhm = p/3.0 radker = sp.hypot(*sp.ogrid[-p/2:p/2,-p/2:p/2]) gaussian = exp(-1.0*(fwhm/2.35)**-2. * radker**2.0 ) ortho_modes = lambda n1, n2 : gaussian*np.sin(n1*math.pi*ker/p)[:,np.newaxis]*np.sin(n2*math.pi*ker/p)[np.newaxis, :] mode_generator = lambda : sp.floor(4*sp.random.random(2))+1 used_modes = [] self.input_psi = CXModal() for mode in range(CXP.reconstruction.probe_modes): if mode==0: new_mode = [1,1] else: new_mode = list(mode_generator()) while new_mode in used_modes: new_mode = list(mode_generator()) used_modes.append(new_mode) CXP.log.info('Simulating mode {:d}: [{:d}, {:d}]'.format(mode, int(new_mode[0]), int(new_mode[1]))) ph_func = gauss_smooth(np.random.random((p,p)), 10) self.input_probe.modes.append(CXData(name='probe{:d}'.format(mode), data=ortho_modes(new_mode[0], new_mode[1])*exp(complex(0.,np.pi)*ph_func/ph_func.max()))) self.input_probe.normalise() self.input_probe.orthogonalise() for mode in range(CXP.reconstruction.probe_modes): p2 = p/2 x, y = self.positions.correct self.input_psi.modes.append(CXData(name='input_psi_mode{:d}'.format(mode), data=[])) for i in xrange(len(x)): if i%(len(x)/10)==0.: CXP.log.info('Simulating diff patt {:d}'.format(i)) tmp = (CXData.shift(sample_large, -1.0*(x[i]-CXP.ob_p/2), -1.0*(y[i]-CXP.ob_p/2)) [CXP.ob_p/2-p2:CXP.ob_p/2+p2, CXP.ob_p/2-p2:CXP.ob_p/2+p2]* self.input_probe[mode][0]) self.input_psi[mode].data.append(tmp.data[0]) # Add modes incoherently self.det_mod = CXModal.modal_sum(abs(fft2(self.input_psi))) self.det_mod.save(path=CXP.io.base_dir+'/'+CXP.io.scan_id+'/raw_data/{:s}.npy'.format('det_mod')) def pos_correction_transform(self, i, itnum): # Generates trial position search_rad = CXP.reconstruction.ppc_search_radius r = self.annealing_schedule(itnum) cx = self.positions.data[0][i] + (search_rad * r * uniform(-1, 1)) cy = self.positions.data[1][i] + (search_rad * r * uniform(-1, 1)) # Limit max deviation if np.abs(cx - self.positions.initial[0][i]) > search_rad: cx = self.positions.initial[0][i] + search_rad * r * uniform(-1, 1) if np.abs(cy - self.positions.initial[1][i]) > search_rad: cy = self.positions.initial[1][i] + search_rad * r * uniform(-1, 1) if CXP.reconstruction.ptycho_subpixel_shift: return [cx, cy] else: return [np.round(cx), np.round(cy)] @staticmethod def M(psi, det_mod): """.. method:: M(mode, psi_modes, det_mod) Applies modulus constraint to psi_modes(mode) for a given position. :param list psi_modes: A list of CXData instances containing all modes at a given position. :param np.ndarray det_mod: Modulus of measured diffraction pattern. """ if isinstance(psi, CXData): return ifft2(det_mod * exp(complex(0., 1.) * angle(fft2(psi)))) elif isinstance(psi, CXModal): mode_sum = CXModal.modal_sum(abs(fft2(psi))**2.0)**0.5 return ifft2((fft2(psi)/(mode_sum))*det_mod) def ePIE(self): """.. method:: initial_update_state_vector(self) This method uses ePie to generate the initial estimate for psi and object. """ d1, d2 = self.positions.data for i in xrange(self.positions.total): if i % np.floor(self.positions.total / 10) == 0 and CXP.reconstruction.verbose: CXP.log.info(self.epie_repr.format(self.algorithm_name, self.itnum, i, 100. * float(i + 1) / self.positions.total)) # Non-modal reconstruction if self.total_its<CXP.reconstruction.begin_modal_reconstruction: if self.itnum+i==0: view=self.probe[0][0].copy() else: view = self.probe[0][0] * self.object[d1[i] - self.p2:d1[i] + self.p2, d2[i] - self.p2:d2[i] + self.p2] if self.algorithm == 'er': self.psi[0][i] = self.M(view.copy(), self.det_mod[i]) elif self.algorithm == 'dm': self.psi[0][i] += self.M(2*view-self.psi[0][i], self.det_mod[i]) - view self.update_object(i, view, self.psi[0][i]) if self.do_update_probe: self.update_probe_nonmodal(i, view, self.psi[0][i]) else: # Do modal reconstruction view = self.probe * self.object[d1[i] - self.p2:d1[i] + self.p2, d2[i] - self.p2:d2[i] + self.p2] if self.algorithm == 'er': self.psi.setat(i, self.M(view, self.det_mod[i])) elif self.algorithm == 'dm': self.psi.setat(i, self.psi.getat(i)+self.M(2*view-self.psi, self.det_mod[i]) - view) self.update_object(i, view, self.psi.getat(i)) if self.do_update_probe: self.update_probe(i, view, self.psi.getat(i)) for mode, probe in enumerate(self.probe.modes): probe.save(path=self._cur_sequence_dir+'/probe_mode{:d}'.format(mode)) self.object.save(path=self._cur_sequence_dir+'/object') def update_object(self, i, psi_old, psi_new): """ Update the object from a single ptycho position. """ then=time.time() d1, d2 = self.positions.data id1, id2 = d1//1, d2//1 probe_intensity_max = CXModal.modal_sum(abs(self.probe)**2.0).data[0].max() self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2] += \ CXData.shift(CXModal.modal_sum(conj(self.probe) * (psi_new-psi_old)) / probe_intensity_max, d1[i]%1, d2[i]%1) if self.total_its==0 and sp.mod(i, len(self.positions.data[0]) / 10) == 0: self.update_figure(i) def update_probe_nonmodal(self, i, psi_old, psi_new): d1, d2 = self.positions.data id1, id2 = d1//1, d2//1 object_intensity_max = (abs(self.object)**2.0).data[0].max() self.probe.modes[0] += \ CXData.shift(conj(self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2]) * (psi_new-psi_old)[0] / object_intensity_max, d1[i]%1, d2[i]%1) self.probe.normalise() def update_probe(self, i, psi_old, psi_new): d1, d2 = self.positions.data id1, id2 = d1//1, d2//1 object_intensity_max = (abs(self.object)**2.0).data[0].max() for mode in range(len(self.probe)): self.probe.modes[mode] += \ CXData.shift(conj(self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2]) * (psi_new-psi_old)[mode] / object_intensity_max, d1[i]%1, d2[i]%1) self.probe.normalise() self.probe.orthogonalise() def error(self, psi, det_mod): """.. method:: error(psi, det_mod) Calculates the MSE at a given position given the modes at that position. :param CXModal psi: A list of CXData instances containing all modes at a given position. :param np.ndarray det_mod: Modulus of measured diffraction pattern. """ mode_sum = CXModal.modal_sum(abs(fft2(psi))) return (sp.sum((abs(mode_sum - det_mod) ** 2.).data[0]) / sp.sum(det_mod.data[0] ** 2.))**0.5 def select_algorithm(self): try: self.algorithm_count except AttributeError: self.algorithm_count = 0 if self.algorithm == 'er': if self.algorithm_count>=CXP.reconstruction.algorithm['er']: self.algorithm = 'dm' self.algorithm_name = 'Difference Map' self.algorithm_count = 0 else: self.algorithm_name = 'Error Reduction' elif self.algorithm == 'dm': if self.algorithm_count>=CXP.reconstruction.algorithm['dm']: self.algorithm = 'er' self.algorithm_name = 'Error Reduction' self.algorithm_count = 0 else: self.algorithm_name = 'Difference Map' if self.total_its>CXP.reconstruction.ptycho_its-100: self.algorithm = 'er' self.algorithm_name = 'Error Reduction' if self.total_its>CXP.reconstruction.begin_updating_probe:# and self.algorithm=='er': self.do_update_probe = True else: self.do_update_probe=False self.algorithm_count += 1 self.fast_db_queue['algorithm'] = (self.itnum, self.algorithm) def init_figure(self): pylab.ion() self.f1=pylab.figure(1, figsize=(12, 10)) thismanager = pylab.get_current_fig_manager() thismanager.window.wm_geometry("+600+0") try: itnum = self.itnum except AttributeError: itnum = 0 try: mse = self.av_mse except AttributeError: mse = -1.0 pylab.suptitle('Sequence: {:d}, Iteration: {:d}, MSE: {:3.2f}%'.format(CXP.reconstruction.sequence, itnum, 100*mse)) def update_figure(self, i=0): cur_cmap = cm.RdGy_r self.f1.clf() self.init_figure() wh = sp.where(abs(self.object.data[0]) > 0.1 * (abs(self.object.data[0]).max())) try: x1, x2 = min(wh[0]), max(wh[0]) y1, y2 = min(wh[1]), max(wh[1]) except (ValueError, IndexError): x1, x2 = 0, self.ob_p y1, y2 = 0, self.ob_p # Plot magnitude of object s1 = pylab.subplot(231) s1_im = s1.imshow(abs(self.object).data[0][x1:x2, y1:y2], cmap=cm.Greys_r) s1.set_title('|object|') plt.axis('off') pylab.colorbar(s1_im) # Plot phase of object s2 = pylab.subplot(232) s2_im = s2.imshow(sp.angle(self.object.data[0][x1:x2, y1:y2]), cmap=cm.hsv) s2.set_title('phase(object)') plt.axis('off') pylab.colorbar(s2_im) # Complex HSV plot of object s3 = pylab.subplot(233) h = ((angle(self.object).data[0][x1:x2, y1:y2] + np.pi) / (2*np.pi)) % 1.0 s = np.ones_like(h) l = abs(self.object).data[0][x1:x2, y1:y2] l-=l.min() l/=l.max() s3_im = s3.imshow(np.dstack(v_hls_to_rgb(h,l,s))) s3.set_title('Complex plot of Object') plt.axis('off') # Plot probe mode 0 s4 = pylab.subplot(234) s4_im = s4.imshow(abs(self.probe.modes[0].data[0]), cmap=cur_cmap) s4.set_title('|probe0|') plt.axis('off') pylab.colorbar(s4_im) if CXP.reconstruction.probe_modes>1: s5 = pylab.subplot(235) s5_im = s5.imshow(abs(self.probe.modes[1].data[0]), cmap=cur_cmap) s5.set_title('|probe1|') plt.axis('off') pylab.colorbar(s5_im) else: pass if self.ppc: s6 = self.f1.add_subplot(236) s6_im = s6.scatter(self.positions.data[0], self.positions.data[1], s=10, c='b', marker='o', alpha=0.5, edgecolors='none', label='current') patches = [] for m in range(self.positions.total): patches.append(Circle((self.positions.initial[0][m], self.positions.initial[1][m]), radius=CXP.reconstruction.ppc_search_radius)) collection = PatchCollection(patches, color='tomato', alpha=0.2, edgecolors=None) s4.add_collection(collection) if CXP.measurement.simulate_data: s4_im = s4.scatter(self.positions.correct[0], self.positions.correct[1], s=10, c='g', marker='o', alpha=0.5, edgecolors='none', label='correct') CXP.log.info('RMS position deviation from correct: [x:{:3.2f},y:{:3.2f}] pixels'.format( sp.sqrt(sp.mean((self.positions.data[0] - self.positions.correct[0])**2.)), sp.sqrt(sp.mean((self.positions.data[1] - self.positions.correct[1])**2.)))) lines=[] for m in range(self.positions.total): lines.append(((self.positions.correct[0][m], self.positions.correct[1][m]), (self.positions.data[0][m], self.positions.data[1][m]))) for element in lines: x, y = zip(*element) s4.plot(x, y, 'g-') else: lines = [] for m in range(self.positions.total): lines.append(((self.positions.initial[0][m], self.positions.initial[1][m]), (self.positions.data[0][m], self.positions.data[1][m]))) for element in lines: x, y = zip(*element) s6.plot(x, y, 'g-') CXP.log.info('RMS position deviation from initial: [x:{:3.2f},y:{:3.2f}] pixels'.format( sp.sqrt(sp.mean((self.positions.data[0] - self.positions.initial[0])**2.)), sp.sqrt(sp.mean((self.positions.data[1] - self.positions.initial[1])**2.)))) s6.legend(prop={'size': 6}) s6.set_title('Position Correction') s6.set_aspect('equal') extent = s6.get_window_extent().transformed(self.f1.dpi_scale_trans.inverted()) pylab.savefig(self._cur_sequence_dir + '/ppc_{:d}.png'.format(self.total_its), bbox_inches=extent.expanded(1.2, 1.2), dpi=100) s6.set_aspect('auto') else: s6 = pylab.subplot(236) if CXP.measurement.simulate_data: s6_im = s6.imshow(abs(self.input_probe[1].data[0]), cmap = cur_cmap) s6.set_title('|input_probe1|') else: s6_im = s6.imshow(nlog(fftshift(self.det_mod[np.mod(i,self.positions.total)])).data[0], cmap=cur_cmap) s6.set_title('Diff Patt: {:d}'.format(i)) plt.axis('off') pylab.colorbar(s6_im) pylab.draw() pylab.savefig(self._cur_sequence_dir + '/recon_{:d}.png'.format(self.total_its), dpi=60) def init_db_conn(self): # Make db connection self.db = SimpleDB() self.dbconn = self.db.conn # Select the CXParams db self.db.use(CXP.db.master_db) self.db.get_cursor() # Create table interface self.t_slow_params = self.db.tables['slow_params'] self.t_fast_params = self.db.tables['fast_params'] self.recon_id = self.t_slow_params.get_new_recon_id() CXP.log.info('MySQL Reconstruction ID: {}'.format(self.recon_id)) def update_slow_table(self): for element in CXP.param_store.instances: for key, value in getattr(CXP, element).__dict__.iteritems(): self.slow_db_queue[key] = (value,) then = time.time() cnt = 0 for k, (v,) in self.slow_db_queue.iteritems(): if isinstance(v, (list, tuple)): v=str(v) self.t_slow_params.insert_on_duplicate_key_update(primary={'id': self.recon_id}, update={k: v}) cnt += 1 now = time.time() self.slow_db_queue['time_per_slow_db_entry'] = (now - then)/cnt CXP.log.info('{:3.2f} seconds elapsed entering {:d} values into slow db [{:3.2f} msec/entry]'.format(now-then, cnt, 1e3*(now - then) / cnt)) def update_fast_table(self): if not self.t_fast_params.check_columns(self.fast_db_queue.keys()): for key, (itnum, value) in self.fast_db_queue.iteritems(): if not self.t_fast_params.check_columns([key]): CXP.log.warning('MYSQL: Adding column {} to fast_params.'.format(key)) ftype = 'double' if isinstance(value, (list, tuple)): value = str(value) if isinstance(value, str): ftype = 'text' def_val = '' elif isinstance(value, bool): ftype = 'bool' def_val = '' elif isinstance(value, (int, float)): ftype = 'double' def_val = 0 else: ftype = 'blob' def_val = '' self.t_fast_params.add_column(col_name=key, var_type=ftype, default_value=def_val) self.t_fast_params.update_fieldtypes() then = time.time() cnt = 0 for k, (itnum, v) in self.fast_db_queue.iteritems(): if isinstance(v, (list, tuple)): v=str(v) self.t_fast_params.insert_on_duplicate_key_update( primary={'slow_id': self.recon_id, 'iter': itnum}, update={k: v}) cnt+=1 now = time.time() self.fast_db_queue['time_per_fast_db_entry'] = (self.itnum, (now - then) / cnt) CXP.log.info('{:3.2f} seconds elapsed entering {:d} values into fast db [{:3.2f} msec/entry]'.format(now-then, cnt, 1e3 * (now - then) / cnt)) def calc_mse(self): then = time.time() multip = multiprocess.multiprocess(self.mse_worker) d1, d2 = self.positions.data for i_range in list(split_seq(range(self.positions.total), CXP.machine.n_processes)): multip.add_job((i_range, self.psi, self.det_mod)) results = multip.close_out() self.av_mse = sp.mean(list(itertools.chain(*results))) CXP.log.info('Mean square error: {:3.2f}%'.format(100 * self.av_mse)) self.fast_db_queue['error'] = (self.itnum, self.av_mse) now = time.time() CXP.log.info('Calculating MSE took {:3.2f}sec [{:3.2f}msec/position]'.format(now - then, 1e3*(now - then) / self.positions.total)) @staticmethod @multiprocess.worker def mse_worker(args): i_range, psi, det_mod = args indvdl_mse = [] p = det_mod[0].data[0].shape[0] for i in i_range: psi_sum = CXModal.modal_sum(abs(fft2(psi.getat(i)))) indvdl_mse.append(sp.sum((abs(psi_sum - det_mod[i]) ** 2.).data[0]) / sp.sum(det_mod[i].data[0] ** 2.)) return indvdl_mse def log_reconstruction_parameters(self): """ h - object size\nz - sam-det dist\npix - # of pix\ndel_x_d - pixel size """ dx_d = CXP.experiment.dx_d x = (CXP.p/2.)*dx_d l = energy_to_wavelength(CXP.experiment.energy) h = min(CXP.experiment.beam_size) pix = CXP.p z=CXP.experiment.z NF = lambda nh, nl, nz: nh**2./(nl*nz) del_x_s = lambda l, z, x: (l*z)/(2.*x) nNF = NF(h, l, z) OS = lambda l, z, x, h, pix: ((pix*del_x_s(l, z, x))**2.)/(h**2.) nOS = OS(l, z, x, h, pix) NA = sp.sin(sp.arctan(x/z)) axial_res = 2*l/NA**2. lateral_res = l/(2.*NA) CXP.log.info('Fresnel number: {:2.2e}'.format(nNF)) CXP.log.info('Oversampling: {:3.2f}'.format(nOS)) CXP.log.info('Detector pixel size: {:3.2f} [micron]'.format(1e6*dx_d)) CXP.log.info('Detector width: {:3.2f} [mm]'.format(1e3*pix*dx_d)) CXP.log.info('Sample pixel size: {:3.2f} [nm]'.format(1e9*del_x_s(l, z, x))) CXP.log.info('Sample FOV: {:3.2f} [micron]'.format(1e6*del_x_s(l, z, x)*pix)) CXP.log.info('Numerical aperture: {:3.2f}'.format(NA)) CXP.log.info('Axial resolution: {:3.2f} [micron]'.format(1e6*axial_res)) CXP.log.info('Lateral resolution: {:3.2f} [nm]'.format(1e9*lateral_res)) self.slow_db_queue['fresnel_number'] = (nNF,) self.slow_db_queue['oversampling'] = (nOS,) self.slow_db_queue['dx_s'] = (del_x_s(l, z, x),) self.slow_db_queue['sample_fov'] = (del_x_s(l, z, x)*pix,) self.slow_db_queue['numerical_aperture'] = (NA,) self.slow_db_queue['axial_resolution'] = (axial_res,) def setup_dir_tree(self): """Setup the directory structure for a new scan id""" _top_dir = '/'.join([CXP.io.base_dir, CXP.io.scan_id]) _sequence_dir = '/'.join([CXP.io.base_dir, CXP.io.scan_id, 'sequences']) _cur_sequence_dir = _sequence_dir+'/sequence_{:d}'.format(CXP.reconstruction.sequence) _raw_data_dir = '/'.join([CXP.io.base_dir, CXP.io.scan_id, 'raw_data']) _dpc_dir = '/'.join([CXP.io.base_dir, CXP.io.scan_id, 'dpc']) _CXP_dir = '/'.join([CXP.io.base_dir, CXP.io.scan_id, '.CXPhasing']) _py_dir = '/'.join([CXP.io.base_dir, CXP.io.scan_id, 'python']) if not os.path.exists(_top_dir): CXP.log.info('Setting up new scan directory...') os.mkdir(_top_dir) os.mkdir(_sequence_dir) os.mkdir(_cur_sequence_dir) os.mkdir(_raw_data_dir) os.mkdir(_dpc_dir) os.mkdir(_CXP_dir) os.mkdir(_py_dir) try: shutil.copy(CXP.io.code_dir+'/CXParams.py', _py_dir) except IOError: CXP.log.error('Was unable to save a copy of CXParams.py to {}'.format(_py_dir)) else: CXP.log.info('Dir tree already exists.') if not os.path.exists(_sequence_dir): os.mkdir(_sequence_dir) if not os.path.exists(_cur_sequence_dir): CXP.log.info('Making new sequence directory') os.mkdir(_cur_sequence_dir) try: shutil.copy(CXP.io.code_dir+'/CXParams.py', _py_dir) shutil.copy(CXP.io.code_dir+'/CXParams.py', _cur_sequence_dir+'/CXParams_sequence{}.py'.format(CXP.reconstruction.sequence)) except IOError: CXP.log.error('Was unable to save a copy of CXParams.py to {}'.format(_py_dir)) def ptycho_mesh(self): """ Generate a list of ptycho scan positions. Outputs ------- self.data : list of 2xN arrays containing horizontal and vertical scan positions in pixels self.initial : initial guess at ptycho scan positions (before position correction) self.initial_skew : initial skew self.initial_rot : initial rotation self.initial_scl : initial scaling self.skew : current best guess at skew self.rot : current best guess at rotation self.scl : current best guess at scaling self.total : total number of ptycho positions [optional] self.correct : for simulated data this contains the correct position """ CXP.log.info('Getting ptycho position mesh.') if CXP.measurement.ptycho_scan_mesh == 'generate': if CXP.measurement.ptycho_scan_type == 'cartesian': x2 = 0.5*(CXP.measurement.cartesian_scan_dims[0]-1) y2 = 0.5*(CXP.measurement.cartesian_scan_dims[1]-1) tmp = map(lambda a: CXP.measurement.cartesian_step_size*a, np.mgrid[-x2:x2+1, -y2:y2+1]) self.positions.data = [tmp[0].flatten(), tmp[1].flatten()] if CXP.reconstruction.flip_mesh_lr: self.log.info('Flip ptycho mesh left-right') self.positions.data[0] = self.data[0][::-1] if CXP.reconstruction.flip_mesh_ud: self.log.info('Flip ptycho mesh up-down') self.positions.data[1] = self.data[1][::-1] if CXP.reconstruction.flip_fast_axis: self.log.info('Flip ptycho mesh fast axis') tmp0, tmp1 = self.data[0], self.data[1] self.positions.data[0], self.positions.data[1] = tmp1, tmp0 if CXP.measurement.ptycho_scan_type == 'round_roi': self.positions.data = list(round_roi(CXP.measurement.round_roi_diameter, CXP.measurement.round_roi_step_size)) if CXP.measurement.ptycho_scan_type == 'list': l = np.genfromtxt(CXP.measurement.list_scan_filename) x_pos, y_pos = [], [] for element in l: x_pos.append(element[0]) y_pos.append(element[1]) self.positions.data = [sp.array(x_pos), sp.array(y_pos)] elif CXP.measurement.ptycho_scan_mesh == 'supplied': l = np.genfromtxt(CXP.measurement.list_scan_filename) x_pos, y_pos = [], [] for element in l: x_pos.append(element[0]) y_pos.append(element[1]) self.positions.data = [sp.array(x_pos), sp.array(y_pos)] for element in self.positions.data: element /= CXP.dx_s element += CXP.ob_p/2 self.positions.total = len(self.positions.data[0]) self.positions.correct = [sp.zeros((self.positions.total))]*2 jit_pix = CXP.reconstruction.initial_position_jitter_radius search_pix = CXP.reconstruction.ppc_search_radius self.positions.data[0] += jit_pix * uniform(-1, 1, self.positions.total) self.positions.data[1] += jit_pix * uniform(-1, 1, self.positions.total) if CXP.reconstruction.probe_position_correction: self.positions.correct[0] = self.positions.data[0]+0.25*search_pix * uniform(-1, 1, self.positions.total) self.positions.correct[1] = self.positions.data[1]+0.25*search_pix * uniform(-1, 1, self.positions.total) else: self.positions.correct = [self.positions.data[0].copy(), self.positions.data[1].copy()] data_copy = CXData(data=list(self.positions.data)) if not CXP.reconstruction.ptycho_subpixel_shift: self.positions.data = [np.round(self.positions.data[0]), np.round(self.positions.data[1])] self.positions.correct = [np.round(self.positions.correct[0]), np.round(self.positions.correct[1])] CXP.rms_rounding_error = [None]*2 for i in range(2): CXP.rms_rounding_error[i] = sp.sqrt(sp.sum(abs(abs(data_copy.data[i])**2.-abs(self.positions.data[i])**2.))) CXP.log.info('RMS Rounding Error (Per Position, X, Y):\t {:2.2f}, {:2.2f}'.format(CXP.rms_rounding_error[0]/len(self.positions.data[0]), CXP.rms_rounding_error[1]/len(self.positions.data[1]))) def init_probe(self, *args, **kwargs): if CXP.io.initial_probe_guess is not '': probe = CXData() probe.load(CXP.io.initial_probe_guess) self.probe.modes = [CXData(data=[probe.data[0]/(i+1)]) for i in range(CXP.reconstruction.probe_modes)] self.probe.normalise() else: dx_s = CXP.dx_s p, p2 = CXP.preprocessing.desired_array_shape, CXP.preprocessing.desired_array_shape/2 probe = sp.zeros((p, p), complex) if CXP.experiment.optic.lower() == 'kb': if len(CXP.experiment.beam_size)==1: bsx=bsy=np.round(CXP.experiment.beam_size[0]/dx_s) elif len(CXP.experiment.beam_size)==2: bsx, bsy = np.round(CXP.experiment.beam_size[0]/dx_s), np.round(CXP.experiment.beam_size[1]/dx_s) probe = np.sinc((np.arange(p)-p2)/bsx)[:,np.newaxis]*np.sinc((np.arange(p)-p2)/bsy)[np.newaxis,:] elif CXP.experiment.optic.lower() == 'zp': probe = np.sinc(sp.hypot(*sp.ogrid[-p2:p2, -p2:p2])/np.round(3.*CXP.experiment.beam_size[0]/(2*CXP.dx_s))) ph_func = gauss_smooth(np.random.random(probe.shape), 10) fwhm = p/2.0 radker = sp.hypot(*sp.ogrid[-p/2:p/2,-p/2:p/2]) gaussian = exp(-1.0*(fwhm/2.35)**-2. * radker**2.0 ) gaussian /= gaussian.max() probe = abs(gaussian*probe)* exp(complex(0.,np.pi)*ph_func/ph_func.max()) self.probe.modes = [CXData(data=[probe/(i+1)]) for i in range(CXP.reconstruction.probe_modes)] self.probe.normalise() def calc_stxm_image(self): path = '/'.join([CXP.io.base_dir, CXP.io.scan_id, 'sequences/sequence_{:d}/stxm_regular_grid.png'.format(CXP.reconstruction.sequence)]) CXP.log.info('Calculating STXM image.\nSTXM saved to:\n\t{}'.format(path)) image_sum = sp.array([sp.sum(data) for data in self.det_mod.data]) x, y = self.positions.data fig = Figure(figsize=(6, 6)) canvas = FigureCanvas(fig) ax = fig.add_subplot(111) ax.set_title('STXM Image', fontsize=14) ax.set_xlabel('Position [micron]', fontsize=12) ax.set_ylabel('Position [micron]', fontsize=12) if CXP.measurement.ptycho_scan_type == 'cartesian': ax.hexbin(x, y, C=image_sum, gridsize=CXP.measurement.cartesian_scan_dims, cmap=cm.RdGy) canvas.print_figure('/'.join([CXP.io.base_dir, CXP.io.scan_id, 'sequences/sequence_{:d}/stxm_scatter.png'.format(CXP.reconstruction.sequence)]), dpi=500) ax.imshow(image_sum.reshape(CXP.measurement.cartesian_scan_dims), cmap=cm.RdGy) else: ax.hexbin(x, y, C=image_sum, cmap=cm.RdGy) canvas.print_figure(path, dpi=500)
def simulate_data(self): CXP.log.info('Simulating diffraction patterns.') self.sample = CXData() self.sample.load(CXP.io.simulation_sample_filename[0]) self.sample.data[0] = self.sample.data[0].astype(float) self.sample.normalise(val=0.8) self.sample.data[0]+=0.2 self.input_probe = CXModal() if len(CXP.io.simulation_sample_filename)>1: ph = CXData() ph.load(CXP.io.simulation_sample_filename[1]) ph.data[0] = ph.data[0].astype(float) ph.normalise(val=np.pi/3) self.sample.data[0] = self.sample.data[0]*exp(complex(0., 1.)*ph.data[0]) p = self.sample.data[0].shape[0] ham_window = sp.hamming(p)[:,np.newaxis]*sp.hamming(p)[np.newaxis,:] sample_large = CXData(data=sp.zeros((CXP.ob_p, CXP.ob_p), complex)) sample_large.data[0][CXP.ob_p/2-p/2:CXP.ob_p/2+p/2, CXP.ob_p/2-p/2:CXP.ob_p/2+p/2] = self.sample.data[0]*ham_window ker = sp.arange(0, p) fwhm = p/3.0 radker = sp.hypot(*sp.ogrid[-p/2:p/2,-p/2:p/2]) gaussian = exp(-1.0*(fwhm/2.35)**-2. * radker**2.0 ) ortho_modes = lambda n1, n2 : gaussian*np.sin(n1*math.pi*ker/p)[:,np.newaxis]*np.sin(n2*math.pi*ker/p)[np.newaxis, :] mode_generator = lambda : sp.floor(4*sp.random.random(2))+1 used_modes = [] self.input_psi = CXModal() for mode in range(CXP.reconstruction.probe_modes): if mode==0: new_mode = [1,1] else: new_mode = list(mode_generator()) while new_mode in used_modes: new_mode = list(mode_generator()) used_modes.append(new_mode) CXP.log.info('Simulating mode {:d}: [{:d}, {:d}]'.format(mode, int(new_mode[0]), int(new_mode[1]))) ph_func = gauss_smooth(np.random.random((p,p)), 10) self.input_probe.modes.append(CXData(name='probe{:d}'.format(mode), data=ortho_modes(new_mode[0], new_mode[1])*exp(complex(0.,np.pi)*ph_func/ph_func.max()))) self.input_probe.normalise() self.input_probe.orthogonalise() for mode in range(CXP.reconstruction.probe_modes): p2 = p/2 x, y = self.positions.correct self.input_psi.modes.append(CXData(name='input_psi_mode{:d}'.format(mode), data=[])) for i in xrange(len(x)): if i%(len(x)/10)==0.: CXP.log.info('Simulating diff patt {:d}'.format(i)) tmp = (CXData.shift(sample_large, -1.0*(x[i]-CXP.ob_p/2), -1.0*(y[i]-CXP.ob_p/2)) [CXP.ob_p/2-p2:CXP.ob_p/2+p2, CXP.ob_p/2-p2:CXP.ob_p/2+p2]* self.input_probe[mode][0]) self.input_psi[mode].data.append(tmp.data[0]) # Add modes incoherently self.det_mod = CXModal.modal_sum(abs(fft2(self.input_psi))) self.det_mod.save(path=CXP.io.base_dir+'/'+CXP.io.scan_id+'/raw_data/{:s}.npy'.format('det_mod'))