def test_centroid(): micro_cluster = MicroCluster(0, 2, 0, 0.15) micro_cluster.weight = 1 assert isinstance(micro_cluster.centroid, np.ndarray) assert np.all(micro_cluster.centroid == 0) micro_cluster.cf1 = np.array([0, 1]) assert np.all(micro_cluster.centroid == [0, 1]) micro_cluster.weight = 2 assert np.all(micro_cluster.centroid == [0, 0.5])
def test_generate_outlier_clusters(self, denstream): assert denstream.generate_outlier_clusters() == [] case_0 = Case("0") case_1 = Case("1") case_2 = Case("2") case_3 = Case("3") micro_cluster = MicroCluster(0, 2, 0, 0.15) micro_cluster.weight = 3 denstream.o_micro_clusters.append(micro_cluster) denstream.all_cases[case_0.id] = micro_cluster.id micro_cluster = MicroCluster(1, 2, 0, 0.15) micro_cluster.weight = 4 denstream.o_micro_clusters.append(micro_cluster) denstream.all_cases[case_1.id] = micro_cluster.id micro_cluster = MicroCluster(3, 2, 0, 0.15) micro_cluster.weight = 6 denstream.o_micro_clusters.append(micro_cluster) denstream.all_cases[case_2.id] = micro_cluster.id denstream.all_cases[case_3.id] = micro_cluster.id assert denstream.all_cases == {"0": 0, "1": 1, "2": 3, "3": 3} cluster_list = denstream.generate_outlier_clusters() cluster = cluster_list[0] assert cluster.id == 0 assert np.all(cluster.centroid == [0, 0]) assert cluster.radius == 0 assert cluster.weight == 3 assert cluster.case_ids == ["0"] cluster = cluster_list[1] assert cluster.id == 1 assert np.all(cluster.centroid == [0, 0]) assert cluster.radius == 0 assert cluster.weight == 4 assert cluster.case_ids == ["1"] cluster = cluster_list[2] assert cluster.id == 3 assert np.all(cluster.centroid == [0, 0]) assert cluster.radius == 0 assert cluster.weight == 6 assert cluster.case_ids == ["2", "3"]
def test_initial_value(): micro_cluster = MicroCluster(0, 2, 0, 0.15) assert isinstance(micro_cluster.cf1, np.ndarray) assert isinstance(micro_cluster.cf2, np.ndarray) assert np.all(micro_cluster.cf1 == [0, 0]) assert np.all(micro_cluster.cf2 == [0, 0]) assert micro_cluster.weight == 0 assert isinstance(micro_cluster.creation_time, int) assert micro_cluster.creation_time == 0 assert isinstance(micro_cluster.lambda_, float) assert micro_cluster.lambda_ == 0.15
def test_decay(): micro_cluster = MicroCluster(0, 2, 0, 0.15) micro_cluster.weight = 1 micro_cluster.cf1 = np.array([0.5, 0.7]) micro_cluster.cf2 = np.array([0.0, 1.0]) cf = micro_cluster.cf1.copy() cf2 = micro_cluster.cf2.copy() weight = micro_cluster.weight micro_cluster.decay() assert np.all(micro_cluster.cf1 == cf * (2 ** (-0.15))) assert np.all(micro_cluster.cf2 == cf2 * (2 ** (-0.15))) assert micro_cluster.weight == weight * (2 ** (-0.15))
def test_generate_clusters(self, denstream): assert len(denstream.p_micro_clusters) == 0 dense_group, not_dense_group = denstream.generate_clusters() assert dense_group == [[]] assert not_dense_group == [[]] case_0 = Case("0") case_1 = Case("1") micro_cluster = MicroCluster(0, 2, 0, 0.15) micro_cluster.cf1 = np.array([5.0, 5.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 5 denstream.p_micro_clusters.append(micro_cluster) denstream.all_cases[case_0.id] = micro_cluster.id denstream.all_cases[case_1.id] = micro_cluster.id assert len(denstream.p_micro_clusters) == 1 assert micro_cluster.weight >= denstream.mu dense_group, not_dense_group = denstream.generate_clusters() assert not dense_group == [[]] assert not_dense_group == [[]] cluster_list = dense_group[0] cluster = cluster_list[0] assert isinstance(cluster, Cluster) assert cluster.id == 0 assert np.all(cluster.centroid == [1, 1]) assert cluster.radius == 0 assert cluster.weight == 5 assert cluster.case_ids == ["0", "1"] micro_cluster = MicroCluster(0, 2, 0, 0.15) micro_cluster.cf1 = np.array([3.0, 3.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 3 denstream.p_micro_clusters = [] denstream.p_micro_clusters.append(micro_cluster) denstream.all_cases[case_0.id] = micro_cluster.id denstream.all_cases[case_1.id] = micro_cluster.id assert len(denstream.p_micro_clusters) == 1 assert micro_cluster.weight < denstream.mu dense_group, not_dense_group = denstream.generate_clusters() assert dense_group == [[]] assert not not_dense_group == [[]] cluster_list = not_dense_group[0] cluster = cluster_list[0] assert isinstance(cluster, Cluster) assert cluster.id == 0 assert np.all(cluster.centroid == [1, 1]) assert cluster.radius == 0 assert cluster.weight == 3 assert cluster.case_ids == ["0", "1"] case_2 = Case("2") case_3 = Case("3") micro_cluster = MicroCluster(0, 2, 0, 0.15) micro_cluster.cf1 = np.array([3.0, 3.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 3 denstream.p_micro_clusters = [] denstream.p_micro_clusters.append(micro_cluster) denstream.all_cases[case_0.id] = micro_cluster.id denstream.all_cases[case_1.id] = micro_cluster.id micro_cluster = MicroCluster(1, 2, 0, 0.15) micro_cluster.cf1 = np.array([4.0, 4.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 4 denstream.p_micro_clusters.append(micro_cluster) denstream.all_cases[case_2.id] = micro_cluster.id denstream.all_cases[case_3.id] = micro_cluster.id cl1 = denstream.p_micro_clusters[0] cl2 = denstream.p_micro_clusters[1] assert len(denstream.p_micro_clusters) > 1 assert ( denstream.euclidean_distance(cl1.centroid, cl2.centroid) <= 2 * denstream.epsilon ) assert cl1.weight + cl2.weight >= denstream.mu dense_group, not_dense_group = denstream.generate_clusters() assert not dense_group == [[]] assert not_dense_group == [[]] cluster_list = dense_group[0] cluster = cluster_list[0] assert isinstance(cluster, Cluster) assert cluster.id == 0 assert np.all(cluster.centroid == [1, 1]) assert cluster.radius == 0 assert cluster.weight == 3 assert cluster.case_ids == ["0", "1"] cluster = cluster_list[1] assert isinstance(cluster, Cluster) assert cluster.id == 1 assert np.all(cluster.centroid == [1, 1]) assert cluster.radius == 0 assert cluster.weight == 4 assert cluster.case_ids == ["2", "3"] with pytest.raises(IndexError): assert dense_group[1] assert cluster_list[2] micro_cluster = MicroCluster(0, 2, 0, 0.15) micro_cluster.cf1 = np.array([3.0, 3.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 1 denstream.p_micro_clusters = [] denstream.p_micro_clusters.append(micro_cluster) denstream.all_cases[case_0.id] = micro_cluster.id denstream.all_cases[case_1.id] = micro_cluster.id micro_cluster = MicroCluster(1, 2, 0, 0.15) micro_cluster.cf1 = np.array([3.0, 3.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 1 denstream.p_micro_clusters.append(micro_cluster) denstream.all_cases[case_2.id] = micro_cluster.id denstream.all_cases[case_3.id] = micro_cluster.id cl1 = denstream.p_micro_clusters[0] cl2 = denstream.p_micro_clusters[1] assert len(denstream.p_micro_clusters) > 1 assert ( denstream.euclidean_distance(cl1.centroid, cl2.centroid) <= 2 * denstream.epsilon ) assert cl1.weight + cl2.weight < denstream.mu dense_group, not_dense_group = denstream.generate_clusters() assert dense_group == [[]] assert not not_dense_group == [[]] cluster_list = not_dense_group[0] cluster = cluster_list[0] assert isinstance(cluster, Cluster) assert cluster.id == 0 assert np.all(cluster.centroid == [3, 3]) assert cluster.radius == 0 assert cluster.weight == 1 assert cluster.case_ids == ["0", "1"] cluster = cluster_list[1] assert isinstance(cluster, Cluster) assert cluster.id == 1 assert np.all(cluster.centroid == [3, 3]) assert cluster.radius == 0 assert cluster.weight == 1 assert cluster.case_ids == ["2", "3"] with pytest.raises(IndexError): assert not_dense_group[1] assert cluster_list[2] micro_cluster = MicroCluster(0, 2, 0, 0.15) micro_cluster.cf1 = np.array([3.0, 3.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 3 denstream.p_micro_clusters = [] denstream.p_micro_clusters.append(micro_cluster) denstream.all_cases[case_0.id] = micro_cluster.id denstream.all_cases[case_1.id] = micro_cluster.id micro_cluster = MicroCluster(1, 2, 0, 0.15) micro_cluster.cf1 = np.array([1.0, 1.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 4 denstream.p_micro_clusters.append(micro_cluster) denstream.all_cases[case_2.id] = micro_cluster.id denstream.all_cases[case_3.id] = micro_cluster.id cl1 = denstream.p_micro_clusters[0] cl2 = denstream.p_micro_clusters[1] assert len(denstream.p_micro_clusters) > 1 assert ( denstream.euclidean_distance(cl1.centroid, cl2.centroid) > 2 * denstream.epsilon ) assert cl1.weight < denstream.mu assert cl2.weight >= denstream.mu dense_group, not_dense_group = denstream.generate_clusters() assert not dense_group == [[]] assert not not_dense_group == [[]] cluster_list = not_dense_group[0] cluster = cluster_list[0] assert isinstance(cluster, Cluster) assert cluster.id == 0 assert np.all(cluster.centroid == [1, 1]) assert cluster.radius == 0 assert cluster.weight == 3 assert cluster.case_ids == ["0", "1"] with pytest.raises(IndexError): assert cluster_list[1] cluster_list = dense_group[0] cluster = cluster_list[0] assert isinstance(cluster, Cluster) assert cluster.id == 1 assert np.all(cluster.centroid == [0.25, 0.25]) assert cluster.radius == cl2.radius assert cluster.weight == 4 assert cluster.case_ids == ["2", "3"] with pytest.raises(IndexError): assert not_dense_group[1] assert dense_group[1] assert cluster_list[1] micro_cluster = MicroCluster(0, 2, 0, 0.15) micro_cluster.cf1 = np.array([6.0, 6.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 6 denstream.p_micro_clusters = [] denstream.p_micro_clusters.append(micro_cluster) denstream.all_cases[case_0.id] = micro_cluster.id denstream.all_cases[case_1.id] = micro_cluster.id micro_cluster = MicroCluster(1, 2, 0, 0.15) micro_cluster.cf1 = np.array([1.0, 1.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 2 denstream.p_micro_clusters.append(micro_cluster) denstream.all_cases[case_2.id] = micro_cluster.id denstream.all_cases[case_3.id] = micro_cluster.id cl1 = denstream.p_micro_clusters[0] cl2 = denstream.p_micro_clusters[1] assert len(denstream.p_micro_clusters) > 1 assert ( denstream.euclidean_distance(cl1.centroid, cl2.centroid) > 2 * denstream.epsilon ) assert cl1.weight >= denstream.mu assert cl2.weight < denstream.mu dense_group, not_dense_group = denstream.generate_clusters() assert not dense_group == [[]] assert not not_dense_group == [[]] cluster_list = dense_group[0] cluster = cluster_list[0] assert isinstance(cluster, Cluster) assert cluster.id == 0 assert np.all(cluster.centroid == [1, 1]) assert cluster.radius == 0 assert cluster.weight == 6 assert cluster.case_ids == ["0", "1"] with pytest.raises(IndexError): assert cluster_list[1] cluster_list = not_dense_group[0] cluster = cluster_list[0] assert isinstance(cluster, Cluster) assert cluster.id == 1 assert np.all(cluster.centroid == [0.5, 0.5]) assert cluster.radius == cl2.radius assert cluster.weight == 2 assert cluster.case_ids == ["2", "3"] with pytest.raises(IndexError): assert not_dense_group[1] assert dense_group[1] assert cluster_list[1] micro_cluster = MicroCluster(0, 2, 0, 0.15) micro_cluster.cf1 = np.array([6.0, 6.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 6 denstream.p_micro_clusters = [] denstream.p_micro_clusters.append(micro_cluster) denstream.all_cases[case_0.id] = micro_cluster.id denstream.all_cases[case_1.id] = micro_cluster.id micro_cluster = MicroCluster(1, 2, 0, 0.15) micro_cluster.cf1 = np.array([1.0, 1.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 4 denstream.p_micro_clusters.append(micro_cluster) denstream.all_cases[case_2.id] = micro_cluster.id denstream.all_cases[case_3.id] = micro_cluster.id cl1 = denstream.p_micro_clusters[0] cl2 = denstream.p_micro_clusters[1] assert len(denstream.p_micro_clusters) > 1 assert ( denstream.euclidean_distance(cl1.centroid, cl2.centroid) > 2 * denstream.epsilon ) assert cl1.weight >= denstream.mu assert cl2.weight >= denstream.mu dense_group, not_dense_group = denstream.generate_clusters() assert not dense_group == [[]] assert not_dense_group == [[]] cluster_list = dense_group[0] cluster = cluster_list[0] assert isinstance(cluster, Cluster) assert cluster.id == 0 assert np.all(cluster.centroid == [1, 1]) assert cluster.radius == 0 assert cluster.weight == 6 assert cluster.case_ids == ["0", "1"] with pytest.raises(IndexError): assert cluster_list[1] cluster_list = dense_group[1] cluster = cluster_list[0] assert isinstance(cluster, Cluster) assert cluster.id == 1 assert np.all(cluster.centroid == [0.25, 0.25]) assert cluster.radius == cl2.radius assert cluster.weight == 4 assert cluster.case_ids == ["2", "3"] with pytest.raises(IndexError): assert dense_group[2] assert cluster_list[1] micro_cluster = MicroCluster(0, 2, 0, 0.15) micro_cluster.cf1 = np.array([1.0, 1.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 3 denstream.p_micro_clusters = [] denstream.p_micro_clusters.append(micro_cluster) denstream.all_cases[case_0.id] = micro_cluster.id denstream.all_cases[case_1.id] = micro_cluster.id micro_cluster = MicroCluster(1, 2, 0, 0.15) micro_cluster.cf1 = np.array([1.0, 1.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 2 denstream.p_micro_clusters.append(micro_cluster) denstream.all_cases[case_2.id] = micro_cluster.id denstream.all_cases[case_3.id] = micro_cluster.id cl1 = denstream.p_micro_clusters[0] cl2 = denstream.p_micro_clusters[1] assert len(denstream.p_micro_clusters) > 1 assert ( denstream.euclidean_distance(cl1.centroid, cl2.centroid) > 2 * denstream.epsilon ) assert cl1.weight < denstream.mu assert cl2.weight < denstream.mu dense_group, not_dense_group = denstream.generate_clusters() assert dense_group == [[]] assert not not_dense_group == [[]] cluster_list = not_dense_group[0] cluster = cluster_list[0] assert isinstance(cluster, Cluster) assert cluster.id == 0 assert np.all(cluster.centroid == [(1 / 3), (1 / 3)]) assert cluster.radius == cl1.radius assert cluster.weight == 3 assert cluster.case_ids == ["0", "1"] with pytest.raises(IndexError): assert cluster_list[1] cluster_list = not_dense_group[1] cluster = cluster_list[0] assert isinstance(cluster, Cluster) assert cluster.id == 1 assert np.all(cluster.centroid == [0.5, 0.5]) assert cluster.radius == cl2.radius assert cluster.weight == 2 assert cluster.case_ids == ["2", "3"] with pytest.raises(IndexError): assert not_dense_group[2] assert cluster_list[1]
def test_decay_micro_clusters(self, denstream): micro_cluster = MicroCluster(0, 2, 0, 0.15) micro_cluster.cf1 = np.array([5.0, 5.0]) micro_cluster.cf2 = np.array([1.0, 1.0]) micro_cluster.weight = 5 denstream.p_micro_clusters.append(micro_cluster) micro_cluster = MicroCluster(1, 2, 0, 0.15) micro_cluster.cf1 = np.array([1.0, 5.0]) micro_cluster.cf2 = np.array([3.0, 0.0]) micro_cluster.weight = 10 denstream.p_micro_clusters.append(micro_cluster) micro_cluster = MicroCluster(2, 2, 0, 0.15) micro_cluster.cf1 = np.array([0.0, 0.0]) micro_cluster.cf2 = np.array([10.0, 2.0]) micro_cluster.weight = 3 denstream.p_micro_clusters.append(micro_cluster) denstream.decay_micro_clusters(0) assert np.all(denstream.p_micro_clusters[0].cf1 == np.array([5, 5])) assert np.all(denstream.p_micro_clusters[0].cf2 == np.array([1, 1])) assert np.all(denstream.p_micro_clusters[0].weight == 5) assert np.all( denstream.p_micro_clusters[1].cf1 == np.array([1, 5]) * 2 ** (-0.15) ) assert np.all( denstream.p_micro_clusters[1].cf2 == np.array([3, 0]) * 2 ** (-0.15) ) assert np.all(denstream.p_micro_clusters[1].weight == 10 * 2 ** (-0.15)) assert np.all( denstream.p_micro_clusters[2].cf1 == np.array([0, 0]) * 2 ** (-0.15) ) assert np.all( denstream.p_micro_clusters[2].cf2 == np.array([10, 2]) * 2 ** (-0.15) ) assert np.all(denstream.p_micro_clusters[2].weight == 3 * 2 ** (-0.15))
def test_add_point(self, denstream: DenStream): case_list = [] case_1 = Case("1") case_1.add_event( { "concept:name": "activityA", "time:timestamp": datetime(2015, 5, 10, 8, 00, 00), } ) case_1.add_event( { "concept:name": "activityB", "time:timestamp": datetime(2015, 5, 10, 8, 00, 10), } ) case_1.add_event( { "concept:name": "activityC", "time:timestamp": datetime(2015, 5, 10, 8, 00, 20), } ) case_list.append(case_1) case_2 = Case("2") case_2.add_event( { "concept:name": "activityA", "time:timestamp": datetime(2015, 5, 10, 8, 00, 00), } ) case_2.add_event( { "concept:name": "activityB", "time:timestamp": datetime(2015, 5, 10, 8, 00, 10), } ) case_list.append(case_2) graph = initialize_graph(case_list) case_3 = Case("3") case_3.add_event( { "concept:name": "activityA", "time:timestamp": datetime(2015, 5, 10, 8, 00, 00), } ) case_3.add_event( { "concept:name": "activityB", "time:timestamp": datetime(2015, 5, 10, 8, 00, 10), } ) case_3.add_event( { "concept:name": "activityC", "time:timestamp": datetime(2015, 5, 10, 8, 00, 20), } ) case_3.add_event( { "concept:name": "activityD", "time:timestamp": datetime(2015, 5, 10, 8, 00, 30), } ) case_3.distances = calculate_case_distances(graph, case_3) micro_cluster = MicroCluster(10, 2, 0, 0.15) micro_cluster.cf1 = np.array([0.5, -0.5]) micro_cluster.cf2 = np.array([0.5, -0.1]) micro_cluster.weight = 10 denstream.p_micro_clusters.append(micro_cluster) micro_cluster = MicroCluster(11, 2, 0, 0.15) micro_cluster.cf1 = np.array([0.0, 0.0]) micro_cluster.cf2 = np.array([0.0, 0.0]) micro_cluster.weight = 5 denstream.o_micro_clusters.append(micro_cluster) denstream.mc_id = 2 mc_id = denstream.add_point(case_3) assert mc_id == 2 assert len(denstream.o_micro_clusters) == 2 assert denstream.o_micro_clusters[1].radius == 0 assert denstream.o_micro_clusters[1].weight == 1 assert np.all(denstream.o_micro_clusters[1].cf1 == case_3.point) assert np.all(denstream.o_micro_clusters[1].cf2 == case_3.point * case_3.point) cf = denstream.o_micro_clusters[1].cf1.copy() cf2 = denstream.o_micro_clusters[1].cf2.copy() mc_id = denstream.add_point(case_3) assert mc_id == 2 assert len(denstream.o_micro_clusters) == 1 assert len(denstream.p_micro_clusters) == 2 assert denstream.p_micro_clusters[1].weight == 2 assert np.all(denstream.p_micro_clusters[1].cf1 == cf + case_3.point) assert np.all( denstream.p_micro_clusters[1].cf2 == cf2 + case_3.point * case_3.point )
def test_find_closest_mc(self, denstream): point = np.array([0, 0]) with pytest.raises(NoMicroClusterException): assert denstream.find_closest_mc(point, denstream.p_micro_clusters) with pytest.raises(NoMicroClusterException): assert denstream.find_closest_mc(point, denstream.o_micro_clusters) micro_cluster = MicroCluster(0, 2, 0, 0.15) micro_cluster.cf1 = np.array([0, 1]) micro_cluster.weight = 2 denstream.p_micro_clusters.append(micro_cluster) micro_cluster = MicroCluster(1, 2, 0, 0.15) micro_cluster.cf1 = np.array([0, 1]) micro_cluster.weight = 1 denstream.p_micro_clusters.append(micro_cluster) i, mc, dist = denstream.find_closest_mc(point, denstream.p_micro_clusters) assert i == 0 assert np.all(mc.cf1 == [0, 1]) assert mc.weight == 2 assert dist == 0.5 point = np.array([0, 2]) micro_cluster = MicroCluster(2, 2, 1, 0.15) micro_cluster.cf1 = np.array([0, 1]) micro_cluster.weight = 2 denstream.p_micro_clusters = [] denstream.p_micro_clusters.append(micro_cluster) micro_cluster = MicroCluster(3, 2, 1, 0.15) micro_cluster.cf1 = np.array([0, 1]) micro_cluster.weight = 1 denstream.p_micro_clusters.append(micro_cluster) i, mc, dist = denstream.find_closest_mc(point, denstream.p_micro_clusters) assert i == 1 assert np.all(mc.cf1 == [0, 1]) assert mc.weight == 1 assert dist == 1 micro_cluster = MicroCluster(4, 2, 1, 0.15) micro_cluster.cf1 = np.array([0, 3]) micro_cluster.weight = 2 denstream.o_micro_clusters = [] denstream.o_micro_clusters.append(micro_cluster) micro_cluster = MicroCluster(5, 2, 1, 0.15) micro_cluster.cf1 = np.array([0, 1]) micro_cluster.weight = 3 denstream.o_micro_clusters.append(micro_cluster) micro_cluster = MicroCluster(6, 2, 1, 0.15) micro_cluster.cf1 = np.array([0, 2]) micro_cluster.weight = 1 denstream.o_micro_clusters.append(micro_cluster) point = np.array([0, 3]) i, mc, dist = denstream.find_closest_mc(point, denstream.o_micro_clusters) assert i == 2 assert np.all(mc.cf1 == [0, 2]) assert mc.weight == 1
def test_update(): case_list = [] micro_cluster = MicroCluster(0, 2, 0, 0.15) case = Case("1") case.add_event( { "concept:name": "activityA", "time:timestamp": datetime(2015, 5, 10, 8, 00, 00), } ) case.add_event( { "concept:name": "activityD", "time:timestamp": datetime(2015, 5, 10, 8, 33, 20), } ) case.add_event( { "concept:name": "activityE", "time:timestamp": datetime(2015, 5, 10, 14, 6, 40), } ) case_list.append(case) case = Case("2") case.add_event( { "concept:name": "activityA", "time:timestamp": datetime(2015, 5, 10, 1, 00, 00), } ) case.add_event( { "concept:name": "activityB", "time:timestamp": datetime(2015, 5, 10, 14, 40, 00), } ) case.add_event( { "concept:name": "activityD", "time:timestamp": datetime(2015, 5, 10, 15, 5, 00), } ) case_list.append(case) graph = initialize_graph(case_list) case = Case("3") case.add_event( { "concept:name": "activityA", "time:timestamp": datetime(2015, 5, 10, 8, 00, 00), } ) case.add_event( { "concept:name": "activityB", "time:timestamp": datetime(2015, 5, 10, 8, 13, 00), } ) case.add_event( { "concept:name": "activityC", "time:timestamp": datetime(2015, 5, 10, 8, 13, 00), } ) case.distances = calculate_case_distances(graph, case) cf = micro_cluster.cf1.copy() cf2 = micro_cluster.cf2.copy() weight = micro_cluster.weight micro_cluster.update(case) assert np.all(micro_cluster.cf1 == cf + case.point) assert np.all(micro_cluster.cf2 == cf2 + case.point * case.point) assert micro_cluster.weight == weight + 1 case = case_list[0] case.distances = calculate_case_distances(graph, case) cf = micro_cluster.cf1.copy() cf2 = micro_cluster.cf2.copy() weight = micro_cluster.weight micro_cluster.update(case) assert np.all(micro_cluster.cf1 == cf + case.point) assert np.all(micro_cluster.cf2 == cf2 + case.point * case.point) assert micro_cluster.weight == weight + 1
def test_radius_with_new_point(): micro_cluster = MicroCluster(0, 2, 0, 0.15) point1 = np.array([0, 1]) radius = micro_cluster.radius_with_new_point(point1) assert isinstance(radius, np.float64) assert radius == 0 micro_cluster.cf1 = np.array([0, 0]) micro_cluster.cf2 = np.array([0, 1]) point1 = np.array([0, 1]) radius = micro_cluster.radius_with_new_point(point1) assert radius == 1 micro_cluster.cf1 = np.array([0, 0]) micro_cluster.cf2 = np.array([1, 1]) point1 = np.array([0, 1]) radius = micro_cluster.radius_with_new_point(point1) micro_cluster.cf1 = np.array([0, 1]) micro_cluster.cf2 = np.array([1, 2]) micro_cluster.weight = 1 assert radius == micro_cluster.radius micro_cluster.cf1 = np.array([1, 1]) micro_cluster.cf2 = np.array([0, 0]) point1 = np.array([1, 1]) radius = micro_cluster.radius_with_new_point(point1) micro_cluster.cf1 = np.array([2, 2]) micro_cluster.cf2 = np.array([1, 1]) micro_cluster.weight = 1 assert radius == 0 assert radius == micro_cluster.radius
def test_radius(): micro_cluster = MicroCluster(0, 2, 0, 0.15) micro_cluster.weight = 1 micro_cluster.cf1 = np.array([0, 0]) micro_cluster.cf2 = np.array([0, 1]) assert isinstance(micro_cluster.radius, np.float64) assert micro_cluster.radius == 1.0 micro_cluster.cf1 = np.array([0, 0]) micro_cluster.cf2 = np.array([0, 2]) assert micro_cluster.radius == sqrt(2) micro_cluster.cf1 = np.array([0, 1]) micro_cluster.cf2 = np.array([0, 2]) assert micro_cluster.radius == 1 micro_cluster.cf1 = np.array([0, 2]) micro_cluster.cf2 = np.array([0, 2]) assert micro_cluster.radius == 0 micro_cluster.cf1 = np.array([1, 2]) micro_cluster.cf2 = np.array([0, 0]) assert micro_cluster.radius == 0