Exemplo n.º 1
0
def test_theta_rule():
    """
    Compare result from theta_rule against
    precomputed arrays for theta=0, 0.5, 1.
    """
    I=0.8; a=1.2; T=4; dt=0.5  # fixed parameters
    precomputed = {
        't': np.array([ 0. ,  0.5,  1. ,  1.5,  2. ,  2.5,
                        3. ,  3.5,  4. ]),
        0.5: np.array(
            [ 0.8       ,  0.43076923,  0.23195266, 0.12489759,
              0.06725255,  0.03621291,  0.01949926, 0.0104996 ,
              0.00565363]),
        0: np.array(
            [  8.00000000e-01,   3.20000000e-01,
               1.28000000e-01,   5.12000000e-02,
               2.04800000e-02,   8.19200000e-03,
               3.27680000e-03,   1.31072000e-03,
               5.24288000e-04]),
        1: np.array(
            [ 0.8       ,  0.5       ,  0.3125    ,  0.1953125 ,
              0.12207031,  0.07629395,  0.04768372,  0.02980232,
              0.01862645]),
        }
    # Compare to 8 decimal places
    for theta in 0, 0.5, 1:
        u, t = decay.theta_rule(I, a, T, dt, theta=theta)
        diff = np.abs(u - precomputed[theta]).max()
        nt.assert_almost_equal(diff, 0, places=8,
                               msg='theta=%s' % theta)
Exemplo n.º 2
0
def test_against_discrete_solution():
    """
    Compare result from theta_rule against
    formula for the discrete solution.
    """
    def exact_discrete_solution(n, I, a, theta, dt):
        factor = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
        return I*factor**n

    theta = 0.8; a = 2; I = 0.1; dt = 0.8
    N = int(8/dt)  # no of steps
    u, t = decay.theta_rule(I=I, a=a, T=N*dt, dt=dt,
                            theta=theta)
    u_de = np.array([exact_discrete_solution(n, I, a, theta, dt)
                     for n in range(N+1)])
    diff = np.abs(u_de - u).max()
    nt.assert_almost_equal(diff, 0, delta=1E-14)