Exemplo n.º 1
0
                nonred_out=nOut,
                d="cuda:0" if enableCuda else "cpu")

    model.double()
    if enableCuda:
        model.cuda()

    # declare optimizer and gradient and loss function
    optimizer = optim.Adadelta(model.parameters(), lr=lr_rate)
    loss = torch.nn.MSELoss(reduction='mean')

    print("Loading model")
    model.load_state_dict(torch.load(modelFile))

    print("Starting Testing")
    out_nrgs, test_val = model.test(images, energies, loss)
    print("Testing Finished")

    out_nrgs = convertToNumpy(out_nrgs, enableCuda)
    # scaling energies to mHa
    energies = 1000 * energies
    out_nrgs = 1000 * out_nrgs

    # calculating median absolute error for energies in range (100-400 mHa)
    abs_err = abs(np.sort(energies) - np.sort(out_nrgs))
    median_err = np.median(abs_err)

    with open(outdir + "median_abs_error.txt", "w+") as f:
        f.write("Median Absolute Error: " + str(median_err) + " mHa \n")

    # plotting true energies vs. predicted energies
Exemplo n.º 2
0
            if not ((epoch + 1) % disp_epochs):
                print("file name:{}".format(f) +
                      "\tEpoch [{}/{}]".format(epoch+1, num_epochs) +
                      "\tTraining Loss: {:.5f}".format(train_val))

    print("Training Finished")
    
    pt = files[0][files[0].index("_"):files[0].index("_")+4]
    tsc = files[0][(files[0].index(" ")+1)+files[0][files[0].index(" ")+1:].index(" ")+1:files[0].index("]")]
    print("Saving Model")
    torch.save(model.state_dict(), moddir +
               "model_{}{}".format(pt,tsc))

    print("Starting Testing")
    out_nrgs, test_val = model.test(t_img, t_nrg, loss)
    print("Testing Finished")

    out_nrgs = convertToNumpy(out_nrgs, enableCuda)

    plt.plot(np.linspace(100, 400),
             np.linspace(100, 400), color="black")
    plt.scatter(np.sort(t_nrg)*1000, np.sort(out_nrgs)*1000, s=0.5, c='#FF0000')
    plt.xlim((100,400))
    plt.ylim((100,400))  
    plt.savefig(outdir + "InitialE.png")
    plt.close()

    plt.plot(obj_vals)
    plt.savefig(outdir + "Training error.png")
    plt.close()