Exemplo n.º 1
0
    def __execute(self, model: cnn.Net, image_paths: List[str]):
        processed_data = {
            'vanilla': [],
            'deconv': [],
            'gbp': [],
            'gcam': [],
            'ggcam': [],
        }

        device = next(model.parameters()).device
        model.eval()

        images, raw_images = load_images(image_paths, self.input_size)
        images = torch.stack(images).to(device)

        cls_num = len(self.classes)
        save_dir = Path(self.save_dir)
        save_dir.mkdir(parents=True, exist_ok=True)

        # --- Vanilla Backpropagation ---
        bp = BackPropagation(model=model)
        probs, ids = bp.forward(images)  # sorted

        # --- Deconvolution ---
        deconv = None

        if self.is_deconv:
            deconv = Deconvnet(model=model)
            _ = deconv.forward(images)

        # --- Grad-CAM / Guided Backpropagation / Guided Grad-CAM ---
        gcam = None
        gbp = None

        if self.is_gradcam:
            gcam = GradCAM(model=model)
            _ = gcam.forward(images)

            gbp = GuidedBackPropagation(model=model)
            _ = gbp.forward(images)

        # probs = probs.detach().cpu().numpy()  # to numpy
        # ids_np = ids.detach().cpu().numpy()  # to numpy

        pbar = tqdm(range(cls_num),
                    total=cls_num,
                    ncols=100,
                    bar_format='{l_bar}{bar:30}{r_bar}',
                    leave=False)
        pbar.set_description('Grad-CAM')

        for i in pbar:
            if self.is_vanilla:
                bp.backward(ids=ids[:, [i]])
                gradients = bp.generate()

                # Save results as image files
                for j in range(len(images)):
                    # fmt = '%d-{}-%s.png' % (j, self.classes[ids_np[j, i]])
                    # print("\t#{}: {} ({:.5f})".format(j, classes[ids[j, i]], probs[j, i]))

                    # append
                    _grad = get_gradient_data(gradients[j])
                    processed_data['vanilla'].append(_grad)

                    # save as image
                    # _p = save_dir.joinpath(fmt.format('vanilla'))
                    # save_gradient(str(_p), gradients[j])

            if self.is_deconv:
                deconv.backward(ids=ids[:, [i]])
                gradients = deconv.generate()

                for j in range(len(images)):
                    # fmt = '%d-{}-%s.png' % (j, self.classes[ids_np[j, i]])
                    # print("\t#{}: {} ({:.5f})".format(j, classes[ids[j, i]], probs[j, i]))

                    # append
                    _grad = get_gradient_data(gradients[j])
                    processed_data['deconv'].append(_grad)

                    # save as image
                    # _p = save_dir.joinpath(fmt.format('deconvnet'))
                    # save_gradient(str(_p), gradients[j])

            # Grad-CAM / Guided Grad-CAM / Guided Backpropagation
            if self.is_gradcam:
                gbp.backward(ids=ids[:, [i]])
                gradients = gbp.generate()

                # Grad-CAM
                gcam.backward(ids=ids[:, [i]])
                regions = gcam.generate(target_layer=self.target_layer)

                for j in range(len(images)):
                    # fmt = '%d-{}-%s.png' % (j, self.classes[ids_np[j, i]])
                    # print("\t#{}: {} ({:.5f})".format(j, classes[ids[j, i]], probs[j, i]))

                    # append
                    _grad = get_gradient_data(gradients[j])
                    processed_data['gbp'].append(_grad)

                    _grad = get_gradcam_data(regions[j, 0], raw_images[j])
                    processed_data['gcam'].append(_grad)

                    _grad = get_gradient_data(torch.mul(regions, gradients)[j])
                    processed_data['ggcam'].append(_grad)

                    # save as image - Guided Backpropagation
                    # _p = save_dir.joinpath(fmt.format('guided-bp'))
                    # save_gradient(str(_p), gradients[j])

                    # save as image - Grad-CAM
                    # _p = save_dir.joinpath(fmt.format(f'gradcam-{self.target_layer}'))
                    # save_gradcam(str(_p), regions[j, 0], raw_images[j])

                    # save as image - Guided Grad-CAM
                    # _p = save_dir.joinpath(fmt.format(f'guided_gradcam-{self.target_layer}'))
                    # save_gradient(str(_p), torch.mul(regions, gradients)[j])

        # Remove all the hook function in the 'model'
        bp.remove_hook()

        if self.is_deconv:
            deconv.remove_hook()

        if self.is_gradcam:
            gcam.remove_hook()
            gbp.remove_hook()

        return processed_data
def capture_solve(input_image):
    # Grayscale and adaptive threshold
    img = cv2.GaussianBlur(input_image, (5, 5), 0)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    mask = np.zeros(gray.shape, np.uint8)
    kernel1 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11, 11))

    close = cv2.morphologyEx(gray, cv2.MORPH_CLOSE, kernel1)
    div = np.float32(gray) / close
    isolate = np.uint8(cv2.normalize(div, div, 0, 255, cv2.NORM_MINMAX))
    res2 = cv2.cvtColor(isolate, cv2.COLOR_GRAY2BGR)
    thresh = cv2.adaptiveThreshold(isolate, 255, 0, 1, 19, 2)
    contour, hier = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    # Grab the biggest contour (the board)
    max_area = 0
    best_cnt = None
    for cnt in contour:
        area = cv2.contourArea(cnt)
        if area > 50000:
            if area > max_area:
                max_area = area
                best_cnt = cnt

    # Isolate board
    cv2.drawContours(mask, [best_cnt], 0, 255, -1)
    cv2.drawContours(mask, [best_cnt], 0, 0, 2)

    isolate = cv2.bitwise_and(isolate, mask)

    # === Use second order derivative filter to find the vertical and horizontal lines === #

    # Obtain vertical contours
    kernel_x = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 10))
    dx = cv2.Sobel(isolate, cv2.CV_16S, 1, 0)
    dx = cv2.convertScaleAbs(dx)
    cv2.normalize(dx, dx, 0, 255, cv2.NORM_MINMAX)
    _, close = cv2.threshold(dx, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    close = cv2.morphologyEx(close, cv2.MORPH_DILATE, kernel_x, iterations=1)

    # Remove number contours, isolating vertical lines
    contour, _ = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    for cnt in contour:
        x, y, w, h = cv2.boundingRect(cnt)
        if h / w > 5:
            cv2.drawContours(close, [cnt], 0, 255, -1)
        else:
            cv2.drawContours(close, [cnt], 0, 0, -1)

    close_x = cv2.morphologyEx(close, cv2.MORPH_CLOSE, None, iterations=2)

    # Obtain horizontal contours
    kernel_y = cv2.getStructuringElement(cv2.MORPH_RECT, (10, 2))
    dy = cv2.Sobel(isolate, cv2.CV_16S, 0, 2)
    dy = cv2.convertScaleAbs(dy)
    cv2.normalize(dy, dy, 0, 255, cv2.NORM_MINMAX)
    ret, close = cv2.threshold(dy, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    close = cv2.morphologyEx(close, cv2.MORPH_DILATE, kernel_y)

    # Remove number contours, isolating vertical lines
    contour, _ = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    for cnt in contour:
        x, y, w, h = cv2.boundingRect(cnt)
        if w / h > 5:
            cv2.drawContours(close, [cnt], 0, 255, -1)
        else:
            cv2.drawContours(close, [cnt], 0, 0, -1)

    close_y = cv2.morphologyEx(close, cv2.MORPH_DILATE, None, iterations=2)

    # Get intersections
    isolate = cv2.bitwise_and(close_x, close_y)

    # Obtain centroids
    contour, _ = cv2.findContours(isolate, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    centroids = []
    for cnt in contour:
        mom = cv2.moments(cnt)
        (x, y) = int(mom['m10'] / mom['m00']), int(mom['m01'] / mom['m00'])
        cv2.circle(img, (x, y), 4, (0, 255, 0), -1)
        centroids.append((x, y))

    # Re-order centroids
    centroids = np.array(centroids, dtype=np.float32)
    c = centroids.reshape((100, 2))
    c2 = c[np.argsort(c[:, 1])]
    b = np.vstack([c2[i * 10:(i + 1) * 10][np.argsort(c2[i * 10:(i + 1) * 10, 0])] for i in range(10)])
    bm = b.reshape((10, 10, 2))

    # Apply perspective transform and warp to 450x450
    image = np.zeros((450, 450, 3), np.uint8)
    for i, j in enumerate(b):
        ri = i // 10
        ci = i % 10
        if ci != 9 and ri != 9:
            src = bm[ri:ri + 2, ci:ci + 2, :].reshape((4, 2))
            dst = np.array([[ci * 50, ri * 50],
                            [(ci + 1) * 50 - 1, ri * 50],
                            [ci * 50, (ri + 1) * 50 - 1],
                            [(ci + 1) * 50 - 1, (ri + 1) * 50 - 1]], np.float32)
            retval = cv2.getPerspectiveTransform(src, dst)
            warp = cv2.warpPerspective(res2, retval, (450, 450))
            image[
            ri * 50:(ri + 1) * 50 - 1,
            ci * 50:(ci + 1) * 50 - 1
            ] = warp[ri * 50:(ri + 1) * 50 - 1, ci * 50:(ci + 1) * 50 - 1].copy()

    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 57, 5)

    # Filter out all numbers and noise to isolate boxes
    cnts = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    cnts = cnts[0] if len(cnts) == 2 else cnts[1]
    for c in cnts:
        area = cv2.contourArea(c)
        if area < 1000:
            cv2.drawContours(thresh, [c], -1, (0, 0, 0), -1)

    # Fix horizontal and vertical lines
    vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 5))
    thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, vertical_kernel, iterations=9)
    horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 1))
    thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, horizontal_kernel, iterations=4)

    invert = 255 - thresh
    cnts = cv2.findContours(invert, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    cnts = cnts[0] if len(cnts) == 2 else cnts[1]
    cnts, _ = contours.sort_contours(cnts, method="top-to-bottom")

    sudoku_rows = []
    row = []
    for (i, c) in enumerate(cnts, 1):
        area = cv2.contourArea(c)
        if area < 50000:
            row.append(c)
            if i % 9 == 0:
                (cnts, _) = contours.sort_contours(row, method="left-to-right")
                sudoku_rows.append(cnts)
                row = []

    squares = []
    for row in sudoku_rows:
        for cc in row:
            x, y, w, h = cv2.boundingRect(cc)
            squares.append(image[y:y + h, x:x + w])

    squares = np.reshape(squares, (-1, 9))
    board = np.zeros((9, 9))

    mean_list = []

    for x in squares:
        for box in x:
            gray = cv2.cvtColor(box, cv2.COLOR_BGR2GRAY)
            img = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 57, 5)
            denoise = ndimage.median_filter(img, 5)
            white_pix_count = np.count_nonzero(denoise)
            mean_list.append(white_pix_count)

    else:
        mean = np.mean(mean_list)

    for col, x in enumerate(squares):
        for row, box in enumerate(x):
            gray = cv2.cvtColor(box, cv2.COLOR_BGR2GRAY)
            img = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 57, 5)

            denoise = ndimage.median_filter(img, 5)
            white_pix_count = np.count_nonzero(denoise)

            if white_pix_count > mean:
                device = 'cuda' if torch.cuda.is_available() else 'cpu'

                model = Net()
                model.load_state_dict(torch.load('model.pth', map_location=torch.device(device)))
                model.eval()

                p = transforms.Compose([transforms.Resize((28, 28)),
                                        transforms.ToTensor(),
                                        transforms.Normalize((0.1307,), (0.3081,))])

                img = Image.fromarray(denoise)
                img = p(img)
                img = img.view(1, 28, 28)
                img = img.unsqueeze(0)

                output = model(img)
                prediction = list(output.cpu()[0])
                board[col][row] = prediction.index(max(prediction))

    solve(board)
    return board
Exemplo n.º 3
0
if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description='Visualization tool for CNN Pytorch model')
    parser.add_argument('--use_cuda',
                        action='store_true',
                        default=False,
                        help='enables CUDA training')
    parser.add_argument('--image', help='path to the image', required=True)
    parser.add_argument('--image_cls',
                        help='cllass of the image',
                        required=True)
    parser.add_argument('--load_weights',
                        help='path to saved model\'s file',
                        required=True)
    parser.add_argument(
        '--dataset',
        help='Path to dataset from which to load the images for visualizatiom')
    args = parser.parse_args()

    use_cuda = args.use_cuda and torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")

    model = Net().to(device)
    model.load_state_dict(torch.load(args.load_weights))
    model.eval()

    image = np.array(Image.open(args.image)).astype(np.float32) / 255
    image_tensor = torch.tensor(image).permute(2, 0, 1)

    plot_pixelwise_gradients(model, image_tensor, args.image_cls)
    plot_occlusion_heatmap(image_tensor, args.image_cls)
Exemplo n.º 4
0
def main(model: cnn.Net, classes: List[str], input_size: Tuple[int, int]):

    # print("Mode:", ctx.invoked_subcommand)
    # classes = ['crossing', 'klaxon', 'noise']
    # input_size = (60, 60)

    # model = cnn.Net(input_size)
    device = next(model.parameters()).device
    # model.to(device)
    model.eval()

    image_paths = [
        './recognition_datasets/Images/crossing/crossing-samp1_3_4.jpg',
        './recognition_datasets/Images/crossing/crossing-samp1_3_3.jpg'
    ]
    images, raw_images = load_images(image_paths, input_size)
    images = torch.stack(images).to(device)

    bp = BackPropagation(model=model)
    probs, ids = bp.forward(images)  # sorted
    ids = ids.cpu().numpy()  # numpy

    gcam = GradCAM(model=model)
    _ = gcam.forward(images)

    gbp = GuidedBackPropagation(model=model)
    _ = gbp.forward(images)

    topk = 3
    target_layer = 'conv5'
    output_dir = Path('results')

    output_dir.mkdir(parents=True, exist_ok=True)

    for i in range(topk):
        # Guided Backpropagation
        gbp.backward(ids=ids[:, [i]])
        gradients = gbp.generate()

        # Grad-CAM
        gcam.backward(ids=ids[:, [i]])
        regions = gcam.generate(target_layer=target_layer)

        for j in range(len(images)):
            name_fmt = f'{j}-' + '{}' + f'-{classes[ids[j, i]]}.png'

            print("\t#{}: {} ({:.5f})".format(j, classes[ids[j, i]], probs[j,
                                                                           i]))

            # Guided Backpropagation
            path = output_dir.joinpath(name_fmt.format('guided')).as_posix()
            save_gradient(filename=path, gradient=gradients[j])

            # Grad-CAM
            path = Path(output_dir,
                        name_fmt.format(f'gradcam-{target_layer}')).as_posix()
            save_gradcam(filename=path,
                         gcam=regions[j, 0],
                         raw_image=raw_images[j])

            # Guided Grad-CAM
            path = Path(
                output_dir,
                name_fmt.format(f'guided_gradcam-{target_layer}')).as_posix()
            save_gradient(filename=path,
                          gradient=torch.mul(regions, gradients)[j])