def test_theta_rule(): """ Compare result from theta_rule against precomputed arrays for theta=0, 0.5, 1. """ I=0.8; a=1.2; T=4; dt=0.5 # fixed parameters precomputed = { 't': np.array([ 0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. ]), 0.5: np.array( [ 0.8 , 0.43076923, 0.23195266, 0.12489759, 0.06725255, 0.03621291, 0.01949926, 0.0104996 , 0.00565363]), 0: np.array( [ 8.00000000e-01, 3.20000000e-01, 1.28000000e-01, 5.12000000e-02, 2.04800000e-02, 8.19200000e-03, 3.27680000e-03, 1.31072000e-03, 5.24288000e-04]), 1: np.array( [ 0.8 , 0.5 , 0.3125 , 0.1953125 , 0.12207031, 0.07629395, 0.04768372, 0.02980232, 0.01862645]), } # Compare to 8 decimal places for theta in 0, 0.5, 1: u, t = decay.theta_rule(I, a, T, dt, theta=theta) diff = np.abs(u - precomputed[theta]).max() nt.assert_almost_equal(diff, 0, places=8, msg='theta=%s' % theta)
def test_against_discrete_solution(): """ Compare result from theta_rule against formula for the discrete solution. """ def exact_discrete_solution(n, I, a, theta, dt): factor = (1 - (1-theta)*a*dt)/(1 + theta*dt*a) return I*factor**n theta = 0.8; a = 2; I = 0.1; dt = 0.8 N = int(8/dt) # no of steps u, t = decay.theta_rule(I=I, a=a, T=N*dt, dt=dt, theta=theta) u_de = np.array([exact_discrete_solution(n, I, a, theta, dt) for n in range(N+1)]) diff = np.abs(u_de - u).max() nt.assert_almost_equal(diff, 0, delta=1E-14)