def __init__(self, user, consumer_key, consumer_secret): self.auth = tweepy.OAuthHandler(consumer_key, consumer_secret) usr = tweepy.API(self.auth).get_user(screen_name=user) self.user = str(usr.id) self.url = '' self.data = config.loadData() self.dt = { }
Pre-trained models already exist. No need to run model2.py if predict output. Please backup the existed method 2 models before running model2.py! ''' # Create Dir to same model1 (if not exist) path = './model/model2' if not os.path.exists(path): os.makedirs(path) sys.stdout.write("0%\r") sys.stdout.flush() ############ Load Training Data set ############ data_sample, data_output = loadData() data_sample = data_sample.values.tolist() sys.stdout.write("10%\r") sys.stdout.flush() ############ Preprocess of Sample Data set ############ def data_flag(data_out): flag = data_out[:][0].tolist() return flag def data_seq(data_out): data_out = data_out[:][1] split = data_out.str.split(':', expand=True)
import email import config import string import rfc822 import imaplib import smtplib import datetime import StringIO import email.utils from email.mime.text import MIMEText configt = config.loadData() class MailSpider(): def __init__(self, user, password): self.user = user self.passwd = password try: self.mail = imaplib.IMAP4_SSL(configt['social']['imap_server'], configt['social']['imap_port']) self.mail.login(user, password) except Exception, e: print e def __del__(self): self.mail.logout() def __parse_email(self, raw_addres): return string.lower(email.utils.parseaddr(raw_addres)[1])
import json import tweepy import config import urllib2 import hashlib import binascii import threading import mailspider import sqlalchemy import twitterspider import facebookspider import socialdistance from sqlalchemy.orm import create_session from sqlalchemy.ext.declarative import declarative_base data = config.loadData() db = sqlalchemy.create_engine(data["db"]["mysql_connection"]) metadata = sqlalchemy.MetaData(db) Base = declarative_base() class SocialPeer(Base): __table__ = sqlalchemy.Table("socialpeers", metadata, autoload=True) def get_ip(): return urllib2.urlopen(data["social"]["url_get_ip"]).read() def get_message(user):
def __init__(self, user): self.data = config.loadData() self.user = hashlib.md5(user.upper()).hexdigest() self.token_fb = '' self.code = '' self.url = ''
8.Type model of 3rd sequence 9.D sequence model of 3rd sequence Pre-trained models already exist. No need to run model1.py if predict output. Please backup the existed method 1 models before running model1.py! ''' # Create Dir to same model1 (if not exist) path = './model/model1' if not os.path.exists(path): os.makedirs(path) ############ Load Training Data set ############ inputs, output = loadData() sys.stdout.write("10%\r") ############ Preprocess of Sample Data set ############ # Feature data output_number = output[:][0] # Type of first sequence input_new = pd.concat([inputs, output[:][0]], axis=1) output_seq = output[:][1] output_seq_new = output_seq.str.split(':', expand=True) output_new = output_seq_new[[0]] # Divide Train set and Output set output_seq_split = output_seq.str.split(':', expand=True)