Exemplo n.º 1
0
def setup_and_run(experiment_name, config, device):

    datasets = [load_dataset(task_config) for task_config in config['tasks']]
    for dataset in datasets:
        dataset['train_iter'] = iter(dataset['train_loader'])
    nets = [create_net(task_config, config['projectors']) for task_config in config['tasks']]
    num_projectors = sum([net.num_projectors for net in nets])
    if num_projectors != 0:
        context = aggregate_context(nets)
        bias = config['projectors'].get('bias', False)
        alpha = config['optimization'].get('alpha', None)
        ignore_context = config['projectors'].get('ignore_context', False)
        frozen_context = config['projectors'].get('frozen_context', False)
        omni_projector = OmniProjector(config['projectors']['context_size'],
                                       config['projectors']['block_in'],
                                       config['projectors']['block_out'],
                                       num_projectors,
                                       config['optimization']['alternatives_per_generation'] + 1,
                                       context,
                                       bias=bias,
                                       alpha=alpha,
                                       ignore_context=ignore_context,
                                       frozen_context=frozen_context)
    else:
        omni_projector = None
    optimize(experiment_name, datasets, nets, omni_projector, config, device)
        if options.run_deep_learning_using_keras:
            run_deep_learning(options)
        else:
            dataset_list = []

            if options.dataset == Dataset.TWENTY_NEWS_GROUPS.name:
                dataset_list.append(Dataset.TWENTY_NEWS_GROUPS.name)
            elif options.dataset == Dataset.IMDB_REVIEWS.name:
                dataset_list.append(Dataset.IMDB_REVIEWS.name)
            else:
                dataset_list.append(Dataset.TWENTY_NEWS_GROUPS.name)
                dataset_list.append(Dataset.IMDB_REVIEWS.name)

            for dataset in dataset_list:

                X_train, y_train, X_test, y_test, target_names, data_train_size_mb, data_test_size_mb = load_dataset(
                    dataset, options)

                vectorizer, X_train, X_test = extract_text_features(
                    X_train, X_test, options, data_train_size_mb,
                    data_test_size_mb)

                if options.use_hashing:
                    feature_names = None
                else:
                    feature_names = vectorizer.get_feature_names()

                if options.chi2_select:
                    select_k_best_using_chi2(X_train, y_train, X_test,
                                             feature_names, options)

                results = []
def run_magnet_loss():
    '''
	Test function for the magnet loss
	'''
    m = 8
    d = 8
    k = 8
    alpha = 1.0
    batch_size = m * d

    global plotter
    plotter = VisdomLinePlotter(env_name=args.name)

    trainloader, testloader, trainset, testset, n_train = load_dataset(args)

    emb_dim = 2
    n_epochs = 15
    epoch_steps = len(trainloader)
    n_steps = epoch_steps * 15
    cluster_refresh_interval = epoch_steps

    if args.mnist:
        model = torch.nn.DataParallel(LeNet(emb_dim)).cuda()
    if args.cifar10:
        model = torch.nn.DataParallel(VGG(depth=16, num_classes=emb_dim))
    print(model)

    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    minibatch_magnet_loss = MagnetLoss()

    images = getattr(trainset, 'train_data')
    labels = getattr(trainset, 'train_labels')

    # Get initial embedding
    initial_reps = compute_reps(model, trainset, 400)

    if args.cifar10:
        labels = np.array(labels, dtype=np.float32)

    # Create batcher
    batch_builder = ClusterBatchBuilder(labels, k, m, d)
    batch_builder.update_clusters(initial_reps)

    batch_losses = []

    batch_example_inds, batch_class_inds = batch_builder.gen_batch()
    trainloader.sampler.batch_indices = batch_example_inds

    _ = model.train()

    losses = AverageMeter()

    for i in tqdm(range(n_steps)):
        for batch_idx, (img, target) in enumerate(trainloader):

            img = Variable(img).cuda()
            target = Variable(target).cuda()

            optimizer.zero_grad()
            output, features = model(img)

            batch_loss, batch_example_losses = minibatch_magnet_loss(
                output, batch_class_inds, m, d, alpha)
            batch_loss.backward()
            optimizer.step()

        # Update loss index
        batch_builder.update_losses(batch_example_inds, batch_example_losses)

        batch_losses.append(batch_loss.data[0])

        if not i % 1000:
            print(i, batch_loss)

        if not i % cluster_refresh_interval:
            print("Refreshing clusters")
            reps = compute_reps(model, trainset, 400)
            batch_builder.update_clusters(reps)

        if not i % 2000:
            n_plot = 10000
            plot_embedding(compute_reps(model, trainset, 400)[:n_plot],
                           labels[:n_plot],
                           name=i)

        batch_example_inds, batch_class_inds = batch_builder.gen_batch()
        trainloader.sampler.batch_indices = batch_example_inds

        losses.update(batch_loss, 1)

        # Log the training loss
        if args.visdom:
            plotter.plot('loss', 'train', i, losses.avg.data[0])

    # Plot loss curve
    plot_smooth(batch_losses, "batch-losses")
Exemplo n.º 4
0
def main():
    # Decide device to use
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    # Log path: verify existence of checkpoint dir, or create it
    if not osp.exists(args.checkpoint):  ## what does actuallty does?? ****
        os.makedirs(args.checkpoint)
    print_to_log('\t '.join(LOG_HEADERS), LOG_PATH)
    # Reproducibility
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)  ## what does a seed function actually does??
    if device == 'cuda':
        torch.cuda.manual_seed_all(args.seed)
    # txt file with all params
    print_training_params(args, osp.join(args.checkpoint, 'params.txt'))
    # Get datasets and dataloaders
    trainloader, testloader, trainset, testset, train_labels, test_labels, \
        distrib_params, num_classes = load_dataset(args, magnet_training=True)
    # Params for each epoch
    epoch_steps = len(trainloader)
    print_freq = int(np.ceil(0.01 *
                             epoch_steps))  ## what does np.ceil() does here??
    cluster_refresh_interval = epoch_steps - 1
    # Create model
    model = MODEL_INIT(num_classes=num_classes).to(device)
    print(model)
    if args.pretrained_path is not None:
        model = copy_pretrained_model(
            model,
            args.pretrained_path)  ## from where is this function from ??
    # Optimizer and scheduler
    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    scheduler = MultiStepLR(
        optimizer,
        milestones=args.milestones)  ## i have to learn what this thing does
    # Define criterion
    criterion = MagnetLoss(args.alpha)
    # Get batch builders and magnet_data dict
    magnet_assertions(train_labels, args.k, L=args.L, m=args.m)
    # Get batch builders
    batch_builder = get_batch_builders(model,
                                       trainset,
                                       train_labels,
                                       args.k,
                                       args.m,
                                       args.d,
                                       device,
                                       dataset_name=args.dataset)
    # Get magnet_data dict
    magnet_data = get_magnet_data(batch_builder, device, args, model,
                                  criterion, trainset, train_labels)

    if args.evaluate_ckpt is not None:
        final_attack_eval(
            model,
            testloader,
            testset,
            test_labels,
            checkpoint=args.checkpoint,
            distrib_params=distrib_params,
            device=device,
            evaluate_ckpt=args.evaluate_ckpt,
            alpha_step=ALPHA_STEP,
            L=args.L,
            seed=args.seed,
            normalize_probs=not args.not_normalize,
            restarts=args.restarts,
            attack_iters=args.iterations,
        )
        return

    best_acc = -np.inf  ## what does this thing do??
    # Iterate through epochs
    for epoch in range(args.epochs):
        model, batch_builder, magnet_data, train_acc, test_acc, train_loss, \
            test_loss = train_epoch(
                model, epoch, optimizer, trainloader, device, trainset,
                train_labels, testset, test_labels, batch_builder, print_freq,
                cluster_refresh_interval, criterion, magnet_data,
                distrib_params, hardcoded_eps=HARDCODED_EPS,
                minibatch_replays=args.minibatch_replays,
                actual_trades=args.actual_trades
        )
        best_acc = max(best_acc, test_acc)
        # Report epoch and save current model
        report_epoch_and_save(args.checkpoint, epoch, model, train_acc,
                              test_acc, train_loss, test_loss, magnet_data,
                              args.save_all)
        # Update log with results
        update_log(optimizer, epoch, train_loss, train_acc, test_loss,
                   test_acc, LOG_PATH)
        # Update scheduler
        scheduler.step()  ## what is the scheduler step here ??

    # Report best accuracy of all training
    print(f"Best accuracy: {best_acc:4.3f}")
Exemplo n.º 5
0
def run_deep_learning_KerasDL1(options):
    manage_logs(options)

    logging.info("Program started...")

    dataset_list = get_dataset_list(options)

    results = {}
    for dataset in dataset_list:

        X_train, y_train, X_test, y_test, target_names, data_train_size_mb, data_test_size_mb = load_dataset(dataset, options)

        y_test, y_train = one_hot_enconder(dataset, options, y_test, y_train)

        vectorizer, X_train, X_test = extract_text_features(X_train, X_test, options, data_train_size_mb, data_test_size_mb)

        input_dim = X_train.shape[1]  # Number of features

        model = Sequential()
        model.add(layers.Dense(10, input_dim=input_dim, activation='relu'))
        add_output_layer(dataset, model, options)
        compile_model(model)

        if not options.epochs:
            if dataset == Dataset.TWENTY_NEWS_GROUPS.name:
                epochs = 10
            elif dataset == Dataset.IMDB_REVIEWS.name and options.use_imdb_multi_class_labels:
                epochs = 2
            else:  # IMDB_REVIEWS using binary classification
                epochs = 1

        start = time()
        if not options.epochs:
            print('\n\nNUMBER OF EPOCHS USED: {}\n'.format(epochs))
            history = model.fit(X_train, y_train, epochs=epochs, verbose=False, validation_data=(X_test, y_test), batch_size=10)
        else:
            print('\n\nNUMBER OF EPOCHS USED: {}\n'.format(options.epochs))
            history = model.fit(X_train, y_train, epochs=options.epochs, verbose=False, validation_data=(X_test, y_test), batch_size=10)
        training_time = time() - start


        training_loss, training_accuracy = model.evaluate(X_train, y_train, verbose=False)

        start = time()
        test_loss, test_accuracy = model.evaluate(X_test, y_test, verbose=False)
        test_time = time() - start

        algorithm_name = "Deep Learning using Keras 1 (KERAS_DL1)"

        print_results(dataset, algorithm_name, training_loss, training_accuracy, test_loss, test_accuracy, training_time, test_time)

        plt.style.use('ggplot')

        if dataset == Dataset.TWENTY_NEWS_GROUPS.name:
            plot_history(history, 'KERAS_DL1', '20 NEWS')
        elif dataset == Dataset.IMDB_REVIEWS.name:
            plot_history(history, 'KERAS_DL1', 'IMDB')

        print('\n')

        results[dataset] = dataset, algorithm_name, training_loss, training_accuracy, test_accuracy, training_time, test_time

    return results
Exemplo n.º 6
0
def run_deep_learning_KerasDL2(options):
    logging.info("Program started...")

    dataset_list = get_dataset_list(options)

    results = {}
    for dataset in dataset_list:

        X_train, y_train, X_test, y_test, target_names, data_train_size_mb, data_test_size_mb = load_dataset(dataset, options)

        X_train = apply_nltk_feature_extraction(X_train, options, label='X_train')
        X_test = apply_nltk_feature_extraction(X_test, options, label='X_test')

        y_test, y_train = one_hot_enconder(dataset, options, y_test, y_train)

        print('\t===> Tokenizer: fit_on_texts(X_train)')
        max_features = 6000
        tokenizer = Tokenizer(num_words=max_features)
        tokenizer.fit_on_texts(X_train)
        list_tokenized_train = tokenizer.texts_to_sequences(X_train)

        maxlen = 130
        print('\t===> X_train = pad_sequences(list_tokenized_train, maxlen={})'.format(max_features))
        X_t = pad_sequences(list_tokenized_train, maxlen=maxlen)
        y = y_train

        embed_size = 128
        print('\t===> Create Keras model')
        model = Sequential()
        model.add(Embedding(max_features, embed_size))
        model.add(Bidirectional(LSTM(32, return_sequences=True)))
        model.add(GlobalMaxPool1D())
        model.add(Dense(20, activation="relu"))
        model.add(Dropout(0.05))
        add_output_layer(dataset, model, options)
        compile_model(model)

        batch_size = 100

        if not options.epochs:
            if dataset == Dataset.TWENTY_NEWS_GROUPS.name:
                epochs = 15
            elif dataset == Dataset.IMDB_REVIEWS.name and options.use_imdb_multi_class_labels:
                epochs = 2
            else:  # IMDB_REVIEWS using binary classification
                epochs = 3

        # Test the model
        print('\t===> Tokenizer: fit_on_texts(X_test)')
        list_sentences_test = X_test
        list_tokenized_test = tokenizer.texts_to_sequences(list_sentences_test)
        print('\t===> X_test = pad_sequences(list_sentences_test, maxlen={})'.format(max_features))
        X_te = pad_sequences(list_tokenized_test, maxlen=maxlen)

        # Train the model
        start = time()
        if not options.epochs:
            print('\n\nNUMBER OF EPOCHS USED: {}\n'.format(epochs))
            history = model.fit(X_t, y, batch_size=batch_size, epochs=epochs, validation_data=(X_te, y_test))
        else:
            print('\n\nNUMBER OF EPOCHS USED: {}\n'.format(options.epochs))
            history = model.fit(X_t, y, batch_size=batch_size, epochs=options.epochs, validation_data=(X_te, y_test))
        training_time = time() - start

        print('\t=====> Test the model: model.predict()')
        prediction = model.predict(X_te)
        y_pred = (prediction > 0.5)

        print_classification_report(options, y_pred, y_test, target_names)

        print_ml_metrics(options, y_pred, y_test)

        print_confusion_matrix(options, y_pred, y_test)

        training_loss, training_accuracy = model.evaluate(X_t, y, verbose=False)

        start = time()
        test_loss, test_accuracy = model.evaluate(X_te, y_test, verbose=False)
        test_time = time() - start

        algorithm_name = "Deep Learning using Keras 2 (KERAS_DL2)"

        print_results(dataset, algorithm_name, training_loss, training_accuracy, test_loss, test_accuracy, training_time, test_time)
        plt.style.use('ggplot')

        if dataset == Dataset.TWENTY_NEWS_GROUPS.name:
            plot_history(history, 'KERAS_DL2', '20 NEWS')
        elif dataset == Dataset.IMDB_REVIEWS.name:
            plot_history(history, 'KERAS_DL2', 'IMDB')

        print('\n')

        results[dataset] = dataset, algorithm_name, training_loss, training_accuracy, test_accuracy, training_time, test_time

    return results
Exemplo n.º 7
0
def load_task(task_config):
    dataset = load_dataset(tasks_config['dataset'])
    model = create_model(tasks_config['model'])
    return (dataset, model)
Exemplo n.º 8
0
def main():

    ########################################################################
    # Set-up
    # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

    print(sys.executable)

    torch.manual_seed(TORCH_SEED)
    torch.cuda.manual_seed(TORCH_SEED)
    np.random.seed(NUMPY_SEED)

    use_gpu = torch.cuda.is_available()
    # use_gpu = False

    device = torch.device("cuda" if use_gpu else "cpu")
    print('GPU id: {}, name: {}'.format(
        GPU_ID, torch.cuda.get_device_name(torch.cuda.current_device())))

    trainloader, testloader, trainset, testset, num_classes = load_dataset(
        dataset_choice, batch_size_train, batch_size_test)

    classes = np.arange(0, 10)
    # classes = [1,2,3,4,5,6,7,8,9,0]

    if train:

        since = time.time()
        # Define a Convolution Neural Network
        net = MnistModel(embedding_dim)
        if dataset_choice == 'ONLINE_PRODUCTS':
            net = Net(embedding_dim)

        net = net.to(device)

        # Define a Loss function and optimizer
        # cross_entropy = nn.CrossEntropyLoss()
        cross_entropy = nn.NLLLoss()

        center_loss_weight = cl_weight
        center_loss_module = CenterLoss(num_classes, embedding_dim,
                                        center_loss_weight)
        center_loss_module = center_loss_module.to(device)
        if use_gpu:
            center_loss_module = center_loss_module.cuda()

        repulsive_loss_weight = rl_weight
        repulsive_loss_margin = rl_margin
        repulsive_loss_module = RepulsiveLoss(num_classes, embedding_dim,
                                              repulsive_loss_margin,
                                              repulsive_loss_weight)
        repulsive_loss_module = repulsive_loss_module.to(device)
        if use_gpu:
            repulsive_loss_module = repulsive_loss_module.cuda()

        criterion = [cross_entropy, center_loss_module, repulsive_loss_module]

        optimizer_net = optim.Adam(net.parameters(), lr=cross_entropy_lr)
        optimizer_center = optim.SGD(center_loss_module.parameters(),
                                     lr=center_loss_lr)
        optimizer = [optimizer_net, optimizer_center]

        for epoch in range(num_epochs):  # loop over the dataset multiple times
            _, centers = train_epoch(net, trainloader, criterion, optimizer,
                                     epoch, num_classes, batch_size_train,
                                     device, use_gpu, show_plots,
                                     embedding_dim)

        print('Finished Training')
        time_elapsed = time.time() - since
        print('Training complete in {:.0f}m {:.0f}s'.format(
            time_elapsed // 60, time_elapsed % 60))
        torch.save(net.state_dict(), model_save_path)

    else:

        net = MnistModel()
        if use_gpu:
            net = net.cuda()
        net.load_state_dict(torch.load(model_save_path))

    ########################################################################
    # Run the network on the test data
    # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

    # Test for one batch:
    embeddings_one_batch, labels_one_batch = test_one_batch(
        net, testloader, classes, use_gpu, Show=show_misclassified)

    # Test on the whole dataset:
    accuracy = test(net, testloader, device, use_gpu)

    # Classes that performed well, and the classes that did not:
    test_classwise(net, testloader, classes, device, use_gpu)

    # Test for retrieval
    k = 3
    test_retrieval(net, testloader, device, k, use_gpu)

    ########################################################################
    # Show embeddings
    # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

    # load up data
    x_data = embeddings_one_batch.data.cpu().numpy()
    y_data = labels_one_batch.cpu().numpy()

    # convert image data to float64 matrix. float64 is need for bh_sne
    x_data = np.asarray(x_data).astype('float64')
    x_data = x_data.reshape((x_data.shape[0], -1))

    # perform t-SNE embedding
    # vis_data = tsne(x_data)
    vis_data = pca(x_data, 2)

    # plot the result
    if show_plots:
        visualize_better(vis_data, y_data)

    # logging
    if log:
        from utils.my_logging import save_run_info, prepare_log_dir
        log_dir = prepare_log_dir('logs')
        log_string = 'Dataset: {}\tEpochs: {}\tBatch size: {}\tEmbedding dim: {}\tCenter loss weigth: {:.3f}' \
                     '\tRepulsive loss weigth: {:.3f}\tCross entropy learning rate: {:.5f}\t' \
                     'Center loss learning rate: {:.4f}\tRepulsive loss margin: {:.2f}\tAccuracy: {:.3f}'. \
            format(dataset_choice, num_epochs, batch_size_train, embedding_dim, cl_weight, rl_weight, cross_entropy_lr, center_loss_lr,
                   rl_margin, accuracy)
        save_run_info(log_string, log_dir)
        plot_data_better(vis_data, y_data, log_dir=log_dir)
Exemplo n.º 9
0
def heatmap_plotting(print_correlation_matrix=True, plot_heatmap_values=True, show_plotting=True, save_plotting=True,
                     plotting_path='heatmap.png', load_dataset_with_extra_pre_processing=True, save_csv_correlation_matrix=False):
    # Dataset list
    datasets = [Datasets.IONOSPHERE, Datasets.ADULT, Datasets.WINE_QUALITY, Datasets.BREAST_CANCER_DIAGNOSIS]

    for dataset_name in datasets:
        if dataset_name == Datasets.IONOSPHERE:
            path = os.path.join(os.getcwd(), 'datasets/data/ionosphere/ionosphere.data')
            if load_dataset_with_extra_pre_processing:
                X_np, y_np = load_ionosphere()
            else: # load all dataset columns
                X_np, y_np = load_dataset(path, header=None)
            X = pd.DataFrame(data=X_np)

        if dataset_name == Datasets.ADULT:
            if load_dataset_with_extra_pre_processing:
                X_np, y_np = load_adult(run_one_hot_encoder=False)
            else:
                X_np, y_np = load_adult(run_one_hot_encoder=True)

            X = pd.DataFrame(data=X_np.astype(float))
            if load_dataset_with_extra_pre_processing:
                if dataset_name == Datasets.ADULT:
                    X.columns = ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status',
                                       'occupation', 'relationship', 'race', 'sex',
                                       'hours-per-week', 'native-country']

        if dataset_name == Datasets.WINE_QUALITY:
            X_np, y_np = load_wine_quality()

            X = pd.DataFrame(data=X_np)

            X.columns = ['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides',
                         'free sulfur dioxide', 'total sulfur dioxide', 'density', 'pH', 'sulphates', 'alcohol']

        if dataset_name == Datasets.BREAST_CANCER_DIAGNOSIS:
            path = os.path.join(os.getcwd(), 'datasets/data/breast-cancer-wisconsin/breast-cancer-wisconsin.data')

            if load_dataset_with_extra_pre_processing:
                X_np, y_np = load_breast_cancer_diagnosis()
            else: # load all dataset columns
                X_np, y_np = load_dataset(path, header=None, remove_question_mark=True)
            X = pd.DataFrame(data=X_np.astype(float))

            if load_dataset_with_extra_pre_processing:
                X.columns = ['Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape', 'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli', 'Mitoses']
            else: # load all dataset columns
                X.columns = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape', 'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli', 'Mitoses']

        sns.set(style="white")

        # Compute the correlation matrix
        corr = X.corr()
        if print_correlation_matrix:
            print('\nCorrelation matrix:\n', corr)

        # Generate a custom diverging colormap
        cmap = sns.diverging_palette(220, 10, as_cmap=True)

        heatmap_plot = sns.heatmap(corr, xticklabels=True, yticklabels=True, annot=plot_heatmap_values, cmap=cmap,
                                   vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5})
        ax = plt.axes()

        file_name = dataset_name.name
        if plot_heatmap_values:
            file_name = file_name + ' with values, '
        else:
            file_name = file_name + ' without values, '
        if load_dataset_with_extra_pre_processing:
            file_name = file_name + ' with extra pre-processing'
        else:
            file_name = file_name + ' without extra pre-processing'

        if save_csv_correlation_matrix:
            corr.to_csv(os.path.join(plotting_path, file_name) + '.csv')

        if dataset_name == Datasets.ADULT and not load_dataset_with_extra_pre_processing:
            ax.set_title(dataset_name.name + ' using One-Hot-Enconder')
        else:
            ax.set_title(dataset_name.name)

        if show_plotting:
            plt.show()
        if save_plotting:
            fig = heatmap_plot.get_figure()
            fig.savefig(os.path.join(plotting_path, file_name))