Exemplo n.º 1
0
def test_centroid():
    micro_cluster = MicroCluster(0, 2, 0, 0.15)
    micro_cluster.weight = 1
    assert isinstance(micro_cluster.centroid, np.ndarray)
    assert np.all(micro_cluster.centroid == 0)
    micro_cluster.cf1 = np.array([0, 1])
    assert np.all(micro_cluster.centroid == [0, 1])
    micro_cluster.weight = 2
    assert np.all(micro_cluster.centroid == [0, 0.5])
Exemplo n.º 2
0
    def test_generate_outlier_clusters(self, denstream):
        assert denstream.generate_outlier_clusters() == []

        case_0 = Case("0")
        case_1 = Case("1")
        case_2 = Case("2")
        case_3 = Case("3")

        micro_cluster = MicroCluster(0, 2, 0, 0.15)
        micro_cluster.weight = 3
        denstream.o_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_0.id] = micro_cluster.id

        micro_cluster = MicroCluster(1, 2, 0, 0.15)
        micro_cluster.weight = 4
        denstream.o_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_1.id] = micro_cluster.id

        micro_cluster = MicroCluster(3, 2, 0, 0.15)
        micro_cluster.weight = 6
        denstream.o_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_2.id] = micro_cluster.id
        denstream.all_cases[case_3.id] = micro_cluster.id

        assert denstream.all_cases == {"0": 0, "1": 1, "2": 3, "3": 3}

        cluster_list = denstream.generate_outlier_clusters()

        cluster = cluster_list[0]
        assert cluster.id == 0
        assert np.all(cluster.centroid == [0, 0])
        assert cluster.radius == 0
        assert cluster.weight == 3
        assert cluster.case_ids == ["0"]

        cluster = cluster_list[1]
        assert cluster.id == 1
        assert np.all(cluster.centroid == [0, 0])
        assert cluster.radius == 0
        assert cluster.weight == 4
        assert cluster.case_ids == ["1"]

        cluster = cluster_list[2]
        assert cluster.id == 3
        assert np.all(cluster.centroid == [0, 0])
        assert cluster.radius == 0
        assert cluster.weight == 6
        assert cluster.case_ids == ["2", "3"]
Exemplo n.º 3
0
def test_initial_value():
    micro_cluster = MicroCluster(0, 2, 0, 0.15)
    assert isinstance(micro_cluster.cf1, np.ndarray)
    assert isinstance(micro_cluster.cf2, np.ndarray)
    assert np.all(micro_cluster.cf1 == [0, 0])
    assert np.all(micro_cluster.cf2 == [0, 0])
    assert micro_cluster.weight == 0
    assert isinstance(micro_cluster.creation_time, int)
    assert micro_cluster.creation_time == 0
    assert isinstance(micro_cluster.lambda_, float)
    assert micro_cluster.lambda_ == 0.15
Exemplo n.º 4
0
def test_decay():
    micro_cluster = MicroCluster(0, 2, 0, 0.15)
    micro_cluster.weight = 1
    micro_cluster.cf1 = np.array([0.5, 0.7])
    micro_cluster.cf2 = np.array([0.0, 1.0])

    cf = micro_cluster.cf1.copy()
    cf2 = micro_cluster.cf2.copy()
    weight = micro_cluster.weight
    micro_cluster.decay()

    assert np.all(micro_cluster.cf1 == cf * (2 ** (-0.15)))
    assert np.all(micro_cluster.cf2 == cf2 * (2 ** (-0.15)))
    assert micro_cluster.weight == weight * (2 ** (-0.15))
Exemplo n.º 5
0
    def test_generate_clusters(self, denstream):
        assert len(denstream.p_micro_clusters) == 0

        dense_group, not_dense_group = denstream.generate_clusters()
        assert dense_group == [[]]
        assert not_dense_group == [[]]

        case_0 = Case("0")
        case_1 = Case("1")

        micro_cluster = MicroCluster(0, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([5.0, 5.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 5
        denstream.p_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_0.id] = micro_cluster.id
        denstream.all_cases[case_1.id] = micro_cluster.id

        assert len(denstream.p_micro_clusters) == 1
        assert micro_cluster.weight >= denstream.mu
        dense_group, not_dense_group = denstream.generate_clusters()

        assert not dense_group == [[]]
        assert not_dense_group == [[]]
        cluster_list = dense_group[0]
        cluster = cluster_list[0]
        assert isinstance(cluster, Cluster)
        assert cluster.id == 0
        assert np.all(cluster.centroid == [1, 1])
        assert cluster.radius == 0
        assert cluster.weight == 5
        assert cluster.case_ids == ["0", "1"]

        micro_cluster = MicroCluster(0, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([3.0, 3.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 3
        denstream.p_micro_clusters = []
        denstream.p_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_0.id] = micro_cluster.id
        denstream.all_cases[case_1.id] = micro_cluster.id

        assert len(denstream.p_micro_clusters) == 1
        assert micro_cluster.weight < denstream.mu
        dense_group, not_dense_group = denstream.generate_clusters()

        assert dense_group == [[]]
        assert not not_dense_group == [[]]
        cluster_list = not_dense_group[0]
        cluster = cluster_list[0]
        assert isinstance(cluster, Cluster)
        assert cluster.id == 0
        assert np.all(cluster.centroid == [1, 1])
        assert cluster.radius == 0
        assert cluster.weight == 3
        assert cluster.case_ids == ["0", "1"]

        case_2 = Case("2")
        case_3 = Case("3")

        micro_cluster = MicroCluster(0, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([3.0, 3.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 3
        denstream.p_micro_clusters = []
        denstream.p_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_0.id] = micro_cluster.id
        denstream.all_cases[case_1.id] = micro_cluster.id

        micro_cluster = MicroCluster(1, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([4.0, 4.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 4
        denstream.p_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_2.id] = micro_cluster.id
        denstream.all_cases[case_3.id] = micro_cluster.id

        cl1 = denstream.p_micro_clusters[0]
        cl2 = denstream.p_micro_clusters[1]

        assert len(denstream.p_micro_clusters) > 1
        assert (
            denstream.euclidean_distance(cl1.centroid, cl2.centroid)
            <= 2 * denstream.epsilon
        )
        assert cl1.weight + cl2.weight >= denstream.mu
        dense_group, not_dense_group = denstream.generate_clusters()

        assert not dense_group == [[]]
        assert not_dense_group == [[]]
        cluster_list = dense_group[0]
        cluster = cluster_list[0]
        assert isinstance(cluster, Cluster)
        assert cluster.id == 0
        assert np.all(cluster.centroid == [1, 1])
        assert cluster.radius == 0
        assert cluster.weight == 3
        assert cluster.case_ids == ["0", "1"]
        cluster = cluster_list[1]
        assert isinstance(cluster, Cluster)
        assert cluster.id == 1
        assert np.all(cluster.centroid == [1, 1])
        assert cluster.radius == 0
        assert cluster.weight == 4
        assert cluster.case_ids == ["2", "3"]
        with pytest.raises(IndexError):
            assert dense_group[1]
            assert cluster_list[2]

        micro_cluster = MicroCluster(0, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([3.0, 3.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 1
        denstream.p_micro_clusters = []
        denstream.p_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_0.id] = micro_cluster.id
        denstream.all_cases[case_1.id] = micro_cluster.id

        micro_cluster = MicroCluster(1, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([3.0, 3.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 1
        denstream.p_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_2.id] = micro_cluster.id
        denstream.all_cases[case_3.id] = micro_cluster.id

        cl1 = denstream.p_micro_clusters[0]
        cl2 = denstream.p_micro_clusters[1]

        assert len(denstream.p_micro_clusters) > 1
        assert (
            denstream.euclidean_distance(cl1.centroid, cl2.centroid)
            <= 2 * denstream.epsilon
        )
        assert cl1.weight + cl2.weight < denstream.mu
        dense_group, not_dense_group = denstream.generate_clusters()

        assert dense_group == [[]]
        assert not not_dense_group == [[]]
        cluster_list = not_dense_group[0]
        cluster = cluster_list[0]
        assert isinstance(cluster, Cluster)
        assert cluster.id == 0
        assert np.all(cluster.centroid == [3, 3])
        assert cluster.radius == 0
        assert cluster.weight == 1
        assert cluster.case_ids == ["0", "1"]
        cluster = cluster_list[1]
        assert isinstance(cluster, Cluster)
        assert cluster.id == 1
        assert np.all(cluster.centroid == [3, 3])
        assert cluster.radius == 0
        assert cluster.weight == 1
        assert cluster.case_ids == ["2", "3"]
        with pytest.raises(IndexError):
            assert not_dense_group[1]
            assert cluster_list[2]

        micro_cluster = MicroCluster(0, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([3.0, 3.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 3
        denstream.p_micro_clusters = []
        denstream.p_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_0.id] = micro_cluster.id
        denstream.all_cases[case_1.id] = micro_cluster.id

        micro_cluster = MicroCluster(1, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([1.0, 1.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 4
        denstream.p_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_2.id] = micro_cluster.id
        denstream.all_cases[case_3.id] = micro_cluster.id

        cl1 = denstream.p_micro_clusters[0]
        cl2 = denstream.p_micro_clusters[1]

        assert len(denstream.p_micro_clusters) > 1
        assert (
            denstream.euclidean_distance(cl1.centroid, cl2.centroid)
            > 2 * denstream.epsilon
        )
        assert cl1.weight < denstream.mu
        assert cl2.weight >= denstream.mu
        dense_group, not_dense_group = denstream.generate_clusters()

        assert not dense_group == [[]]
        assert not not_dense_group == [[]]
        cluster_list = not_dense_group[0]
        cluster = cluster_list[0]
        assert isinstance(cluster, Cluster)
        assert cluster.id == 0
        assert np.all(cluster.centroid == [1, 1])
        assert cluster.radius == 0
        assert cluster.weight == 3
        assert cluster.case_ids == ["0", "1"]
        with pytest.raises(IndexError):
            assert cluster_list[1]
        cluster_list = dense_group[0]
        cluster = cluster_list[0]
        assert isinstance(cluster, Cluster)
        assert cluster.id == 1
        assert np.all(cluster.centroid == [0.25, 0.25])
        assert cluster.radius == cl2.radius
        assert cluster.weight == 4
        assert cluster.case_ids == ["2", "3"]
        with pytest.raises(IndexError):
            assert not_dense_group[1]
            assert dense_group[1]
            assert cluster_list[1]

        micro_cluster = MicroCluster(0, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([6.0, 6.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 6
        denstream.p_micro_clusters = []
        denstream.p_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_0.id] = micro_cluster.id
        denstream.all_cases[case_1.id] = micro_cluster.id

        micro_cluster = MicroCluster(1, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([1.0, 1.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 2
        denstream.p_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_2.id] = micro_cluster.id
        denstream.all_cases[case_3.id] = micro_cluster.id

        cl1 = denstream.p_micro_clusters[0]
        cl2 = denstream.p_micro_clusters[1]

        assert len(denstream.p_micro_clusters) > 1
        assert (
            denstream.euclidean_distance(cl1.centroid, cl2.centroid)
            > 2 * denstream.epsilon
        )
        assert cl1.weight >= denstream.mu
        assert cl2.weight < denstream.mu
        dense_group, not_dense_group = denstream.generate_clusters()

        assert not dense_group == [[]]
        assert not not_dense_group == [[]]
        cluster_list = dense_group[0]
        cluster = cluster_list[0]
        assert isinstance(cluster, Cluster)
        assert cluster.id == 0
        assert np.all(cluster.centroid == [1, 1])
        assert cluster.radius == 0
        assert cluster.weight == 6
        assert cluster.case_ids == ["0", "1"]
        with pytest.raises(IndexError):
            assert cluster_list[1]
        cluster_list = not_dense_group[0]
        cluster = cluster_list[0]
        assert isinstance(cluster, Cluster)
        assert cluster.id == 1
        assert np.all(cluster.centroid == [0.5, 0.5])
        assert cluster.radius == cl2.radius
        assert cluster.weight == 2
        assert cluster.case_ids == ["2", "3"]
        with pytest.raises(IndexError):
            assert not_dense_group[1]
            assert dense_group[1]
            assert cluster_list[1]

        micro_cluster = MicroCluster(0, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([6.0, 6.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 6
        denstream.p_micro_clusters = []
        denstream.p_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_0.id] = micro_cluster.id
        denstream.all_cases[case_1.id] = micro_cluster.id

        micro_cluster = MicroCluster(1, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([1.0, 1.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 4
        denstream.p_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_2.id] = micro_cluster.id
        denstream.all_cases[case_3.id] = micro_cluster.id

        cl1 = denstream.p_micro_clusters[0]
        cl2 = denstream.p_micro_clusters[1]

        assert len(denstream.p_micro_clusters) > 1
        assert (
            denstream.euclidean_distance(cl1.centroid, cl2.centroid)
            > 2 * denstream.epsilon
        )
        assert cl1.weight >= denstream.mu
        assert cl2.weight >= denstream.mu
        dense_group, not_dense_group = denstream.generate_clusters()

        assert not dense_group == [[]]
        assert not_dense_group == [[]]
        cluster_list = dense_group[0]
        cluster = cluster_list[0]
        assert isinstance(cluster, Cluster)
        assert cluster.id == 0
        assert np.all(cluster.centroid == [1, 1])
        assert cluster.radius == 0
        assert cluster.weight == 6
        assert cluster.case_ids == ["0", "1"]
        with pytest.raises(IndexError):
            assert cluster_list[1]
        cluster_list = dense_group[1]
        cluster = cluster_list[0]
        assert isinstance(cluster, Cluster)
        assert cluster.id == 1
        assert np.all(cluster.centroid == [0.25, 0.25])
        assert cluster.radius == cl2.radius
        assert cluster.weight == 4
        assert cluster.case_ids == ["2", "3"]
        with pytest.raises(IndexError):
            assert dense_group[2]
            assert cluster_list[1]

        micro_cluster = MicroCluster(0, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([1.0, 1.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 3
        denstream.p_micro_clusters = []
        denstream.p_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_0.id] = micro_cluster.id
        denstream.all_cases[case_1.id] = micro_cluster.id

        micro_cluster = MicroCluster(1, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([1.0, 1.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 2
        denstream.p_micro_clusters.append(micro_cluster)
        denstream.all_cases[case_2.id] = micro_cluster.id
        denstream.all_cases[case_3.id] = micro_cluster.id

        cl1 = denstream.p_micro_clusters[0]
        cl2 = denstream.p_micro_clusters[1]

        assert len(denstream.p_micro_clusters) > 1
        assert (
            denstream.euclidean_distance(cl1.centroid, cl2.centroid)
            > 2 * denstream.epsilon
        )
        assert cl1.weight < denstream.mu
        assert cl2.weight < denstream.mu
        dense_group, not_dense_group = denstream.generate_clusters()

        assert dense_group == [[]]
        assert not not_dense_group == [[]]
        cluster_list = not_dense_group[0]
        cluster = cluster_list[0]
        assert isinstance(cluster, Cluster)
        assert cluster.id == 0
        assert np.all(cluster.centroid == [(1 / 3), (1 / 3)])
        assert cluster.radius == cl1.radius
        assert cluster.weight == 3
        assert cluster.case_ids == ["0", "1"]
        with pytest.raises(IndexError):
            assert cluster_list[1]
        cluster_list = not_dense_group[1]
        cluster = cluster_list[0]
        assert isinstance(cluster, Cluster)
        assert cluster.id == 1
        assert np.all(cluster.centroid == [0.5, 0.5])
        assert cluster.radius == cl2.radius
        assert cluster.weight == 2
        assert cluster.case_ids == ["2", "3"]
        with pytest.raises(IndexError):
            assert not_dense_group[2]
            assert cluster_list[1]
Exemplo n.º 6
0
    def test_decay_micro_clusters(self, denstream):
        micro_cluster = MicroCluster(0, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([5.0, 5.0])
        micro_cluster.cf2 = np.array([1.0, 1.0])
        micro_cluster.weight = 5
        denstream.p_micro_clusters.append(micro_cluster)

        micro_cluster = MicroCluster(1, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([1.0, 5.0])
        micro_cluster.cf2 = np.array([3.0, 0.0])
        micro_cluster.weight = 10
        denstream.p_micro_clusters.append(micro_cluster)

        micro_cluster = MicroCluster(2, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([0.0, 0.0])
        micro_cluster.cf2 = np.array([10.0, 2.0])
        micro_cluster.weight = 3
        denstream.p_micro_clusters.append(micro_cluster)

        denstream.decay_micro_clusters(0)
        assert np.all(denstream.p_micro_clusters[0].cf1 == np.array([5, 5]))
        assert np.all(denstream.p_micro_clusters[0].cf2 == np.array([1, 1]))
        assert np.all(denstream.p_micro_clusters[0].weight == 5)

        assert np.all(
            denstream.p_micro_clusters[1].cf1 == np.array([1, 5]) * 2 ** (-0.15)
        )
        assert np.all(
            denstream.p_micro_clusters[1].cf2 == np.array([3, 0]) * 2 ** (-0.15)
        )
        assert np.all(denstream.p_micro_clusters[1].weight == 10 * 2 ** (-0.15))

        assert np.all(
            denstream.p_micro_clusters[2].cf1 == np.array([0, 0]) * 2 ** (-0.15)
        )
        assert np.all(
            denstream.p_micro_clusters[2].cf2 == np.array([10, 2]) * 2 ** (-0.15)
        )
        assert np.all(denstream.p_micro_clusters[2].weight == 3 * 2 ** (-0.15))
Exemplo n.º 7
0
    def test_add_point(self, denstream: DenStream):
        case_list = []
        case_1 = Case("1")
        case_1.add_event(
            {
                "concept:name": "activityA",
                "time:timestamp": datetime(2015, 5, 10, 8, 00, 00),
            }
        )
        case_1.add_event(
            {
                "concept:name": "activityB",
                "time:timestamp": datetime(2015, 5, 10, 8, 00, 10),
            }
        )
        case_1.add_event(
            {
                "concept:name": "activityC",
                "time:timestamp": datetime(2015, 5, 10, 8, 00, 20),
            }
        )
        case_list.append(case_1)

        case_2 = Case("2")
        case_2.add_event(
            {
                "concept:name": "activityA",
                "time:timestamp": datetime(2015, 5, 10, 8, 00, 00),
            }
        )
        case_2.add_event(
            {
                "concept:name": "activityB",
                "time:timestamp": datetime(2015, 5, 10, 8, 00, 10),
            }
        )
        case_list.append(case_2)

        graph = initialize_graph(case_list)

        case_3 = Case("3")
        case_3.add_event(
            {
                "concept:name": "activityA",
                "time:timestamp": datetime(2015, 5, 10, 8, 00, 00),
            }
        )
        case_3.add_event(
            {
                "concept:name": "activityB",
                "time:timestamp": datetime(2015, 5, 10, 8, 00, 10),
            }
        )
        case_3.add_event(
            {
                "concept:name": "activityC",
                "time:timestamp": datetime(2015, 5, 10, 8, 00, 20),
            }
        )
        case_3.add_event(
            {
                "concept:name": "activityD",
                "time:timestamp": datetime(2015, 5, 10, 8, 00, 30),
            }
        )

        case_3.distances = calculate_case_distances(graph, case_3)

        micro_cluster = MicroCluster(10, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([0.5, -0.5])
        micro_cluster.cf2 = np.array([0.5, -0.1])
        micro_cluster.weight = 10
        denstream.p_micro_clusters.append(micro_cluster)

        micro_cluster = MicroCluster(11, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([0.0, 0.0])
        micro_cluster.cf2 = np.array([0.0, 0.0])
        micro_cluster.weight = 5
        denstream.o_micro_clusters.append(micro_cluster)
        denstream.mc_id = 2

        mc_id = denstream.add_point(case_3)
        assert mc_id == 2
        assert len(denstream.o_micro_clusters) == 2
        assert denstream.o_micro_clusters[1].radius == 0
        assert denstream.o_micro_clusters[1].weight == 1
        assert np.all(denstream.o_micro_clusters[1].cf1 == case_3.point)
        assert np.all(denstream.o_micro_clusters[1].cf2 == case_3.point * case_3.point)

        cf = denstream.o_micro_clusters[1].cf1.copy()
        cf2 = denstream.o_micro_clusters[1].cf2.copy()
        mc_id = denstream.add_point(case_3)
        assert mc_id == 2
        assert len(denstream.o_micro_clusters) == 1
        assert len(denstream.p_micro_clusters) == 2
        assert denstream.p_micro_clusters[1].weight == 2
        assert np.all(denstream.p_micro_clusters[1].cf1 == cf + case_3.point)
        assert np.all(
            denstream.p_micro_clusters[1].cf2 == cf2 + case_3.point * case_3.point
        )
Exemplo n.º 8
0
    def test_find_closest_mc(self, denstream):
        point = np.array([0, 0])

        with pytest.raises(NoMicroClusterException):
            assert denstream.find_closest_mc(point, denstream.p_micro_clusters)
        with pytest.raises(NoMicroClusterException):
            assert denstream.find_closest_mc(point, denstream.o_micro_clusters)

        micro_cluster = MicroCluster(0, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([0, 1])
        micro_cluster.weight = 2
        denstream.p_micro_clusters.append(micro_cluster)

        micro_cluster = MicroCluster(1, 2, 0, 0.15)
        micro_cluster.cf1 = np.array([0, 1])
        micro_cluster.weight = 1
        denstream.p_micro_clusters.append(micro_cluster)

        i, mc, dist = denstream.find_closest_mc(point, denstream.p_micro_clusters)
        assert i == 0
        assert np.all(mc.cf1 == [0, 1])
        assert mc.weight == 2
        assert dist == 0.5

        point = np.array([0, 2])
        micro_cluster = MicroCluster(2, 2, 1, 0.15)
        micro_cluster.cf1 = np.array([0, 1])
        micro_cluster.weight = 2
        denstream.p_micro_clusters = []
        denstream.p_micro_clusters.append(micro_cluster)

        micro_cluster = MicroCluster(3, 2, 1, 0.15)
        micro_cluster.cf1 = np.array([0, 1])
        micro_cluster.weight = 1
        denstream.p_micro_clusters.append(micro_cluster)

        i, mc, dist = denstream.find_closest_mc(point, denstream.p_micro_clusters)
        assert i == 1
        assert np.all(mc.cf1 == [0, 1])
        assert mc.weight == 1
        assert dist == 1

        micro_cluster = MicroCluster(4, 2, 1, 0.15)
        micro_cluster.cf1 = np.array([0, 3])
        micro_cluster.weight = 2
        denstream.o_micro_clusters = []
        denstream.o_micro_clusters.append(micro_cluster)

        micro_cluster = MicroCluster(5, 2, 1, 0.15)
        micro_cluster.cf1 = np.array([0, 1])
        micro_cluster.weight = 3
        denstream.o_micro_clusters.append(micro_cluster)

        micro_cluster = MicroCluster(6, 2, 1, 0.15)
        micro_cluster.cf1 = np.array([0, 2])
        micro_cluster.weight = 1
        denstream.o_micro_clusters.append(micro_cluster)

        point = np.array([0, 3])
        i, mc, dist = denstream.find_closest_mc(point, denstream.o_micro_clusters)
        assert i == 2
        assert np.all(mc.cf1 == [0, 2])
        assert mc.weight == 1
Exemplo n.º 9
0
def test_update():
    case_list = []
    micro_cluster = MicroCluster(0, 2, 0, 0.15)

    case = Case("1")
    case.add_event(
        {
            "concept:name": "activityA",
            "time:timestamp": datetime(2015, 5, 10, 8, 00, 00),
        }
    )
    case.add_event(
        {
            "concept:name": "activityD",
            "time:timestamp": datetime(2015, 5, 10, 8, 33, 20),
        }
    )
    case.add_event(
        {
            "concept:name": "activityE",
            "time:timestamp": datetime(2015, 5, 10, 14, 6, 40),
        }
    )
    case_list.append(case)

    case = Case("2")
    case.add_event(
        {
            "concept:name": "activityA",
            "time:timestamp": datetime(2015, 5, 10, 1, 00, 00),
        }
    )
    case.add_event(
        {
            "concept:name": "activityB",
            "time:timestamp": datetime(2015, 5, 10, 14, 40, 00),
        }
    )
    case.add_event(
        {
            "concept:name": "activityD",
            "time:timestamp": datetime(2015, 5, 10, 15, 5, 00),
        }
    )
    case_list.append(case)

    graph = initialize_graph(case_list)

    case = Case("3")
    case.add_event(
        {
            "concept:name": "activityA",
            "time:timestamp": datetime(2015, 5, 10, 8, 00, 00),
        }
    )
    case.add_event(
        {
            "concept:name": "activityB",
            "time:timestamp": datetime(2015, 5, 10, 8, 13, 00),
        }
    )
    case.add_event(
        {
            "concept:name": "activityC",
            "time:timestamp": datetime(2015, 5, 10, 8, 13, 00),
        }
    )
    case.distances = calculate_case_distances(graph, case)

    cf = micro_cluster.cf1.copy()
    cf2 = micro_cluster.cf2.copy()
    weight = micro_cluster.weight
    micro_cluster.update(case)

    assert np.all(micro_cluster.cf1 == cf + case.point)
    assert np.all(micro_cluster.cf2 == cf2 + case.point * case.point)
    assert micro_cluster.weight == weight + 1

    case = case_list[0]
    case.distances = calculate_case_distances(graph, case)
    cf = micro_cluster.cf1.copy()
    cf2 = micro_cluster.cf2.copy()
    weight = micro_cluster.weight
    micro_cluster.update(case)

    assert np.all(micro_cluster.cf1 == cf + case.point)
    assert np.all(micro_cluster.cf2 == cf2 + case.point * case.point)
    assert micro_cluster.weight == weight + 1
Exemplo n.º 10
0
def test_radius_with_new_point():
    micro_cluster = MicroCluster(0, 2, 0, 0.15)
    point1 = np.array([0, 1])
    radius = micro_cluster.radius_with_new_point(point1)
    assert isinstance(radius, np.float64)
    assert radius == 0

    micro_cluster.cf1 = np.array([0, 0])
    micro_cluster.cf2 = np.array([0, 1])
    point1 = np.array([0, 1])
    radius = micro_cluster.radius_with_new_point(point1)
    assert radius == 1

    micro_cluster.cf1 = np.array([0, 0])
    micro_cluster.cf2 = np.array([1, 1])
    point1 = np.array([0, 1])
    radius = micro_cluster.radius_with_new_point(point1)
    micro_cluster.cf1 = np.array([0, 1])
    micro_cluster.cf2 = np.array([1, 2])
    micro_cluster.weight = 1
    assert radius == micro_cluster.radius

    micro_cluster.cf1 = np.array([1, 1])
    micro_cluster.cf2 = np.array([0, 0])
    point1 = np.array([1, 1])
    radius = micro_cluster.radius_with_new_point(point1)
    micro_cluster.cf1 = np.array([2, 2])
    micro_cluster.cf2 = np.array([1, 1])
    micro_cluster.weight = 1
    assert radius == 0
    assert radius == micro_cluster.radius
Exemplo n.º 11
0
def test_radius():
    micro_cluster = MicroCluster(0, 2, 0, 0.15)
    micro_cluster.weight = 1
    micro_cluster.cf1 = np.array([0, 0])
    micro_cluster.cf2 = np.array([0, 1])

    assert isinstance(micro_cluster.radius, np.float64)
    assert micro_cluster.radius == 1.0

    micro_cluster.cf1 = np.array([0, 0])
    micro_cluster.cf2 = np.array([0, 2])
    assert micro_cluster.radius == sqrt(2)

    micro_cluster.cf1 = np.array([0, 1])
    micro_cluster.cf2 = np.array([0, 2])
    assert micro_cluster.radius == 1

    micro_cluster.cf1 = np.array([0, 2])
    micro_cluster.cf2 = np.array([0, 2])
    assert micro_cluster.radius == 0

    micro_cluster.cf1 = np.array([1, 2])
    micro_cluster.cf2 = np.array([0, 0])
    assert micro_cluster.radius == 0