def run(self):
     i = 0
     while True:
         p = self.get_next_image_file()
         if p is None:
             break
         img = cv2.imread(p)
         if i >= self.skip:
             rect = self.label_file.readline()
             try:
                 box = map(lambda x: int(x), rect.split("\t"))
                 B = BoundingRegion(image_shape=img.shape, box=np.array(box))
             except:
                 try:
                     box = map(lambda x: int(x), rect.split(","))
                     B = BoundingRegion(image_shape=img.shape, box=np.array(box))
                 except:
                     print "No more bounding boxes!"
                     B = BoundingRegion()
         else:
             B = BoundingRegion()
         F = LabeledMovieFrame(internal_storage_method='jpg', compression_level=90)
         F.set_image(img)
         F.set_label(B)
         B.draw_box(img)
         cv2.imshow("image", img)
         cv2.moveWindow("image", 50, 50)
         cv2.waitKey(1)
         i += 1
         self.frame_collection.append(F)
     self.frame_collection.write_to_file(self.output_file)
Exemplo n.º 2
0
class StruckTracker(GenericVisionTracker):
    """
    TODO
    """
    def __init__(self):
        """
        Initialize the tracker
        """
        self.name = 'struck_tracker'
        f = open("config.txt", "w")
        f.write(struck_config)
        f.close()
        self.reset()

    def reset(self):
        """
        Reset the tracker
        :return:
        """
        self._primed = False
        self.bbox = None

    def _prime(self, im, bounding_region):
        """
        prime tracker on image and bounding box

        :param im: input image (3 - channel numpy array)
        :type im: numpy.ndarray
        :param bounding_region: initial bounding region of the tracked object
        :type bounding_region: PVM_tools.bounding_region.BoundingRegion
        """
        self.bbox=bounding_region
        bounding_box = bounding_region.get_box_pixels()
        struck.STRUCK_init(im, bounding_box)
    
    def _track(self, im):
        """
        Track on given image, return a bounding box

        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        self._primed = False
        struck.STRUCK_track(im)
        struck_bbox = struck.STRUCK_get_bbox()
        self.bounding_box = [struck_bbox["xmin"], struck_bbox["ymin"], struck_bbox["width"], struck_bbox["height"]]
        if self.bounding_box == ():
            self.bbox = BoundingRegion()
        else:
            self.bbox = BoundingRegion(image_shape=(im.shape[0], im.shape[1], 3), box=self.bounding_box)
        return self.bbox.copy()

    def get_heatmap(self, heatmap_name=None):
        return self.bbox.get_mask()
Exemplo n.º 3
0
 def set_bounding_box_with_center(self, x, y):
     box = [
         np.clip(int(x + 0.5) - self.x_size / 2, 0, self.image_shape[1]),
         np.clip(int(y + 0.5) - self.y_size / 2, 0, self.image_shape[0]),
         self.x_size + min(int(x + 0.5) - self.x_size / 2, 0),
         self.y_size + min(int(y + 0.5) - self.y_size / 2, 0)
     ]
     self._current_bounds = BoundingRegion(box=box)
     self.needs_refresh = True
Exemplo n.º 4
0
    def _track(self, im):
        """
        Track on given image, rseturn a bounding box

        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        current_frame = cv2.resize(im, dsize=self.image_size)
        self.prop_dict['input_array'][:] = current_frame
        self.prop_dict['input_array_float'][:] = current_frame.astype(np.float)/255
        for i in range(self.step_per_frame):
            self.executor.step()
        norm = 1.0 / len(self.prop_dict['predicted_readout_arrays'])
        self.readout_heatmap[:] = 0
        for k in self.prop_dict['predicted_readout_arrays']:
            self.readout_heatmap[:] += cv2.resize(k.view(np.ndarray), dsize=self.image_size) * norm
        am = np.unravel_index(np.argmax(self.readout_heatmap), self.readout_heatmap.shape)
        if len(am) == 3:
            for d in range(3):
                if am[2] != d:
                    self.readout_heatmap[:, :, d] = 0

        self.heatmap = self.readout_heatmap.view(np.ndarray)
        if len(self.heatmap.shape) == 3:
            self.heatmap = np.max(self.heatmap, axis=2)
        self.heatmap = cv2.resize(self.heatmap, dsize=(im.shape[1], im.shape[0]), interpolation=cv2.INTER_CUBIC)
        self.heatmap = (self.heatmap * 255).astype(np.uint8)
        if np.max(self.heatmap) > (np.median(self.heatmap)+self.threshold):
            threshold=(np.max(self.heatmap)-np.median(self.heatmap))*0.5+np.median(self.heatmap)
            ret, thresh = cv2.threshold(self.heatmap, threshold, 255, 0)
            contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            if len(contours) > 0:
                max_cnt=None
                for cnt in contours:
                    pt = np.unravel_index(np.argmax(self.heatmap), self.heatmap.shape)
                    if cv2.pointPolygonTest(cnt, (pt[1], pt[0]), False)>=0:
                        max_cnt = cnt
                        break
                if max_cnt is None:
                    self.bbox = BoundingRegion()
                else:
                    x, y, w, h = cv2.boundingRect(max_cnt)
                    if w*h > 25:
                        self.bbox = BoundingRegion(image_shape=im.shape, box=[x, y, w, h])
                        self.bbox.scale(1.1)
                    else:
                        self.bbox = BoundingRegion()
            else:
                self.bbox = BoundingRegion()
        else:
            self.bbox = BoundingRegion()
        self._primed = False
        return self.bbox.copy()
class CenterVisionTracker(GenericVisionTracker):
    """
    This class exposes the null vision tracker which just always
    returns its priming bounding box

    """
    def __init__(self, size_factor=0.2, new_name=None):
        """
        Initialize the tracker
        """
        if new_name is None:
            self.name = 'center_tracker'
        else:
            self.name = new_name
        self.size_factor = size_factor

    def reset(self):
        """
        Reset the tracker
        :return:
        """
        self._primed = False
        self.bbox = None

    def _prime(self, im, bounding_region):
        """
        prime tracker on image and bounding box

        :param im: input image (3 - channel numpy array)
        :type im: numpy.ndarray
        :param bounding_region: initial bounding region of the tracked object
        :type bounding_region: PVM_tools.bounding_region.BoundingRegion
        """
        box = np.array([(im.shape[1] - im.shape[1] * self.size_factor) / 2,
                        (im.shape[0] - im.shape[0] * self.size_factor) / 2,
                        im.shape[1] * self.size_factor,
                        im.shape[0] * self.size_factor]).astype(np.int)
        self.bbox = BoundingRegion(image_shape=im.shape, box=box)
        if not self._primed:
            self._primed = True

    def _track(self, im):
        """
        Track on given image, rseturn a bounding box

        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        self._primed = False
        return self.bbox.copy()

    def get_heatmap(self, heatmap_name=None):
        return self.bbox.get_mask()
Exemplo n.º 6
0
class CenterVisionTracker(GenericVisionTracker):
    """
    This class exposes the null vision tracker which just always
    returns its priming bounding box

    """
    def __init__(self, size_factor=0.2, new_name=None):
        """
        Initialize the tracker
        """
        if new_name is None:
            self.name = 'center_tracker'
        else:
            self.name = new_name
        self.size_factor = size_factor

    def reset(self):
        """
        Reset the tracker
        :return:
        """
        self._primed = False
        self.bbox = None

    def _prime(self, im, bounding_region):
        """
        prime tracker on image and bounding box

        :param im: input image (3 - channel numpy array)
        :type im: numpy.ndarray
        :param bounding_region: initial bounding region of the tracked object
        :type bounding_region: PVM_tools.bounding_region.BoundingRegion
        """
        box = np.array([(im.shape[1]-im.shape[1]*self.size_factor)/2,
                        (im.shape[0]-im.shape[0]*self.size_factor)/2,
                        im.shape[1]*self.size_factor,
                        im.shape[0]*self.size_factor]).astype(np.int)
        self.bbox = BoundingRegion(image_shape=im.shape, box=box)
        if not self._primed:
            self._primed = True

    def _track(self, im):
        """
        Track on given image, rseturn a bounding box

        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        self._primed = False
        return self.bbox.copy()

    def get_heatmap(self, heatmap_name=None):
        return self.bbox.get_mask()
Exemplo n.º 7
0
    def process(self, heatmap, previous_bb=None, peak=None):
        """
        This method computes a bounding box around the heatmap peak.
        Arguments:
        heatmap - target position heat map (may have multiple local maxima).
        peak - [y, x] of the most likely target position (usually the highest peak of the heatmap).
               This argument tells compute_bounding_box() which local maximum to choose.
        returns a bounding box array (x_upper_left,y_upper_left,width,height) or None if it can't be found
        """

        if np.max(heatmap) == 0.0:
            return BoundingRegion()
        heatmap = cv2.boxFilter(heatmap,
                                ddepth=-1,
                                ksize=(self.recovery_kernel_size,
                                       self.recovery_kernel_size),
                                borderType=cv2.BORDER_REPLICATE)

        if peak is None:
            peak = np.unravel_index(np.argmax(heatmap), heatmap.shape)
        if np.issubdtype(heatmap.dtype, np.float):
            _, heatmap = cv2.threshold(heatmap,
                                       self.heatmap_threshold * (1.0 / 255),
                                       255, cv2.THRESH_BINARY)
        else:
            _, heatmap = cv2.threshold(heatmap, self.heatmap_threshold, 255,
                                       cv2.THRESH_BINARY)

        if heatmap[peak[0], peak[1]] != 255:
            cors = np.nonzero(heatmap)
            new_peak = None
            if len(cors[0]) > 0:
                dist2 = (cors[0] - peak[0])**2 + (cors[1] - peak[1])**2
                ind = np.argmin(dist2)
                if dist2[ind] < self.distance_threshold**2:
                    new_peak = np.array([cors[0][ind], cors[1][ind]])
            if new_peak is None:
                return BoundingRegion(image_shape=(heatmap.shape[0],
                                                   heatmap.shape[1], 3),
                                      box=np.array([peak[1], peak[0], 1, 1]))
            peak = new_peak

        _, bounding_box = cv2.floodFill(heatmap,
                                        None,
                                        tuple(peak[::-1]),
                                        255,
                                        loDiff=10,
                                        flags=cv2.FLOODFILL_FIXED_RANGE)

        return BoundingRegion(image_shape=(heatmap.shape[0], heatmap.shape[1],
                                           3),
                              box=np.asarray(bounding_box))
Exemplo n.º 8
0
 def set_bounding_box_with_center(self, x, y):
     box = [np.clip(int(x+0.5)-self.x_size/2, 0, self.image_shape[1]),
            np.clip(int(y+0.5)-self.y_size/2, 0, self.image_shape[0]),
            self.x_size + min(int(x+0.5)-self.x_size/2, 0),
            self.y_size + min(int(y+0.5)-self.y_size/2, 0)]
     self._current_bounds = BoundingRegion(box=box)
     self.needs_refresh = True
Exemplo n.º 9
0
 def create_windows(self):
     ''' Create playback progress bar (allow user to move along the movie) '''
     cv2.namedWindow(self.win_name)
     cv2.moveWindow(self.win_name, 150, 150)
     cv2.namedWindow("completeness")
     cv2.moveWindow("completeness", 150, 50)
     cv2.setMouseCallback(self.win_name, self.trackbar_window_onMouse)
     cv2.createTrackbar("Frame", self.win_name, 0,
                        len(self.movie) - 1, self.jump_to_frame_callback)
     cv2.createTrackbar("Trim start", self.win_name, 0,
                        len(self.movie) - 1, self.set_trim_start)
     cv2.createTrackbar("Trim end", self.win_name,
                        len(self.movie) - 1,
                        len(self.movie) - 1, self.set_trim_end)
     im_height = 30  # 30 pixels high completeness bar
     im_width = len(self.movie)
     self.completeness_image = np.zeros((im_height, im_width, 3))
     current_frame_index = int(im_width * float(self.current_frame_index) /
                               len(self.movie))
     self.completeness_image[:, current_frame_index, :] = 1.
     self.completeness = np.zeros(im_width, dtype=np.uint8)
     for i in xrange(len(self.movie)):
         bounds = self.movie.Frame(i).get_label(channel=self.channel,
                                                target=self.target)
         if bounds is None or bounds.empty:
             if bounds is None:
                 self.movie.Frame(i).set_label(channel=self.channel,
                                               target=self.target,
                                               label=BoundingRegion())
             self.completeness[i] = 2
         else:
             if bounds.is_keyframe():
                 self.completeness[i] = 1
             else:
                 self.completeness[i] = 0
    def _prime(self, im, bounding_region):
        """
        prime tracker on image and bounding box

        :param im: input image (3 - channel numpy array)
        :type im: numpy.ndarray
        :param bounding_region: initial bounding region of the tracked object
        :type bounding_region: PVM_tools.bounding_region.BoundingRegion
        """
        box = np.array([(im.shape[1] - im.shape[1] * self.size_factor) / 2,
                        (im.shape[0] - im.shape[0] * self.size_factor) / 2,
                        im.shape[1] * self.size_factor,
                        im.shape[0] * self.size_factor]).astype(np.int)
        self.bbox = BoundingRegion(image_shape=im.shape, box=box)
        if not self._primed:
            self._primed = True
    def _track(self, im):
        """
        Track

        :param im:  image
        :type im: numpy.ndarray
        :return: bounding region
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        if not self._primed:
            return BoundingRegion()
        self.prob = self._back_projector.calculate(im)
        bounding_box = self._bounding_boxer.process(heatmap=self.prob)
        if bounding_box.confidence > self._confidence_threshold:
            return bounding_box.copy()
        else:
            return BoundingRegion()
Exemplo n.º 12
0
    def _track(self, im):
        """
        Track on given image, return a bounding box

        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        self._primed = False
        struck.STRUCK_track(im)
        struck_bbox = struck.STRUCK_get_bbox()
        self.bounding_box = [struck_bbox["xmin"], struck_bbox["ymin"], struck_bbox["width"], struck_bbox["height"]]
        if self.bounding_box == ():
            self.bbox = BoundingRegion()
        else:
            self.bbox = BoundingRegion(image_shape=(im.shape[0], im.shape[1], 3), box=self.bounding_box)
        return self.bbox.copy()
Exemplo n.º 13
0
 def _track(self, im):
     """
     Track on given image, return a bounding box
     :param im: image (3 - channel numpy array)
     :type im: numpy.ndarray
     :return: bounding box of the tracker object
     :rtype: PVM_tools.bounding_region.BoundingRegion
     """
     #  this is required so that tracker is re-initialized if it is primed again
     self._primed = False
     self.im_prev = im
     im = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
     self.cmt.process_frame(im)
     self.confidence = 1
     if np.isnan(self.cmt.bb).any():
         self.bbox = BoundingRegion()
     else:
         self.bbox = BoundingRegion(image_shape=im.shape, box=self.cmt.bb, confidence=self.confidence)
     return self.bbox.copy()
Exemplo n.º 14
0
    def process(self, heatmap):
        """
        The main processing method. Given the probability map, returns a bounding region

        :param heatmap: the map (e.g. result of histogram backprojection etc.). Its supposed to be a numpy array of float.
        :type heatmap: numpy.ndarray
        :return: bounding_box
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        self._last_prob = heatmap
        harea = np.prod(heatmap.shape)

        if self._last_bb is None or self._last_bb.empty:
            (bb, area, mean_prob) = self._find_new_box(heatmap)
            confidence = mean_prob
            if bb[2] > 0 and bb[3] > 0 and np.prod(bb[2:])<2*harea/3:
                self._last_bb = BoundingRegion(image_shape=(heatmap.shape[0], heatmap.shape[1], 3),
                                               box=np.array(bb, dtype=np.int),
                                               confidence=confidence)
            else:
                # Empty bounding box
                self._last_bb = BoundingRegion()
        else:
            # Step 1 go with the last bbox
            _, bb0 = cv2.meanShift(heatmap, tuple(self._last_bb.get_box_pixels()), self.term_crit)
            area0 = np.prod(bb0[2:])
            mean_prob0 = np.sum(heatmap[bb0[1]:bb0[1] + bb0[3], bb0[0]:bb0[0] + bb0[2]]) / (1e-12 + area0)
            _, bb = cv2.CamShift(heatmap, tuple(self._last_bb.get_box_pixels()), self.term_crit)
            area = np.prod(bb[2:])
            mean_prob = np.sum(heatmap[bb[1]:bb[1] + bb[3], bb[0]:bb[0] + bb[2]]) / (1e-12 + area)
            if mean_prob > self.threshold_retrieve and area > self.min_recovered_box_area and area < 2*harea/3:
                self._last_bb = BoundingRegion(image_shape=(heatmap.shape[0], heatmap.shape[1], 3),
                                               box=np.array(bb, dtype=np.int),
                                               confidence=mean_prob)
            elif mean_prob0 > self.threshold_retrieve and area0 > self.min_recovered_box_area:
                # Go with the mean shift box, changing size apparently does no good.
                return self._last_bb
            else:
                # Empty bounding box
                self._last_bb = BoundingRegion()

        return self._last_bb
Exemplo n.º 15
0
    def process(self, heatmap):
        """
        The main processing method. Given the probability map, returns a bounding region

        :param heatmap: the map (e.g. result of histogram backprojection etc.). Its supposed to be a numpy array of float.
        :type heatmap: numpy.ndarray
        :return: bounding_box
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        self._last_prob = heatmap
        harea = np.prod(heatmap.shape)

        if self._last_bb is None or self._last_bb.empty:
            (bb, area, mean_prob) = self._find_new_box(heatmap)
            confidence = mean_prob
            if bb[2] > 0 and bb[3] > 0 and np.prod(bb[2:]) < 2 * harea / 3:
                self._last_bb = BoundingRegion(image_shape=(heatmap.shape[0],
                                                            heatmap.shape[1],
                                                            3),
                                               box=np.array(bb, dtype=np.int),
                                               confidence=confidence)
            else:
                # Empty bounding box
                self._last_bb = BoundingRegion()
        else:
            # Step 1 go with the last bbox
            _, bb0 = cv2.meanShift(heatmap,
                                   tuple(self._last_bb.get_box_pixels()),
                                   self.term_crit)
            area0 = np.prod(bb0[2:])
            mean_prob0 = np.sum(heatmap[bb0[1]:bb0[1] + bb0[3], bb0[0]:bb0[0] +
                                        bb0[2]]) / (1e-12 + area0)
            _, bb = cv2.CamShift(heatmap,
                                 tuple(self._last_bb.get_box_pixels()),
                                 self.term_crit)
            area = np.prod(bb[2:])
            mean_prob = np.sum(heatmap[bb[1]:bb[1] + bb[3],
                                       bb[0]:bb[0] + bb[2]]) / (1e-12 + area)
            if mean_prob > self.threshold_retrieve and area > self.min_recovered_box_area and area < 2 * harea / 3:
                self._last_bb = BoundingRegion(image_shape=(heatmap.shape[0],
                                                            heatmap.shape[1],
                                                            3),
                                               box=np.array(bb, dtype=np.int),
                                               confidence=mean_prob)
            elif mean_prob0 > self.threshold_retrieve and area0 > self.min_recovered_box_area:
                # Go with the mean shift box, changing size apparently does no good.
                return self._last_bb
            else:
                # Empty bounding box
                self._last_bb = BoundingRegion()

        return self._last_bb
Exemplo n.º 16
0
    def _track(self, im):
        """
        Track on given image, return a bounding box

        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        self._primed = False
        img_cvmat = cv2.cv.fromarray(im)
        self.tld.processImage(img_cvmat)
        self.bounding_box = self.tld.getCurrBB()
        self.confidence = self.tld.currConf
        if self.bounding_box == ():
            self.bbox = BoundingRegion()
        else:
            self.bbox = BoundingRegion(image_shape=(im.shape[0], im.shape[1], 3), box=self.bounding_box, confidence=self.confidence)
        return self.bbox.copy()
Exemplo n.º 17
0
 def reset(self, reload=False):
     cv2.destroyAllWindows()
     fc = FrameCollection()
     if reload:
         fc.load_from_file(filename=self.output_file)
     else:
         fc.load_from_file(filename=self.input_filename)
     self.movie = fc
     self.tracker = None
     self.current_frame_index = 0
     self.right_button_pressed = False
     self.left_button_pressed = False
     self._anchor = None
     self.x_size = 30
     self.y_size = 30
     self._tracked_bounds = None
     self._stored_bounds = None
     self._current_bounds = BoundingRegion()
     # Make sure self.timer is set
     self.schedule_callback()
     # Initialization of the Graphic User Interface
     self.ready_to_refresh = threading.Lock()
     self.timer_lock = threading.Lock()
     self.win_name = 'Labeling video GUI'
     self.image = self.movie.Frame(
         self.current_frame_index).get_image(channel=self.channel)
     self.display_image = self.movie.Frame(
         self.current_frame_index).get_image(channel=self.channel)
     self.image_shape = self.image.shape
     self.create_windows()
     self.set_target_absent()
     self.image_buffer = {}
     self._last_update = time.time()
     self.refresh_timer = threading.Timer(0.05, self.refresh)
     self.refresh_timer.start()
     self.needs_refresh = True
     self.trim_end = len(self.movie) - 1
     self.trim_start = 0
Exemplo n.º 18
0
    def _track(self, im):
        """
        Track on given image, return a bounding box

        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        self._primed = False
        img_cvmat = cv2.cv.fromarray(im)
        self.tld.processImage(img_cvmat)
        self.bounding_box = self.tld.getCurrBB()
        self.confidence = self.tld.currConf
        if self.bounding_box == ():
            self.bbox = BoundingRegion()
        else:
            self.bbox = BoundingRegion(image_shape=(im.shape[0], im.shape[1],
                                                    3),
                                       box=self.bounding_box,
                                       confidence=self.confidence)
        return self.bbox.copy()
Exemplo n.º 19
0
    def _track(self, im):
        """
        Track on given image, return a bounding box

        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        self._primed = False
        struck.STRUCK_track(im)
        struck_bbox = struck.STRUCK_get_bbox()
        self.bounding_box = [
            struck_bbox["xmin"], struck_bbox["ymin"], struck_bbox["width"],
            struck_bbox["height"]
        ]
        if self.bounding_box == ():
            self.bbox = BoundingRegion()
        else:
            self.bbox = BoundingRegion(image_shape=(im.shape[0], im.shape[1],
                                                    3),
                                       box=self.bounding_box)
        return self.bbox.copy()
Exemplo n.º 20
0
    def _prime(self, im, bounding_region):
        """
        prime tracker on image and bounding box

        :param im: input image (3 - channel numpy array)
        :type im: numpy.ndarray
        :param bounding_region: initial bounding region of the tracked object
        :type bounding_region: PVM_tools.bounding_region.BoundingRegion
        """
        box = np.array([(im.shape[1]-im.shape[1]*self.size_factor)/2,
                        (im.shape[0]-im.shape[0]*self.size_factor)/2,
                        im.shape[1]*self.size_factor,
                        im.shape[0]*self.size_factor]).astype(np.int)
        self.bbox = BoundingRegion(image_shape=im.shape, box=box)
        if not self._primed:
            self._primed = True
Exemplo n.º 21
0
    def interpolate(self, start, end):
        print "Interpolating %d %d" % (start, end)
        label0 = self.movie.Frame(start).get_label(channel=self.channel,
                                                   target=self.target)
        label1 = self.movie.Frame(end).get_label(channel=self.channel,
                                                 target=self.target)
        if (label0.empty) or (label1.empty):
            return
        box0 = label0.get_box_pixels()
        box1 = label1.get_box_pixels()

        for i in xrange(start + 1, end, 1):
            alpha = (end - i) * 1.0 / (end - start)
            box2 = alpha * np.array(box0) + (1 - alpha) * np.array(box1)
            box2 = map(lambda x: int(x), box2)
            self.movie.Frame(i).set_label(BoundingRegion(
                box=box2,
                image_shape=self.movie.Frame(i).get_image(
                    channel=self.channel).shape),
                                          channel=self.channel,
                                          target=self.target)
            self.completeness[i] = 0
Exemplo n.º 22
0
 def reset(self, reload=False):
     cv2.destroyAllWindows()
     fc = FrameCollection()
     if reload:
         fc.load_from_file(filename=self.output_file)
     else:
         fc.load_from_file(filename=self.input_filename)
     self.movie = fc
     self.tracker = None
     self.current_frame_index = 0
     self.right_button_pressed = False
     self.left_button_pressed = False
     self._anchor = None
     self.x_size = 30
     self.y_size = 30
     self._tracked_bounds = None
     self._stored_bounds = None
     self._current_bounds = BoundingRegion()
     # Make sure self.timer is set
     self.schedule_callback()
     # Initialization of the Graphic User Interface
     self.ready_to_refresh = threading.Lock()
     self.timer_lock = threading.Lock()
     self.win_name = 'Labeling video GUI'
     self.image = self.movie.Frame(self.current_frame_index).get_image(channel=self.channel)
     self.display_image = self.movie.Frame(self.current_frame_index).get_image(channel=self.channel)
     self.image_shape = self.image.shape
     self.create_windows()
     self.set_target_absent()
     self.image_buffer = {}
     self._last_update = time.time()
     self.refresh_timer = threading.Timer(0.05, self.refresh)
     self.refresh_timer.start()
     self.needs_refresh = True
     self.trim_end = len(self.movie)-1
     self.trim_start = 0
Exemplo n.º 23
0
class TLDVisionTracker(GenericVisionTracker):
    """
    This class exposes the open tld tracker implemented in C++ by http://www.gnebehay.com/tld/.
    Originally OpenTLD that was originally published in MATLAB by Zdenek Kalal.

    """
    def __init__(self):
        """
        Initialize the tracker
        """
        self.name = 'tld_tracker'
        self.reset()

    def reset(self):
        """
        Reset the tracker
        :return:
        """
        self.tld = None
        self._primed = False
        self.bbox = None

    def _prime(self, im, bounding_region):
        """
        prime tracker on image and bounding box

        :param im: input image (3 - channel numpy array)
        :type im: numpy.ndarray
        :param bounding_region: initial bounding region of the tracked object
        :type bounding_region: PVM_tools.bounding_region.BoundingRegion
        """
        self.bbox = bounding_region
        bounding_box = bounding_region.get_box_pixels()

        if not self._primed:
            self.tld = tld.TLD2()
            self._primed = True

        self.height, self.width = im.shape[:2]
        self.tld.set_width_and_height((self.width, self.height))

        im = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
        img_cvmat = cv2.cv.fromarray(im)
        if bounding_box[0] + bounding_box[2] > self.width:
            bounding_box[2] = self.width - bounding_box[0]
        if bounding_box[1] + bounding_box[3] > self.height:
            bounding_box[3] = self.height - bounding_box[1]

        self.tld.selectObject(
            img_cvmat,
            tuple([
                int(bounding_box[0]),
                int(bounding_box[1]),
                int(bounding_box[2]),
                int(bounding_box[3])
            ]))

    def _track(self, im):
        """
        Track on given image, return a bounding box

        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        self._primed = False
        img_cvmat = cv2.cv.fromarray(im)
        self.tld.processImage(img_cvmat)
        self.bounding_box = self.tld.getCurrBB()
        self.confidence = self.tld.currConf
        if self.bounding_box == ():
            self.bbox = BoundingRegion()
        else:
            self.bbox = BoundingRegion(image_shape=(im.shape[0], im.shape[1],
                                                    3),
                                       box=self.bounding_box,
                                       confidence=self.confidence)
        return self.bbox.copy()

    def get_heatmap(self, heatmap_name=None):
        return self.bbox.get_mask()
Exemplo n.º 24
0
 def set_target_absent(self):
     self._current_bounds = BoundingRegion()
Exemplo n.º 25
0
class CMTVisionTracker(GenericVisionTracker):
    """
    This class exposes the CMT tracker implemented in http://www.gnebehay.com/CMT/.
    """
    def __init__(self):
        """
        Initialize the tracker
        """
        self.name = 'cmt_tracker'
        self.reset()

    def reset(self):
        """
        Reset the tracker
        :return:
        """
        self.cmt = None
        self._primed = False
        self.bbox = None

    def _prime(self, im, bounding_region):
        """
        prime tracker on image and bounding box
        :param im: input image (3 - channel numpy array)
        :type im: numpy.ndarray
        :param bounding_region: initial bounding region of the tracked object
        :type bounding_region: PVM_tools.bounding_region.BoundingRegion
        """
        self.bbox=bounding_region
        bounding_box = bounding_region.get_box_pixels()

        if not self._primed:
            this_dir = os.path.dirname(os.path.realpath(__file__))
            sys.path.append(this_dir+"/original_cmt/")
            from CMT import CMT
            self.cmt = CMT()
            self._primed = True

        self.height, self.width = im.shape[:2]
        im = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
        self.cmt.initialise(im_gray0=im,
                            tl=tuple([bounding_box[0], bounding_box[1]]),
                            br=tuple([bounding_box[0]+bounding_box[2], bounding_box[1]+bounding_box[3]]))
        self.im_prev = im

    def _track(self, im):
        """
        Track on given image, return a bounding box
        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        self._primed = False
        self.im_prev = im
        im = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
        self.cmt.process_frame(im)
        self.confidence = 1
        if np.isnan(self.cmt.bb).any():
            self.bbox = BoundingRegion()
        else:
            self.bbox = BoundingRegion(image_shape=im.shape, box=self.cmt.bb, confidence=self.confidence)
        return self.bbox.copy()

    def get_heatmap(self, heatmap_name=None):
        return self.bbox.get_mask()
Exemplo n.º 26
0
class StruckTracker(GenericVisionTracker):
    """
    TODO
    """
    def __init__(self):
        """
        Initialize the tracker
        """
        self.name = 'struck_tracker'
        f = open("config.txt", "w")
        f.write(struck_config)
        f.close()
        self.reset()

    def reset(self):
        """
        Reset the tracker
        :return:
        """
        self._primed = False
        self.bbox = None

    def _prime(self, im, bounding_region):
        """
        prime tracker on image and bounding box

        :param im: input image (3 - channel numpy array)
        :type im: numpy.ndarray
        :param bounding_region: initial bounding region of the tracked object
        :type bounding_region: PVM_tools.bounding_region.BoundingRegion
        """
        self.bbox = bounding_region
        bounding_box = bounding_region.get_box_pixels()
        struck.STRUCK_init(im, bounding_box)

    def _track(self, im):
        """
        Track on given image, return a bounding box

        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        self._primed = False
        struck.STRUCK_track(im)
        struck_bbox = struck.STRUCK_get_bbox()
        self.bounding_box = [
            struck_bbox["xmin"], struck_bbox["ymin"], struck_bbox["width"],
            struck_bbox["height"]
        ]
        if self.bounding_box == ():
            self.bbox = BoundingRegion()
        else:
            self.bbox = BoundingRegion(image_shape=(im.shape[0], im.shape[1],
                                                    3),
                                       box=self.bounding_box)
        return self.bbox.copy()

    def get_heatmap(self, heatmap_name=None):
        return self.bbox.get_mask()
Exemplo n.º 27
0
 def set_target_absent(self):
     self._current_bounds = BoundingRegion()
Exemplo n.º 28
0
    def _track(self, im):
        """
        Track on given image, rseturn a bounding box

        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        current_frame = cv2.resize(im, dsize=self.image_size)
        self.prop_dict['input_array'][:] = current_frame
        self.prop_dict['input_array_float'][:] = current_frame.astype(
            np.float) / 255
        for i in range(self.step_per_frame):
            self.executor.step()
        norm = 1.0 / len(self.prop_dict['predicted_readout_arrays'])
        self.readout_heatmap[:] = 0
        for k in self.prop_dict['predicted_readout_arrays']:
            self.readout_heatmap[:] += cv2.resize(k.view(np.ndarray),
                                                  dsize=self.image_size) * norm
        am = np.unravel_index(np.argmax(self.readout_heatmap),
                              self.readout_heatmap.shape)
        if len(am) == 3:
            for d in range(3):
                if am[2] != d:
                    self.readout_heatmap[:, :, d] = 0

        self.heatmap = self.readout_heatmap.view(np.ndarray)
        if len(self.heatmap.shape) == 3:
            self.heatmap = np.max(self.heatmap, axis=2)
        self.heatmap = cv2.resize(self.heatmap,
                                  dsize=(im.shape[1], im.shape[0]),
                                  interpolation=cv2.INTER_CUBIC)
        self.heatmap = (self.heatmap * 255).astype(np.uint8)
        if np.max(self.heatmap) > (np.median(self.heatmap) + self.threshold):
            threshold = (np.max(self.heatmap) - np.median(
                self.heatmap)) * 0.5 + np.median(self.heatmap)
            ret, thresh = cv2.threshold(self.heatmap, threshold, 255, 0)
            contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE,
                                                   cv2.CHAIN_APPROX_SIMPLE)
            if len(contours) > 0:
                max_cnt = None
                for cnt in contours:
                    pt = np.unravel_index(np.argmax(self.heatmap),
                                          self.heatmap.shape)
                    if cv2.pointPolygonTest(cnt, (pt[1], pt[0]), False) >= 0:
                        max_cnt = cnt
                        break
                if max_cnt is None:
                    self.bbox = BoundingRegion()
                else:
                    x, y, w, h = cv2.boundingRect(max_cnt)
                    if w * h > 25:
                        self.bbox = BoundingRegion(image_shape=im.shape,
                                                   box=[x, y, w, h])
                        self.bbox.scale(1.1)
                    else:
                        self.bbox = BoundingRegion()
            else:
                self.bbox = BoundingRegion()
        else:
            self.bbox = BoundingRegion()
        self._primed = False
        return self.bbox.copy()
Exemplo n.º 29
0
class LabelingApp(object):
    def __init__(self,
                 filename,
                 output=None,
                 channel="default",
                 target="default"):
        self.input_filename = filename
        if output is None:
            self.output_file = self.input_filename
        else:
            self.output_file = output
        self.channel = channel
        self.target = target
        self.reset()

    def reset(self, reload=False):
        cv2.destroyAllWindows()
        fc = FrameCollection()
        if reload:
            fc.load_from_file(filename=self.output_file)
        else:
            fc.load_from_file(filename=self.input_filename)
        self.movie = fc
        self.tracker = None
        self.current_frame_index = 0
        self.right_button_pressed = False
        self.left_button_pressed = False
        self._anchor = None
        self.x_size = 30
        self.y_size = 30
        self._tracked_bounds = None
        self._stored_bounds = None
        self._current_bounds = BoundingRegion()
        # Make sure self.timer is set
        self.schedule_callback()
        # Initialization of the Graphic User Interface
        self.ready_to_refresh = threading.Lock()
        self.timer_lock = threading.Lock()
        self.win_name = 'Labeling video GUI'
        self.image = self.movie.Frame(
            self.current_frame_index).get_image(channel=self.channel)
        self.display_image = self.movie.Frame(
            self.current_frame_index).get_image(channel=self.channel)
        self.image_shape = self.image.shape
        self.create_windows()
        self.set_target_absent()
        self.image_buffer = {}
        self._last_update = time.time()
        self.refresh_timer = threading.Timer(0.05, self.refresh)
        self.refresh_timer.start()
        self.needs_refresh = True
        self.trim_end = len(self.movie) - 1
        self.trim_start = 0

    def fill_up_the_buffer(self):
        r0 = max(self.current_frame_index - 5, 0)
        r1 = min(self.current_frame_index + 5, len(self.movie))
        for i in xrange(r0, r1, 1):
            if i not in self.image_buffer.keys():
                self.image_buffer[i] = self.movie.Frame(i).get_image(
                    channel=self.channel)
        for i in self.image_buffer.keys():
            if i < r0 or i > r1:
                del self.image_buffer[i]

    def create_windows(self):
        ''' Create playback progress bar (allow user to move along the movie) '''
        cv2.namedWindow(self.win_name)
        cv2.moveWindow(self.win_name, 150, 150)
        cv2.namedWindow("completeness")
        cv2.moveWindow("completeness", 150, 50)
        cv2.setMouseCallback(self.win_name, self.trackbar_window_onMouse)
        cv2.createTrackbar("Frame", self.win_name, 0,
                           len(self.movie) - 1, self.jump_to_frame_callback)
        cv2.createTrackbar("Trim start", self.win_name, 0,
                           len(self.movie) - 1, self.set_trim_start)
        cv2.createTrackbar("Trim end", self.win_name,
                           len(self.movie) - 1,
                           len(self.movie) - 1, self.set_trim_end)
        im_height = 30  # 30 pixels high completeness bar
        im_width = len(self.movie)
        self.completeness_image = np.zeros((im_height, im_width, 3))
        current_frame_index = int(im_width * float(self.current_frame_index) /
                                  len(self.movie))
        self.completeness_image[:, current_frame_index, :] = 1.
        self.completeness = np.zeros(im_width, dtype=np.uint8)
        for i in xrange(len(self.movie)):
            bounds = self.movie.Frame(i).get_label(channel=self.channel,
                                                   target=self.target)
            if bounds is None or bounds.empty:
                if bounds is None:
                    self.movie.Frame(i).set_label(channel=self.channel,
                                                  target=self.target,
                                                  label=BoundingRegion())
                self.completeness[i] = 2
            else:
                if bounds.is_keyframe():
                    self.completeness[i] = 1
                else:
                    self.completeness[i] = 0

    def set_trim_start(self, frame_index):
        self.trim_start = frame_index + 0

    def set_trim_end(self, frame_index):
        self.trim_end = frame_index + 0

    def jump_to_frame_callback(self, frame_index):
        self.current_frame_index = frame_index
        self.image = self.movie.Frame(
            self.current_frame_index).get_image(channel=self.channel)
        self.needs_refresh = True

    def update_completeness_window(self):
        if self.ready_to_refresh.acquire(False):
            self.completeness_image *= 0
            self.completeness_image[:, self.current_frame_index, :] = 255
            for i in xrange(len(self.movie)):
                self.completeness_image[:, i, self.completeness[i]] = 255
            cv2.putText(self.completeness_image,
                        '%i' % self.current_frame_index, (10, 10),
                        cv2.FONT_HERSHEY_PLAIN,
                        1.0, (255, 255, 255),
                        lineType=cv2.CV_AA)
            cv2.imshow('completeness', self.completeness_image)
            self.ready_to_refresh.release()

    def update_trackbar_window(self):
        if self.ready_to_refresh.acquire():
            image = self.image.copy()
            self._stored_bounds = self.movie.Frame(
                self.current_frame_index).get_label(channel=self.channel,
                                                    target=self.target)
            # display rectangle over selected area
            self._current_bounds.draw_box(image, color=(255, 255, 255))
            self._current_bounds.draw_box(image, color=(0, 0, 0), thickness=1)
            # display rectangle over stored area
            if self._stored_bounds is not None:
                self._stored_bounds.draw_box(image, color=(255, 0, 0))
            if self._tracked_bounds is not None:
                self._tracked_bounds.draw_box(image, color=(0, 255, 0))
            # reshape to display if too small
            min_width = 320
            if image.shape[1] < min_width:
                resize_height = int(0.5 + image.shape[0] * min_width /
                                    float(image.shape[1]))
                image = cv2.resize(image, (min_width, resize_height),
                                   interpolation=cv2.INTER_NEAREST)
            self.display_image = image
            self.ready_to_refresh.release()

    def refresh(self):
        if self.timer_lock.acquire():
            if self.needs_refresh:
                self.update_trackbar_window()
                self.update_completeness_window()
                self.needs_refresh = False
            self.refresh_timer = threading.Timer(0.05, self.refresh)
            self.refresh_timer.start()
            self.timer_lock.release()

    def trackbar_window_onMouse(self, event, x, y, flags, _):
        cv2.imshow(self.win_name, self.display_image)
        # Update state
        self.right_button_pressed = (flags & cv2.EVENT_FLAG_RBUTTON
                                     ) != 0 and event != cv2.EVENT_RBUTTONUP
        self.left_button_pressed = (flags & cv2.EVENT_FLAG_LBUTTON
                                    ) != 0 and event != cv2.EVENT_LBUTTONUP

        # Set bounding box
        if event == cv2.EVENT_MBUTTONDOWN:
            if self._anchor is None:
                # Setting the anchor
                self._anchor = (x, y)
            else:
                # Defining the box
                self.save_and_advance()

        elif self._anchor is not None and event != cv2.EVENT_MBUTTONUP:
            # We are creating new bounding box from anchor to current position
            self.x_size = max(5, int(abs(x - self._anchor[0]) + 0.5))
            self.y_size = max(5, int(abs(y - self._anchor[1]) + 0.5))
            center_x = (x + self._anchor[0]) / 2
            center_y = (y + self._anchor[1]) / 2
            self.set_bounding_box_with_center(center_x, center_y)
        elif event == cv2.EVENT_MBUTTONUP:
            self.x_size = max(5, int(abs(x - self._anchor[0]) + 0.5))
            self.y_size = max(5, int(abs(y - self._anchor[1]) + 0.5))
            center_x = (x + self._anchor[0]) / 2
            center_y = (y + self._anchor[1]) / 2
            self.set_bounding_box_with_center(center_x, center_y)
            keyframe = False
            if flags & cv2.EVENT_FLAG_CTRLKEY != 0:
                keyframe = True
            self.save_and_advance(keyframe=keyframe)
        else:
            self.set_bounding_box_with_center(x, y)

        # If this is a left/right button down event,
        # we can advance one frame immediately
        # and then start the timer
        if event == cv2.EVENT_RBUTTONDOWN:
            self.set_target_absent()
            self.save_and_advance()
            self.right_button_pressed = True
            if self.timer.finished:
                # Rearm the timer
                self.schedule_callback()
        elif event == cv2.EVENT_LBUTTONDOWN:
            self.set_bounding_box_with_center(x, y)
            keyframe = False
            if flags & cv2.EVENT_FLAG_CTRLKEY != 0:
                keyframe = True
            self.save_and_advance(keyframe=keyframe)
            self.left_button_pressed = True
            if self.timer.finished:
                # Rearm the timer
                self.schedule_callback()
        elif not (self.right_button_pressed or self.left_button_pressed):
            # No mouse button pressed, so cancel the timer if it's running
            self.timer.cancel()
        if time.time() - self._last_update > 0.1:
            self._last_update = time.time()
            self.needs_refresh = True

    def set_target_absent(self):
        self._current_bounds = BoundingRegion()

    def set_bounding_box_with_center(self, x, y):
        box = [
            np.clip(int(x + 0.5) - self.x_size / 2, 0, self.image_shape[1]),
            np.clip(int(y + 0.5) - self.y_size / 2, 0, self.image_shape[0]),
            self.x_size + min(int(x + 0.5) - self.x_size / 2, 0),
            self.y_size + min(int(y + 0.5) - self.y_size / 2, 0)
        ]
        self._current_bounds = BoundingRegion(box=box)
        self.needs_refresh = True

    def schedule_callback(self):
        # 0.2 secs => 5 Hz
        self.timer = threading.Timer(0.1, self.timer_callback)
        self.timer.start()

    def timer_callback(self):
        if self.right_button_pressed or self.left_button_pressed:
            self.save_and_advance()
            self.schedule_callback()

    def advance_current_frame(self, increment=1):
        self.current_frame_index = min(
            len(self.movie) - 1, max(0, self.current_frame_index + increment))
        self.image = self.movie.Frame(
            self.current_frame_index).get_image(channel=self.channel)
        cv2.setTrackbarPos("Frame", self.win_name, self.current_frame_index)
        if self.tracker is not None:
            self._tracked_bounds = self.tracker.track(
                self.movie.Frame(
                    self.current_frame_index).get_image(channel=self.channel))

    def save_and_advance(self, keyframe=False):
        self._anchor = None
        self.movie.Frame(self.current_frame_index).set_label(
            self._current_bounds.copy(),
            channel=self.channel,
            target=self.target)
        if self._current_bounds.empty:
            self.completeness[self.current_frame_index] = 2
        else:
            if self._current_bounds.is_keyframe():
                self.completeness[self.current_frame_index] = 1
            else:
                self.completeness[self.current_frame_index] = 0
        if keyframe:
            self.make_keyframe()
            self.advance_current_frame(15)
        else:
            self.advance_current_frame(1)

    def toggle_tracker(self):
        if self.tracker is None:
            self.tracker = CMTVisionTracker()
            self.tracker.prime(
                self.movie.Frame(
                    self.current_frame_index).get_image(channel=self.channel),
                self._current_bounds)
            logging.warning("Tracker is enabled")
        else:
            self.tracker = None
            self._tracked_bounds = None
            logging.warning("Tracker is disabled")

    def advance_tracker(self):
        if self._tracked_bounds is not None:
            self._current_bounds = self._tracked_bounds
            self.save_and_advance()

    def export_movie(self):
        trim_frames_front = self.trim_start
        trim_frames_end = (len(self.movie) - 1) - self.trim_end
        if trim_frames_end > 0:
            for i in range(trim_frames_end):
                self.movie.delete(-1)
        if trim_frames_front > 0:
            for i in range(trim_frames_front):
                self.movie.delete(0)
        logging.warning("Exporting result in file " + self.output_file)
        self.movie.write_to_file(self.output_file)
        logging.warning("Exporting completed !")

    def interpolate(self, start, end):
        print "Interpolating %d %d" % (start, end)
        label0 = self.movie.Frame(start).get_label(channel=self.channel,
                                                   target=self.target)
        label1 = self.movie.Frame(end).get_label(channel=self.channel,
                                                 target=self.target)
        if (label0.empty) or (label1.empty):
            return
        box0 = label0.get_box_pixels()
        box1 = label1.get_box_pixels()

        for i in xrange(start + 1, end, 1):
            alpha = (end - i) * 1.0 / (end - start)
            box2 = alpha * np.array(box0) + (1 - alpha) * np.array(box1)
            box2 = map(lambda x: int(x), box2)
            self.movie.Frame(i).set_label(BoundingRegion(
                box=box2,
                image_shape=self.movie.Frame(i).get_image(
                    channel=self.channel).shape),
                                          channel=self.channel,
                                          target=self.target)
            self.completeness[i] = 0

    def make_keyframe(self):
        self.completeness[self.current_frame_index] = 1
        self.movie.Frame(self.current_frame_index).get_label(
            channel=self.channel, target=self.target).set_keyframe(True)

        # find previous keyframe
        next_keyframe = -1
        for i in xrange(self.current_frame_index + 1, len(self.movie), 1):
            bounds = self.movie.Frame(i).get_label(channel=self.channel,
                                                   target=self.target)
            if bounds.is_keyframe():
                next_keyframe = i
                break
        if next_keyframe >= 0:
            print next_keyframe
            self.interpolate(self.current_frame_index, next_keyframe)
        # find next keyframe
        prev_keyframe = -1
        for i in xrange(self.current_frame_index - 1, -1, -1):
            bounds = self.movie.Frame(i).get_label(channel=self.channel,
                                                   target=self.target)
            if bounds.is_keyframe():
                prev_keyframe = i
                break
        if prev_keyframe >= 0:
            print prev_keyframe
            self.interpolate(prev_keyframe, self.current_frame_index)

    def run(self):
        while True:
            key = cv2.waitKey(0)
            cv2.imshow(self.win_name, self.display_image)

            if key == 65361:  # left arrow
                # Go to previous frame
                self.advance_current_frame(-1)
            elif key == 65362:
                self.advance_current_frame(-10)
            elif key == 65363:  # right arrow
                # Go to next frame
                self.advance_current_frame()
            elif key == 65364:
                self.advance_current_frame(10)
            elif key == ord('w'):  # Write
                self.export_movie()
                if self.timer_lock.acquire():
                    if not self.refresh_timer.finished:
                        self.refresh_timer.cancel()
                    self.timer_lock.release()
                self.timer.cancel()
                self.reset()
            elif key == ord('t'):  # Tracker
                self.toggle_tracker()
            elif key == ord(' '):  # Advance tracker
                self.advance_tracker()
                self.needs_refresh = True
            elif key == ord('a'):
                self.x_size = int(self.x_size * 1.1)
                self.y_size = int(self.y_size * 1.1)
                self.needs_refresh = True
            elif key == ord('z'):
                self.x_size = int(self.x_size * 1 / 1.1)
                self.y_size = int(self.y_size * 1 / 1.1)
                self.needs_refresh = True
            elif key == ord('s'):
                self.y_size = int(self.y_size * 1.1)
                self.needs_refresh = True
            elif key == ord('k'):
                self.make_keyframe()
            elif key == ord('x'):
                self.y_size = int(self.y_size * 1 / 1.1)
                self.needs_refresh = True
            elif key == ord('q'):  # Export
                while key != -1:
                    for k in range(10):
                        key = cv2.waitKey(10)
                print "Quiting! Do you want to save your work? [Y/N]"
                while True:
                    key = cv2.waitKey(0)
                    if key == ord('Y') or key == ord('y'):
                        self.export_movie()
                        break
                    if key == ord('N') or key == ord('n'):
                        break
                break
        logging.warning('Exiting')
        self.refresh_timer.cancel()
Exemplo n.º 30
0
class TLDVisionTracker(GenericVisionTracker):
    """
    This class exposes the open tld tracker implemented in C++ by http://www.gnebehay.com/tld/.
    Originally OpenTLD that was originally published in MATLAB by Zdenek Kalal.

    """
    def __init__(self):
        """
        Initialize the tracker
        """
        self.name = 'tld_tracker'
        self.reset()

    def reset(self):
        """
        Reset the tracker
        :return:
        """
        self.tld = None
        self._primed = False
        self.bbox = None

    def _prime(self, im, bounding_region):
        """
        prime tracker on image and bounding box

        :param im: input image (3 - channel numpy array)
        :type im: numpy.ndarray
        :param bounding_region: initial bounding region of the tracked object
        :type bounding_region: PVM_tools.bounding_region.BoundingRegion
        """
        self.bbox=bounding_region
        bounding_box = bounding_region.get_box_pixels()

        if not self._primed:
            self.tld = tld.TLD2()
            self._primed = True

        self.height, self.width = im.shape[:2]
        self.tld.set_width_and_height((self.width, self.height))

        im = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
        img_cvmat = cv2.cv.fromarray(im)
        if bounding_box[0] + bounding_box[2] > self.width:
            bounding_box[2] = self.width - bounding_box[0]
        if bounding_box[1] + bounding_box[3] > self.height:
            bounding_box[3] = self.height - bounding_box[1]

        self.tld.selectObject(img_cvmat, tuple([int(bounding_box[0]), int(bounding_box[1]), int(bounding_box[2]), int(bounding_box[3])]))

    def _track(self, im):
        """
        Track on given image, return a bounding box

        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        self._primed = False
        img_cvmat = cv2.cv.fromarray(im)
        self.tld.processImage(img_cvmat)
        self.bounding_box = self.tld.getCurrBB()
        self.confidence = self.tld.currConf
        if self.bounding_box == ():
            self.bbox = BoundingRegion()
        else:
            self.bbox = BoundingRegion(image_shape=(im.shape[0], im.shape[1], 3), box=self.bounding_box, confidence=self.confidence)
        return self.bbox.copy()

    def get_heatmap(self, heatmap_name=None):
        return self.bbox.get_mask()
Exemplo n.º 31
0
class CamshiftBoundingBoxer(AbstractBoundingBoxer):
    """
    Given a prob-map of pixel membership, return a bounding box: (PVM_tools.bounding_region.BoundingRegion)

    This class uses the opencv CamShift method to estimate the new position of the bounding box
    based on the previous one. In the case the previous bounding box is empty, then a search over the
    entire map is performed to estimate the new position.
    """

    def __init__(self, recovery_kernel_size=20, min_recovered_box_area=400, threshold_retrieve=0.2):
        """
        :param recovery_kernel_size: when searching for a new box, the probablity map will be filtered with a box filter, to smooth out single peaks and find a better candidate. This is the size of the box kernal.
        :type recovery_kernel_size: int
        :param min_recovered_box_area: after finding a box, assert that width x height is at least this number of pixels. Otherwise do not accept that as a good box and return an empty box.
        :type min_recovered_box_area: int
        :param threshold_retrieve: When object the is lost, that is the minimal confidence the tracker must get to consider that a new candidate is considered as the new target Lower value (ex 0.1) provides better recovery but more false positive. Typical value are between 0.1 and 0.2
        :type threshold_retrieve: float
        """
        self.term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1)
        self._last_bb = None
        self.confidence = 1.
        self.recovery_kernel_size = recovery_kernel_size
        self.min_recovered_box_area = min_recovered_box_area
        self.threshold_retrieve = threshold_retrieve

    def reset(self):
        """
        Reset the object.
        """
        self._last_bb = None

    def _find_new_box(self, heatmap):
        heatmap = cv2.boxFilter(heatmap, ddepth=-1, ksize=(self.recovery_kernel_size, self.recovery_kernel_size), borderType=cv2.BORDER_REPLICATE)
        # new_bb = np.array(np.unravel_index(np.argmax(conv_prob), conv_prob.shape))[::-1]
        # new_bb = np.array(tuple(new_bb - max(1, min(10, self.recovery_kernel_size/2))) + (min(20, self.recovery_kernel_size), ) * 2)
        # _, bb_reset = cv2.CamShift(heatmap, tuple(new_bb), self.term_crit)
        peak = np.unravel_index(np.argmax(heatmap), heatmap.shape)
        _, heatmap = cv2.threshold(heatmap, np.max(heatmap)*0.9, 255, cv2.THRESH_BINARY)
        _, bb_reset = cv2.floodFill(heatmap, None, tuple(peak[::-1]), 255, loDiff=10, flags=cv2.FLOODFILL_FIXED_RANGE)
        bb_area = bb_reset[2] * bb_reset[3]
        mean_prob_reset = np.sum(heatmap[bb_reset[1]:bb_reset[1] + bb_reset[3], bb_reset[0]:bb_reset[0] + bb_reset[2]]) / float(bb_area)
        return bb_reset, bb_area, mean_prob_reset

    def process(self, heatmap):
        """
        The main processing method. Given the probability map, returns a bounding region

        :param heatmap: the map (e.g. result of histogram backprojection etc.). Its supposed to be a numpy array of float.
        :type heatmap: numpy.ndarray
        :return: bounding_box
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        self._last_prob = heatmap
        harea = np.prod(heatmap.shape)

        if self._last_bb is None or self._last_bb.empty:
            (bb, area, mean_prob) = self._find_new_box(heatmap)
            confidence = mean_prob
            if bb[2] > 0 and bb[3] > 0 and np.prod(bb[2:])<2*harea/3:
                self._last_bb = BoundingRegion(image_shape=(heatmap.shape[0], heatmap.shape[1], 3),
                                               box=np.array(bb, dtype=np.int),
                                               confidence=confidence)
            else:
                # Empty bounding box
                self._last_bb = BoundingRegion()
        else:
            # Step 1 go with the last bbox
            _, bb0 = cv2.meanShift(heatmap, tuple(self._last_bb.get_box_pixels()), self.term_crit)
            area0 = np.prod(bb0[2:])
            mean_prob0 = np.sum(heatmap[bb0[1]:bb0[1] + bb0[3], bb0[0]:bb0[0] + bb0[2]]) / (1e-12 + area0)
            _, bb = cv2.CamShift(heatmap, tuple(self._last_bb.get_box_pixels()), self.term_crit)
            area = np.prod(bb[2:])
            mean_prob = np.sum(heatmap[bb[1]:bb[1] + bb[3], bb[0]:bb[0] + bb[2]]) / (1e-12 + area)
            if mean_prob > self.threshold_retrieve and area > self.min_recovered_box_area and area < 2*harea/3:
                self._last_bb = BoundingRegion(image_shape=(heatmap.shape[0], heatmap.shape[1], 3),
                                               box=np.array(bb, dtype=np.int),
                                               confidence=mean_prob)
            elif mean_prob0 > self.threshold_retrieve and area0 > self.min_recovered_box_area:
                # Go with the mean shift box, changing size apparently does no good.
                return self._last_bb
            else:
                # Empty bounding box
                self._last_bb = BoundingRegion()

        return self._last_bb

    def set_current_bounding_box(self, bounding_box):
        """
        If the bounding box is somehow available (e.g. in priming) that values can be passed in here to affect
        future computation (new boxes will be found in reference to this one)

        :param bounding_box: A bounding region object
        :type bounding_box: PVM_tools.bounding_region.BoundingRegion
        """
        self._last_bb = bounding_box
Exemplo n.º 32
0
class PVMVisionTracker(GenericVisionTracker):
    """
    This class exposes the null vision tracker which just always
    returns its priming bounding box

    """
    def __init__(self,
                 filename="",
                 remote_filename="",
                 cores="4",
                 storage=None,
                 steps_per_frame=1):
        """
        Initialize the tracker
        """
        self.name = 'PVMtracker'
        if filename == "":
            filename = storage.get(remote_filename)
        self.prop_dict = CoreUtils.load_model(filename)
        logging.info("Loaded the dictionary %s", filename)
        PVM_Create.upgrade_dictionary_to_ver1_0(self.prop_dict)
        self.prop_dict['num_proc'] = int(cores)
        for k in range(len(self.prop_dict['learning_rates'])):
            self.prop_dict['learning_rates'][k][0] = 0.0
            logging.info("Setting learning rate in layer %d to zero" % k)
        self.prop_dict["readout_learning_rate"][0] = 0.0
        logging.info("Setting readout learning rate to zero")
        self.manager = Manager(self.prop_dict, 1000)
        self.executor = CoreUtils.ModelExecution(prop_dict=self.prop_dict,
                                                 manager=self.manager,
                                                 port=9100)
        self.executor.start(blocking=False)
        self.threshold = 32
        self.image_size = self.prop_dict['input_array'].shape[:2][::-1]
        self.readout_heatmap = np.zeros(self.image_size, dtype=np.float)
        self.step_per_frame = steps_per_frame

    def reset(self):
        """
        Reset the tracker
        :return:
        """
        self._primed = False
        self.bbox = None

    def _prime(self, im, bounding_region):
        """
        prime tracker on image and bounding box

        :param im: input image (3 - channel numpy array)
        :type im: numpy.ndarray
        :param bounding_region: initial bounding region of the tracked object
        :type bounding_region: PVM_tools.bounding_region.BoundingRegion
        """
        if not self._primed:
            logging.info("Priming the PVM tracker")
            logging.info("Setting up the tracker threshold to %d" %
                         self.threshold)
            self._primed = True

    def _track(self, im):
        """
        Track on given image, rseturn a bounding box

        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        current_frame = cv2.resize(im, dsize=self.image_size)
        self.prop_dict['input_array'][:] = current_frame
        self.prop_dict['input_array_float'][:] = current_frame.astype(
            np.float) / 255
        for i in range(self.step_per_frame):
            self.executor.step()
        norm = 1.0 / len(self.prop_dict['predicted_readout_arrays'])
        self.readout_heatmap[:] = 0
        for k in self.prop_dict['predicted_readout_arrays']:
            self.readout_heatmap[:] += cv2.resize(k.view(np.ndarray),
                                                  dsize=self.image_size) * norm
        am = np.unravel_index(np.argmax(self.readout_heatmap),
                              self.readout_heatmap.shape)
        if len(am) == 3:
            for d in range(3):
                if am[2] != d:
                    self.readout_heatmap[:, :, d] = 0

        self.heatmap = self.readout_heatmap.view(np.ndarray)
        if len(self.heatmap.shape) == 3:
            self.heatmap = np.max(self.heatmap, axis=2)
        self.heatmap = cv2.resize(self.heatmap,
                                  dsize=(im.shape[1], im.shape[0]),
                                  interpolation=cv2.INTER_CUBIC)
        self.heatmap = (self.heatmap * 255).astype(np.uint8)
        if np.max(self.heatmap) > (np.median(self.heatmap) + self.threshold):
            threshold = (np.max(self.heatmap) - np.median(
                self.heatmap)) * 0.5 + np.median(self.heatmap)
            ret, thresh = cv2.threshold(self.heatmap, threshold, 255, 0)
            contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE,
                                                   cv2.CHAIN_APPROX_SIMPLE)
            if len(contours) > 0:
                max_cnt = None
                for cnt in contours:
                    pt = np.unravel_index(np.argmax(self.heatmap),
                                          self.heatmap.shape)
                    if cv2.pointPolygonTest(cnt, (pt[1], pt[0]), False) >= 0:
                        max_cnt = cnt
                        break
                if max_cnt is None:
                    self.bbox = BoundingRegion()
                else:
                    x, y, w, h = cv2.boundingRect(max_cnt)
                    if w * h > 25:
                        self.bbox = BoundingRegion(image_shape=im.shape,
                                                   box=[x, y, w, h])
                        self.bbox.scale(1.1)
                    else:
                        self.bbox = BoundingRegion()
            else:
                self.bbox = BoundingRegion()
        else:
            self.bbox = BoundingRegion()
        self._primed = False
        return self.bbox.copy()

    def get_heatmap(self, heatmap_name=None):
        return self.heatmap()

    def finish(self):
        self.manager._running = False
        self.executor.step()
        self.executor.finish()
Exemplo n.º 33
0
class CamshiftBoundingBoxer(AbstractBoundingBoxer):
    """
    Given a prob-map of pixel membership, return a bounding box: (PVM_tools.bounding_region.BoundingRegion)

    This class uses the opencv CamShift method to estimate the new position of the bounding box
    based on the previous one. In the case the previous bounding box is empty, then a search over the
    entire map is performed to estimate the new position.
    """
    def __init__(self,
                 recovery_kernel_size=20,
                 min_recovered_box_area=400,
                 threshold_retrieve=0.2):
        """
        :param recovery_kernel_size: when searching for a new box, the probablity map will be filtered with a box filter, to smooth out single peaks and find a better candidate. This is the size of the box kernal.
        :type recovery_kernel_size: int
        :param min_recovered_box_area: after finding a box, assert that width x height is at least this number of pixels. Otherwise do not accept that as a good box and return an empty box.
        :type min_recovered_box_area: int
        :param threshold_retrieve: When object the is lost, that is the minimal confidence the tracker must get to consider that a new candidate is considered as the new target Lower value (ex 0.1) provides better recovery but more false positive. Typical value are between 0.1 and 0.2
        :type threshold_retrieve: float
        """
        self.term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10,
                          1)
        self._last_bb = None
        self.confidence = 1.
        self.recovery_kernel_size = recovery_kernel_size
        self.min_recovered_box_area = min_recovered_box_area
        self.threshold_retrieve = threshold_retrieve

    def reset(self):
        """
        Reset the object.
        """
        self._last_bb = None

    def _find_new_box(self, heatmap):
        heatmap = cv2.boxFilter(heatmap,
                                ddepth=-1,
                                ksize=(self.recovery_kernel_size,
                                       self.recovery_kernel_size),
                                borderType=cv2.BORDER_REPLICATE)
        # new_bb = np.array(np.unravel_index(np.argmax(conv_prob), conv_prob.shape))[::-1]
        # new_bb = np.array(tuple(new_bb - max(1, min(10, self.recovery_kernel_size/2))) + (min(20, self.recovery_kernel_size), ) * 2)
        # _, bb_reset = cv2.CamShift(heatmap, tuple(new_bb), self.term_crit)
        peak = np.unravel_index(np.argmax(heatmap), heatmap.shape)
        _, heatmap = cv2.threshold(heatmap,
                                   np.max(heatmap) * 0.9, 255,
                                   cv2.THRESH_BINARY)
        _, bb_reset = cv2.floodFill(heatmap,
                                    None,
                                    tuple(peak[::-1]),
                                    255,
                                    loDiff=10,
                                    flags=cv2.FLOODFILL_FIXED_RANGE)
        bb_area = bb_reset[2] * bb_reset[3]
        mean_prob_reset = np.sum(
            heatmap[bb_reset[1]:bb_reset[1] + bb_reset[3],
                    bb_reset[0]:bb_reset[0] + bb_reset[2]]) / float(bb_area)
        return bb_reset, bb_area, mean_prob_reset

    def process(self, heatmap):
        """
        The main processing method. Given the probability map, returns a bounding region

        :param heatmap: the map (e.g. result of histogram backprojection etc.). Its supposed to be a numpy array of float.
        :type heatmap: numpy.ndarray
        :return: bounding_box
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        self._last_prob = heatmap
        harea = np.prod(heatmap.shape)

        if self._last_bb is None or self._last_bb.empty:
            (bb, area, mean_prob) = self._find_new_box(heatmap)
            confidence = mean_prob
            if bb[2] > 0 and bb[3] > 0 and np.prod(bb[2:]) < 2 * harea / 3:
                self._last_bb = BoundingRegion(image_shape=(heatmap.shape[0],
                                                            heatmap.shape[1],
                                                            3),
                                               box=np.array(bb, dtype=np.int),
                                               confidence=confidence)
            else:
                # Empty bounding box
                self._last_bb = BoundingRegion()
        else:
            # Step 1 go with the last bbox
            _, bb0 = cv2.meanShift(heatmap,
                                   tuple(self._last_bb.get_box_pixels()),
                                   self.term_crit)
            area0 = np.prod(bb0[2:])
            mean_prob0 = np.sum(heatmap[bb0[1]:bb0[1] + bb0[3], bb0[0]:bb0[0] +
                                        bb0[2]]) / (1e-12 + area0)
            _, bb = cv2.CamShift(heatmap,
                                 tuple(self._last_bb.get_box_pixels()),
                                 self.term_crit)
            area = np.prod(bb[2:])
            mean_prob = np.sum(heatmap[bb[1]:bb[1] + bb[3],
                                       bb[0]:bb[0] + bb[2]]) / (1e-12 + area)
            if mean_prob > self.threshold_retrieve and area > self.min_recovered_box_area and area < 2 * harea / 3:
                self._last_bb = BoundingRegion(image_shape=(heatmap.shape[0],
                                                            heatmap.shape[1],
                                                            3),
                                               box=np.array(bb, dtype=np.int),
                                               confidence=mean_prob)
            elif mean_prob0 > self.threshold_retrieve and area0 > self.min_recovered_box_area:
                # Go with the mean shift box, changing size apparently does no good.
                return self._last_bb
            else:
                # Empty bounding box
                self._last_bb = BoundingRegion()

        return self._last_bb

    def set_current_bounding_box(self, bounding_box):
        """
        If the bounding box is somehow available (e.g. in priming) that values can be passed in here to affect
        future computation (new boxes will be found in reference to this one)

        :param bounding_box: A bounding region object
        :type bounding_box: PVM_tools.bounding_region.BoundingRegion
        """
        self._last_bb = bounding_box
Exemplo n.º 34
0
class PVMVisionTracker(GenericVisionTracker):
    """
    This class exposes the null vision tracker which just always
    returns its priming bounding box

    """
    def __init__(self, filename="", remote_filename="", cores="4", storage=None, steps_per_frame=1):
        """
        Initialize the tracker
        """
        self.name = 'PVMtracker'
        if filename == "":
            filename = storage.get(remote_filename)
        self.prop_dict = CoreUtils.load_model(filename)
        logging.info("Loaded the dictionary %s", filename)
        PVM_Create.upgrade_dictionary_to_ver1_0(self.prop_dict)
        self.prop_dict['num_proc'] = int(cores)
        for k in range(len(self.prop_dict['learning_rates'])):
            self.prop_dict['learning_rates'][k][0] = 0.0
            logging.info("Setting learning rate in layer %d to zero" % k)
        self.prop_dict["readout_learning_rate"][0] = 0.0
        logging.info("Setting readout learning rate to zero")
        self.manager = Manager(self.prop_dict, 1000)
        self.executor = CoreUtils.ModelExecution(prop_dict=self.prop_dict, manager=self.manager, port=9100)
        self.executor.start(blocking=False)
        self.threshold = 32
        self.image_size = self.prop_dict['input_array'].shape[:2][::-1]
        self.readout_heatmap = np.zeros(self.image_size, dtype=np.float)
        self.step_per_frame = steps_per_frame

    def reset(self):
        """
        Reset the tracker
        :return:
        """
        self._primed = False
        self.bbox = None

    def _prime(self, im, bounding_region):
        """
        prime tracker on image and bounding box

        :param im: input image (3 - channel numpy array)
        :type im: numpy.ndarray
        :param bounding_region: initial bounding region of the tracked object
        :type bounding_region: PVM_tools.bounding_region.BoundingRegion
        """
        if not self._primed:
            logging.info("Priming the PVM tracker")
            logging.info("Setting up the tracker threshold to %d" % self.threshold)
            self._primed = True

    def _track(self, im):
        """
        Track on given image, rseturn a bounding box

        :param im: image (3 - channel numpy array)
        :type im: numpy.ndarray
        :return: bounding box of the tracker object
        :rtype: PVM_tools.bounding_region.BoundingRegion
        """
        #  this is required so that tracker is re-initialized if it is primed again
        current_frame = cv2.resize(im, dsize=self.image_size)
        self.prop_dict['input_array'][:] = current_frame
        self.prop_dict['input_array_float'][:] = current_frame.astype(np.float)/255
        for i in range(self.step_per_frame):
            self.executor.step()
        norm = 1.0 / len(self.prop_dict['predicted_readout_arrays'])
        self.readout_heatmap[:] = 0
        for k in self.prop_dict['predicted_readout_arrays']:
            self.readout_heatmap[:] += cv2.resize(k.view(np.ndarray), dsize=self.image_size) * norm
        am = np.unravel_index(np.argmax(self.readout_heatmap), self.readout_heatmap.shape)
        if len(am) == 3:
            for d in range(3):
                if am[2] != d:
                    self.readout_heatmap[:, :, d] = 0

        self.heatmap = self.readout_heatmap.view(np.ndarray)
        if len(self.heatmap.shape) == 3:
            self.heatmap = np.max(self.heatmap, axis=2)
        self.heatmap = cv2.resize(self.heatmap, dsize=(im.shape[1], im.shape[0]), interpolation=cv2.INTER_CUBIC)
        self.heatmap = (self.heatmap * 255).astype(np.uint8)
        if np.max(self.heatmap) > (np.median(self.heatmap)+self.threshold):
            threshold=(np.max(self.heatmap)-np.median(self.heatmap))*0.5+np.median(self.heatmap)
            ret, thresh = cv2.threshold(self.heatmap, threshold, 255, 0)
            contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            if len(contours) > 0:
                max_cnt=None
                for cnt in contours:
                    pt = np.unravel_index(np.argmax(self.heatmap), self.heatmap.shape)
                    if cv2.pointPolygonTest(cnt, (pt[1], pt[0]), False)>=0:
                        max_cnt = cnt
                        break
                if max_cnt is None:
                    self.bbox = BoundingRegion()
                else:
                    x, y, w, h = cv2.boundingRect(max_cnt)
                    if w*h > 25:
                        self.bbox = BoundingRegion(image_shape=im.shape, box=[x, y, w, h])
                        self.bbox.scale(1.1)
                    else:
                        self.bbox = BoundingRegion()
            else:
                self.bbox = BoundingRegion()
        else:
            self.bbox = BoundingRegion()
        self._primed = False
        return self.bbox.copy()

    def get_heatmap(self, heatmap_name=None):
        return self.heatmap()

    def finish(self):
        self.manager._running = False
        self.executor.step()
        self.executor.finish()
Exemplo n.º 35
0
class LabelingApp(object):
    def __init__(self, filename, output=None, channel="default", target="default"):
        self.input_filename = filename
        if output is None:
            self.output_file = self.input_filename
        else:
            self.output_file = output
        self.channel = channel
        self.target = target
        self.reset()

    def reset(self, reload=False):
        cv2.destroyAllWindows()
        fc = FrameCollection()
        if reload:
            fc.load_from_file(filename=self.output_file)
        else:
            fc.load_from_file(filename=self.input_filename)
        self.movie = fc
        self.tracker = None
        self.current_frame_index = 0
        self.right_button_pressed = False
        self.left_button_pressed = False
        self._anchor = None
        self.x_size = 30
        self.y_size = 30
        self._tracked_bounds = None
        self._stored_bounds = None
        self._current_bounds = BoundingRegion()
        # Make sure self.timer is set
        self.schedule_callback()
        # Initialization of the Graphic User Interface
        self.ready_to_refresh = threading.Lock()
        self.timer_lock = threading.Lock()
        self.win_name = 'Labeling video GUI'
        self.image = self.movie.Frame(self.current_frame_index).get_image(channel=self.channel)
        self.display_image = self.movie.Frame(self.current_frame_index).get_image(channel=self.channel)
        self.image_shape = self.image.shape
        self.create_windows()
        self.set_target_absent()
        self.image_buffer = {}
        self._last_update = time.time()
        self.refresh_timer = threading.Timer(0.05, self.refresh)
        self.refresh_timer.start()
        self.needs_refresh = True
        self.trim_end = len(self.movie)-1
        self.trim_start = 0

    def fill_up_the_buffer(self):
        r0 = max(self.current_frame_index-5, 0)
        r1 = min(self.current_frame_index+5, len(self.movie))
        for i in xrange(r0, r1, 1):
            if i not in self.image_buffer.keys():
                self.image_buffer[i] = self.movie.Frame(i).get_image(channel=self.channel)
        for i in self.image_buffer.keys():
            if i < r0 or i > r1:
                del self.image_buffer[i]

    def create_windows(self):
        ''' Create playback progress bar (allow user to move along the movie) '''
        cv2.namedWindow(self.win_name)
        cv2.moveWindow(self.win_name, 150, 150)
        cv2.namedWindow("completeness")
        cv2.moveWindow("completeness", 150, 50)
        cv2.setMouseCallback(self.win_name, self.trackbar_window_onMouse)
        cv2.createTrackbar("Frame", self.win_name, 0, len(self.movie) - 1, self.jump_to_frame_callback)
        cv2.createTrackbar("Trim start", self.win_name, 0, len(self.movie) - 1, self.set_trim_start)
        cv2.createTrackbar("Trim end", self.win_name, len(self.movie) - 1, len(self.movie) - 1, self.set_trim_end)
        im_height = 30  # 30 pixels high completeness bar
        im_width = len(self.movie)
        self.completeness_image = np.zeros((im_height, im_width, 3))
        current_frame_index = int(im_width * float(self.current_frame_index) / len(self.movie))
        self.completeness_image[:, current_frame_index, :] = 1.
        self.completeness = np.zeros(im_width, dtype=np.uint8)
        for i in xrange(len(self.movie)):
            bounds = self.movie.Frame(i).get_label(channel=self.channel, target=self.target)
            if bounds is None or bounds.empty:
                if bounds is None:
                    self.movie.Frame(i).set_label(channel=self.channel, target=self.target, label=BoundingRegion())
                self.completeness[i] = 2
            else:
                if bounds.is_keyframe():
                    self.completeness[i] = 1
                else:
                    self.completeness[i] = 0

    def set_trim_start(self, frame_index):
        self.trim_start = frame_index + 0

    def set_trim_end(self, frame_index):
        self.trim_end = frame_index + 0

    def jump_to_frame_callback(self, frame_index):
        self.current_frame_index = frame_index
        self.image = self.movie.Frame(self.current_frame_index).get_image(channel=self.channel)
        self.needs_refresh = True

    def update_completeness_window(self):
        if self.ready_to_refresh.acquire(False):
            self.completeness_image *= 0
            self.completeness_image[:, self.current_frame_index, :] = 255
            for i in xrange(len(self.movie)):
                    self.completeness_image[:, i, self.completeness[i]] = 255
            cv2.putText(self.completeness_image, '%i' % self.current_frame_index,
                        (10, 10), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.CV_AA)
            cv2.imshow('completeness', self.completeness_image)
            self.ready_to_refresh.release()

    def update_trackbar_window(self):
        if self.ready_to_refresh.acquire():
            image = self.image.copy()
            self._stored_bounds = self.movie.Frame(self.current_frame_index).get_label(channel=self.channel, target=self.target)
            # display rectangle over selected area
            self._current_bounds.draw_box(image, color=(255, 255, 255))
            self._current_bounds.draw_box(image, color=(0, 0, 0), thickness=1)
            # display rectangle over stored area
            if self._stored_bounds is not None:
                self._stored_bounds.draw_box(image, color=(255, 0, 0))
            if self._tracked_bounds is not None:
                self._tracked_bounds.draw_box(image, color=(0, 255, 0))
            # reshape to display if too small
            min_width = 320
            if image.shape[1] < min_width:
                resize_height = int(0.5 + image.shape[0] * min_width / float(image.shape[1]))
                image = cv2.resize(image, (min_width, resize_height), interpolation=cv2.INTER_NEAREST)
            self.display_image=image
            self.ready_to_refresh.release()

    def refresh(self):
        if self.timer_lock.acquire():
            if self.needs_refresh:
                self.update_trackbar_window()
                self.update_completeness_window()
                self.needs_refresh = False
            self.refresh_timer = threading.Timer(0.05, self.refresh)
            self.refresh_timer.start()
            self.timer_lock.release()

    def trackbar_window_onMouse(self, event, x, y, flags, _):
        cv2.imshow(self.win_name, self.display_image)
        # Update state
        self.right_button_pressed = (flags & cv2.EVENT_FLAG_RBUTTON) != 0 and event != cv2.EVENT_RBUTTONUP
        self.left_button_pressed = (flags & cv2.EVENT_FLAG_LBUTTON) != 0 and event != cv2.EVENT_LBUTTONUP

        # Set bounding box
        if event == cv2.EVENT_MBUTTONDOWN:
            if self._anchor is None:
                # Setting the anchor
                self._anchor = (x, y)
            else:
                # Defining the box
                self.save_and_advance()

        elif self._anchor is not None and event != cv2.EVENT_MBUTTONUP:
            # We are creating new bounding box from anchor to current position
            self.x_size = max(5, int(abs(x - self._anchor[0])+0.5))
            self.y_size = max(5, int(abs(y - self._anchor[1])+0.5))
            center_x = (x + self._anchor[0]) / 2
            center_y = (y + self._anchor[1]) / 2
            self.set_bounding_box_with_center(center_x, center_y)
        elif event == cv2.EVENT_MBUTTONUP:
            self.x_size = max(5, int(abs(x - self._anchor[0])+0.5))
            self.y_size = max(5, int(abs(y - self._anchor[1])+0.5))
            center_x = (x + self._anchor[0]) / 2
            center_y = (y + self._anchor[1]) / 2
            self.set_bounding_box_with_center(center_x, center_y)
            keyframe = False
            if flags & cv2.EVENT_FLAG_CTRLKEY != 0:
                keyframe = True
            self.save_and_advance(keyframe=keyframe)
        else:
            self.set_bounding_box_with_center(x, y)

        # If this is a left/right button down event,
        # we can advance one frame immediately
        # and then start the timer
        if event == cv2.EVENT_RBUTTONDOWN:
            self.set_target_absent()
            self.save_and_advance()
            self.right_button_pressed=True
            if self.timer.finished:
                # Rearm the timer
                self.schedule_callback()
        elif event == cv2.EVENT_LBUTTONDOWN:
            self.set_bounding_box_with_center(x, y)
            keyframe = False
            if flags & cv2.EVENT_FLAG_CTRLKEY != 0:
                keyframe = True
            self.save_and_advance(keyframe=keyframe)
            self.left_button_pressed=True
            if self.timer.finished:
                # Rearm the timer
                self.schedule_callback()
        elif not (self.right_button_pressed or self.left_button_pressed):
            # No mouse button pressed, so cancel the timer if it's running
            self.timer.cancel()
        if time.time()-self._last_update > 0.1:
            self._last_update = time.time()
            self.needs_refresh = True

    def set_target_absent(self):
        self._current_bounds = BoundingRegion()

    def set_bounding_box_with_center(self, x, y):
        box = [np.clip(int(x+0.5)-self.x_size/2, 0, self.image_shape[1]),
               np.clip(int(y+0.5)-self.y_size/2, 0, self.image_shape[0]),
               self.x_size + min(int(x+0.5)-self.x_size/2, 0),
               self.y_size + min(int(y+0.5)-self.y_size/2, 0)]
        self._current_bounds = BoundingRegion(box=box)
        self.needs_refresh = True

    def schedule_callback(self):
        # 0.2 secs => 5 Hz
        self.timer = threading.Timer(0.1, self.timer_callback)
        self.timer.start()

    def timer_callback(self):
        if self.right_button_pressed or self.left_button_pressed:
            self.save_and_advance()
            self.schedule_callback()

    def advance_current_frame(self, increment=1):
        self.current_frame_index = min(len(self.movie)-1, max(0, self.current_frame_index + increment))
        self.image = self.movie.Frame(self.current_frame_index).get_image(channel=self.channel)
        cv2.setTrackbarPos("Frame", self.win_name, self.current_frame_index)
        if self.tracker is not None:
            self._tracked_bounds = self.tracker.track(self.movie.Frame(self.current_frame_index).get_image(channel=self.channel))

    def save_and_advance(self, keyframe=False):
        self._anchor = None
        self.movie.Frame(self.current_frame_index).set_label(self._current_bounds.copy(), channel=self.channel, target=self.target)
        if self._current_bounds.empty:
            self.completeness[self.current_frame_index] = 2
        else:
            if self._current_bounds.is_keyframe():
                self.completeness[self.current_frame_index] = 1
            else:
                self.completeness[self.current_frame_index] = 0
        if keyframe:
            self.make_keyframe()
            self.advance_current_frame(15)
        else:
            self.advance_current_frame(1)

    def toggle_tracker(self):
        if self.tracker is None:
            self.tracker = CMTVisionTracker()
            self.tracker.prime(self.movie.Frame(self.current_frame_index).get_image(channel=self.channel), self._current_bounds)
            logging.warning("Tracker is enabled")
        else:
            self.tracker = None
            self._tracked_bounds = None
            logging.warning("Tracker is disabled")

    def advance_tracker(self):
        if self._tracked_bounds is not None:
            self._current_bounds=self._tracked_bounds
            self.save_and_advance()

    def export_movie(self):
        trim_frames_front = self.trim_start
        trim_frames_end = (len(self.movie) -1) - self.trim_end
        if trim_frames_end > 0:
            for i in range(trim_frames_end):
                self.movie.delete(-1)
        if trim_frames_front>0:
            for i in range(trim_frames_front):
                self.movie.delete(0)
        logging.warning("Exporting result in file " + self.output_file)
        self.movie.write_to_file(self.output_file)
        logging.warning("Exporting completed !")

    def interpolate(self, start, end):
        print "Interpolating %d %d" % (start, end)
        label0 = self.movie.Frame(start).get_label(channel=self.channel, target=self.target)
        label1 = self.movie.Frame(end).get_label(channel=self.channel, target=self.target)
        if (label0.empty) or (label1.empty):
            return
        box0 = label0.get_box_pixels()
        box1 = label1.get_box_pixels()

        for i in xrange(start+1, end, 1):
            alpha = (end-i)*1.0/(end-start)
            box2 = alpha*np.array(box0)+(1-alpha)*np.array(box1)
            box2 = map(lambda x: int(x), box2)
            self.movie.Frame(i).set_label(BoundingRegion(box=box2, image_shape=self.movie.Frame(i).get_image(channel=self.channel).shape), channel=self.channel, target=self.target)
            self.completeness[i] = 0

    def make_keyframe(self):
        self.completeness[self.current_frame_index] = 1
        self.movie.Frame(self.current_frame_index).get_label(channel=self.channel, target=self.target).set_keyframe(True)

        # find previous keyframe
        next_keyframe = -1
        for i in xrange(self.current_frame_index+1, len(self.movie), 1):
            bounds = self.movie.Frame(i).get_label(channel=self.channel, target=self.target)
            if bounds.is_keyframe():
                next_keyframe = i
                break
        if next_keyframe >= 0:
            print next_keyframe
            self.interpolate(self.current_frame_index, next_keyframe)
        # find next keyframe
        prev_keyframe = -1
        for i in xrange(self.current_frame_index-1, -1, -1):
            bounds = self.movie.Frame(i).get_label(channel=self.channel, target=self.target)
            if bounds.is_keyframe():
                prev_keyframe = i
                break
        if prev_keyframe >= 0:
            print prev_keyframe
            self.interpolate(prev_keyframe, self.current_frame_index)

    def run(self):
        while True:
            key = cv2.waitKey(0)
            cv2.imshow(self.win_name, self.display_image)

            if key == 65361:  # left arrow
                # Go to previous frame
                self.advance_current_frame(-1)
            elif key == 65362:
                self.advance_current_frame(-10)
            elif key == 65363:  # right arrow
                # Go to next frame
                self.advance_current_frame()
            elif key == 65364:
                self.advance_current_frame(10)
            elif key == ord('w'):  # Write
                self.export_movie()
                if self.timer_lock.acquire():
                    if not self.refresh_timer.finished:
                        self.refresh_timer.cancel()
                    self.timer_lock.release()
                self.timer.cancel()
                self.reset()
            elif key == ord('t'):  # Tracker
                self.toggle_tracker()
            elif key == ord(' '):  # Advance tracker
                self.advance_tracker()
                self.needs_refresh = True
            elif key == ord('a'):
                self.x_size = int(self.x_size*1.1)
                self.y_size = int(self.y_size*1.1)
                self.needs_refresh = True
            elif key == ord('z'):
                self.x_size = int(self.x_size*1/1.1)
                self.y_size = int(self.y_size*1/1.1)
                self.needs_refresh = True
            elif key == ord('s'):
                self.y_size = int(self.y_size*1.1)
                self.needs_refresh = True
            elif key == ord('k'):
                self.make_keyframe()
            elif key == ord('x'):
                self.y_size = int(self.y_size*1/1.1)
                self.needs_refresh = True
            elif key == ord('q'):  # Export
                while key != -1:
                    for k in range(10):
                        key = cv2.waitKey(10)
                print "Quiting! Do you want to save your work? [Y/N]"
                while True:
                    key = cv2.waitKey(0)
                    if key == ord('Y') or key == ord('y'):
                        self.export_movie()
                        break
                    if key == ord('N') or key == ord('n'):
                        break
                break
        logging.warning('Exiting')
        self.refresh_timer.cancel()